
Metric for Early Measurement of

Software Complexity
Ghazal Keshavarz
Computer Science

Science and Research Branch, Islamic Azad University
Tehran, Iran

ghazalkeshavarz@gmail.com

Dr. Nasser Modiri
Computer Science

Islamic Azad University
Zanjan, Iran

nassermodiri@yahoo.com

Dr. Mirmohsen Pedram
Computer Science

Tarbiat Mollem University
Karaj, Iran

pedram@tmu.ac.ir

Abstract— Software quality depends on several factors such as on time delivery; within budget and
fulfilling user's needs. Complexity is one of the most important factors that may affect the quality.
Therefore, measuring and controlling the complexity result in improving the quality. So far, most of the
researches have tried to identify and measure the complexity in design and code phase. However, when
we have the code or design for software, it is too late to control complexity. In this article, with emphasis
on Requirement Engineering process, we analyze the causes of software complexity, particularly in the
first phase of software development, and propose a requirement based metric. This metric enables a
software engineer to measure the complexity before actual design and implementation and choose
strategies that are appropriate to the software complexity degree, thus saving on cost and human
resource wastage and, more importantly, leading to lower maintenance costs.

Keywords- Requirement Engineering (RE), Software Complexity, Software Metric

I. INTRODUCTION
In recent decades, software complexity has created a new era in computer science [1]. Software complexity

could be defined as the main driver of cost, reliability and performance of software. Nonetheless, there is no
common agreement on software complexity definition, but most of them is based on zuse view of software
complexity [2]," software complexity is the degree of difficulty in analyzing, maintaining, testing, designing and
modifying software". In other words, software complexity is an issue that is in the entire software development
process and every stage of software development life cycle (SDLC).

In the development phases of software, complexity strongly influences the required effort to analyze and
describe requirements, design, code, test and debugging the system. In maintenance phases, complexity specifies
the difficulty in error correction and the required effort to change different software module.

Requirements form the foundation of the software development process. Loose foundation brings down the
whole structure and weak requirements documentation (that is the result of Requirement Engineering process)
leads to project failure. Recent surveys suggest that 44% to 80% of all defects are inserted in the requirements
phase [3]. Thus, if errors are not identified in the requirements phase, it is leading to make mistakes, wrong
product development and loss valuable resource.

Well-defined requirements will increase the likelihood of the overall success of the software project.
However, it will not be possible to develop better quality requirements without a well-defined RE process. Since
RE is the starting point of Software Engineering and later stages of software development rely heavily on the
quality of requirements, there is a good reason to pay close attention to it.

Ghazal Keshavarz et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2482

According to CHAOS report published by the Standish Group [4], good RE practices contribute more than
42% towards the overall success of a project, much more than other factors (see Table 1).

TABLE 1. Project Success Factors

Project Success Factors
% of

Responses

Factors
Strongly

Related to
RE

User involvement 15.9% 
Executive Management
Support 13.9% 

Clear Statement of
Requirement 13.0% 

Proper Planning 9.6%
Realistic Expectation 8.2%
Smaller Project Milestones 7.7%
Competent Staff 7.2%
Ownership 5.3%
Clear Vision and
Objectives 2.9%

Hard-working, focused
Staff 2.4%

Other 13.9%

So we should have special focus on complexity factors in the first phase of SDLC. These factors could be
categorized in two groups: the component of software requirement specification (SRS) that is the output of
Requirement Engineering process and human resource that is a subset of the project resource.

II. ESTABLISHED COMPLEXITY MEASURES
Software complexity is a broad topic in Software Engineering and has attracted many researchers since1976

[5], and many metrics have been proposed to measure software complexity. This metrics is very important in the
software management and play a fundamental role in project success. In the following, we are going to
investigate some of the most popular complexity metrics.

Function point Metric

This metric [6] measure the size of software by considering five input parameters like number of user inputs,
number of user outputs, number of user inquiries, number of files and number of external interfaces, which will
have the value based on their complexities (see Table 2).

TABLE 2. Functional Units with Weighting factors

Parameters Counts
Complexity

Low Medium High
Number of Inputs 3 4 6

Number of Outputs 4 5 7
Number of Files 3 4 6

Number of External
Interfaces 5 10 15

Number of User
Inquiries 7 7 10

Function point can be computed using unadjusted function point, which can be derived from Table 2.
However technical complexity factors are the degree of influence of 14 components for “General Application
Characteristics” and the scale for degree of influence ranges from zero (not present, or no influence) to five
(strong influence throughout). The sum of scores of 14 characteristics that is total degrees of influence (Fi) is
converted to technical complexity factor. So the Function Point metric is calculated by using equation (1):

Ghazal Keshavarz et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2483

[]×+×= iFCountTotalFP 01.065.0 (1)

Halstead Complexity Metric

Halstead complexity [7] metrics is established for measuring program complexity with emphasis on
computational complexity. Halstead metric, directly measure the complexity from the source code and based on
four numeric values as followed:

n1: Number of non-repetitive operators
n2: Number of non-repetitive operands
N1: Number of all operators
N2: Number of all operands

Further Length and Vocabulary serve as the basis for finding out Volume, Potential Volume, Difficulty and

finally effort by using equations (2-7):

21 NNNLength += (2)

21 nnnVocabulary += (3)
nnVVolume 2log= (4)

)22(
2

* log)22(nnVVolumePotential ++= (5)
VVDDifficulty *= (6)

DVEEffort = (7)

One of the difficulties with the Halstead metric is that they are difficult to compute, especially in large

programs.

McCabe Cyclomatic Complexity Metric

McCabe [8] is another known metric that directly measures the number of linear independent paths within a
module and considered as a correct and reliable metric. Lower cyclomatic value help in better understanding of
program and changes is done with lower risk too. The metric is calculated by using equation (8):

PNECC +−= (8)

E is the edges of graph, N is the nodes of graph and P is the non-connected parts of the graph. Another

formula for calculating complexity is the following (equation (9)):

1+= DecisionsOfNumberCC (9)

It can be computed early in life cycle than of Halstead's metrics but there are some difficulties with the

McCabe metric. Although no one would argue that the number of control paths relates to code complexity, some
argue that this number is only part of the complexity picture. According to McCabe, a 3,000-line program with
five IF/THEN statements is less complex than a 200-line program with six IF/THEN statements and this shows
the complexity of uncontrolled statement are ignored.

Henry and Kafura's information flow complexity metric

Henry and Kafura [9] measure complexity as a function of fan-in and fan-out. They define fan-in of a
procedure as the number of local flows into that procedure plus the number of data structures from which that
procedure retrieves information. Fan-out is defined as the number of local flows out of that procedure plus the
number of data structures that the procedure updates. Local flows relate to data passed to and from procedures
that call or are called by, the procedure in question. The formula to calculate it is as equations (10), (11):

()2outFaninFanIFC += (10)

()2outFaninFanlengthIFCWeighted +×= (11)

High levels of information flow indicate the lack of cohesion in the design or obstruction point and these will

cause higher complexity.

Ghazal Keshavarz et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2484

It can be derived prior to coding, during the design stage but it can give complexity values of zero if a
procedure has no external interactions.

KLCID Complexity Metric

 KLCID [10] defines identifiers as the programmer defined variables and based on identifier density (ID), as
equation (12).

LOCsIdentifiernoTotalID .= (12)

For calculating KLCID, it finds number of unique lines of code, lines that have same type and kind of

operands with same arrangements of operators would be consider equal. KLCID is defined as equation (13). This
method is very time consuming, because every line of code compare with the remaining lines of program.

identifiergcalculatinlinesuniqueofNo

linesuniqueofsettheinsidentifierofNo
ID

.
.= (13)

Most of the complexity measures given so far are based on code and cognitive metrics, and some of them are
based on design phase. So it is better to focus on early stages of the software life cycle, and this is a new
approach.

In 2010 a requirement based metric [11] have been proposed in order to estimate the complexity. It uses the
components of the SRS in measuring. In this article, we improve this metric and propose a more accurate and
comprehensive requirement based metric.

III. REQUIREMENT BASED METRIC
The advantage of this metric is that, it enables a software engineer to measure the complexity before actual

design and implementation and choose appropriate strategies that based on the software complexity degree and so
improve the quality and productivity.

As said before, the proposed metric is based on the component of software requirement specification (that is
the output of Requirement Engineering process) and human resource (that is a subset of the project resource).
Human resource is considered as stakeholders and project team.

Stakeholders are the most important complexity factors, because the requirements extraction process results
and their requested and desirable items form the system base. Stakeholders are people with different backgrounds,
organizational and personal goals and social situations, and each of them has its own method for understanding
and expressing of knowledge and communicates in various ways with other people. So complexity widely
depends on the stakeholders, and has the first priority.

The Input data to perform the next phases of the software life cycle are documents, which are derived of the
requirements analysis phase. All items and stated requirements, causes the complexity and so documents have
considered as the second priority. It is necessary to say that this level of the complexity results in inherent
complexity of the system.

Finally, because of cognitive skills, experimental and various subjective factors, the project team (as a subset
of human resources) has considered as another complexity factor and has the third priority.

The calculation method for this measure is explained below:

Input Output Complexity (IOC)

This complexity refers to the input and output of the software system and attached interfaces and files.
Following attributes are considered:

• Input: As information entering to the system

• Output: Information leaving system

• Interface: User interface where the input are to be issued and output to be seen and specifically number
of integration required

• Files: This refers to the data storage required during transformation

So, Input Output Complexity can be calculated as equation (14):

FilesofNoInterfacesofNoOutputofNoInputofNoIOC +++= . (14)

Ghazal Keshavarz et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2485

Functional Requirement (FR)

Functional requirements should define the fundamental actions that must take place. Generally these are
commands that begin with the phrase "system should ..." and should be externally perceivable by users, operators
or other external systems.

It may be appropriate to partition the functional requirement into sub-functions or sub-processes. Also it is
noted that sub-functions may compose of other sub-functions too and it considered in formula. For example,
suppose a system has three functions and their functions include two or three sub-functions and each of these
have their own sub-functions too (see Figure 1).

Figure 1. Functional Requirements and relative Sub-Functions

On the other hand, some of the systems located in the dynamic and competitive environment or interact with
evolving systems. The functional requirements of these systems expose in frequent changes. Repeated
maintenance, increased error and low probability of testing the changes are the results of high rate of volatility
and these lead to the complexity (see Table 3). So, functional requirement complexity can be calculated as
equation (15):









×






 ×=  
−

= ==

1

1 1

3

1

level

j

n

k
k

i
ii SFNotCoefficienFR (15)

TABLE 3. Volatility types and its coefficient

Type of
Volatility

Volatility
coefficient

stable 1

rarely 2
often 3

Functional Requirement (NFR)

 Non-Functional requirement refers to the system qualitative requirements and not fulfilling those leads to
customer's dissatisfaction. More number of non-functional requirements and the degree of importance and
compulsion to do them leads to more complexity in the product. A way to rank requirements is to distinguish
classes of requirements as essential, desirable, and optional. So, functional requirement complexity can be
calculated as equation (16):








 ×= 
=

3

1i
ii NotCoefficienNFR (16)

Noi is the numbers of non-functional requirement with the importance degree of type i and Coefficienti is the

importance coefficient of type i (see Table 4). More force to do non-functional requirements may impose higher
degree of complexity to the software.

TABLE 4. Non Functional requirement types and its coefficient

Importance
Degree

Importance
coefficient

Optional 1

Desirable 2
Essential 3

Ghazal Keshavarz et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2486

Requirement Complexity (RC)

This refers to the sum of all requirements i.e. functional and its decomposition into sub-functions and non
functional equation (17):

NFRFRRC += (17)

Product Complexity (PC)

This refers to the overall complexity based on its functionality of the system. It is a product of requirement
complexity and Input Output Complexity. Also, to calculate the overall characteristics of the product, the Cost
Driver Attribute of COCOMO model is used (see Table 5). Product complexity is calculated as equation (18):

() AttributesoductDriverCostRCIOCPC Pr+×= (18)

TABLE 5. Cost Driver Attributes and their values used in COCOMO Model

Attribute
Very
Low

low Nominal High
Very
High

Required Software Reliability 0.75 0.88 1.00 1.15 1.40
Size Of Application Database 0.94 1.00 1.08 1.16
Complexity of the Product. 0.70 0.85 1.00 1.15 1.30

Design Complexity (DC)

This should specify design constraints that can be imposed by other standards, hardware limitations, etc.
Some constraints are, Implementation language, database integrity policies, operating environment, size of
required resources. All of them limit the developers and add complexity in the system. It can be calculated as
equation (19):


=

=
n

i
iCDC

1

 (19)

Ci is the numbers of imposed restrictions of type i.

Product Representation Complexity (PRC)

These items are the number of supported terminals and the number of concurrent users. High number of any
of these items represents the high complexity of the system. The formula to calculate it is as equation (20):

TermalNoUsersSynNoPRC .. += (20)

Human Resource Complexity (HRC)

Human resource plays an important role in developing and improving software so it is considered in two
levels: stakeholder complexity and project team complexity.

• Project Team Complexity (TC)

 Team Complexity includes their skill and experience. Personal skills can be estimated by calculating their
personal capability attributes. Cost Driver Attributes from COCOMO (Intermediate) model is used to do it
(Table 6). The equation (21) is used to calculate the Personal Complexity Attribute (PCA).


=

=
5

1i
ixPCA (21)

TABLE 6. Cost Driver Attributes and their values used in COCOMO Model

Attribute
Very
Low

low Nominal High
Very
High

Analyst Capability 1.46 1.19 1.00 0.86 0.71
Application Exp. 1.29 1.13 1.00 0.91 0.82

Ghazal Keshavarz et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2487

Attribute
Very
Low

low Nominal High
Very
High

Programmer Cap. 1.42 1.17 1.00 0.90 -
Virtual Machine Exp. 1.21 1.10 1.00 0.90 -
Programming Language
Exp 1.14 1.07 1.00 0.95 -

 Experience of the project members (Exp) is another complexity factor. To calculate it, one factor has been
highlighted as being important: has the project member worked on a similar project before, if so how many
similar projects has he/she been part of and has project member had experience in the same team before? To
have the Project Team experience value, find out everyone experience (according to Table 7) and then get the
average of it.

TABLE 7. Project Team Complexity

Experience
Complexity
Coefficient

-Employee have been with company for a long length
of time, previous experience in similar projects 1

-New employee, previous experience in similar
projects 2

-Employee have been with company for a long length
of time, not previous experience in similar projects 2

-New employee, not previous experience in similar
projects 3

 The Team Complexity is calculated as the equation (22):

()PCAExpTC += (22)

• Stakeholder Complexity (SC)
 Stakeholder is one of the important complexity factors and is considered in six levels as shown in Table 8
and is calculated as the sum of stakeholder level complexity as equation (23).

TABLE 8. Stakeholder Complexity

Stakeholder level Complexity=0 Complexity=1

Language Same Different
Industry Domain Same Different
Business Rules Same Different
Communication
Technology Same Different

Location of Stakeholders Same Different
Number of Stakeholders Low High

 If the organizations are geographically dispersed and have different business rules, industry domain,
communication technology or do not have common language to interact with each other and the project team,
all these cases will lead to complexity. Numerous stakeholders and their presence at various locations also add
much complexity too. SL is the Stakeholder level according to Table 8.








= 
=

6

1i
iSLSC (23)

Therefore the Human Resource Complexity is calculated according to the equation (24):

() 2SCTCHRC += (24)

Ghazal Keshavarz et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2488

Requirement Based Complexity Metric (RBC)

Finally, the Requirement Based Complexity can be obtained by considering all above definitions. It can be
mathematically shown as equation (25):

()() PRCDCHRCPCRBC ×+×= (25)

To understand the RBC metric, all above measure have been illustrated in an example.

EXAMPLE: Consider a program that find out the area of a triangle. The extracted SRS of this program includes
the following parameters:

Number of Inputs 03
Number of Outputs 01
Number of Interfaces 01
Number of Files 04
IOC=3+2+1+4 09
Number of Functional Req. 01
Number of Sub-Functions
(Area) 04 Every sub-functions have two sub-

functions too.(multiply, divide, plus)
)4()11(+×=FR 4

No. of Non-FR 00 no quality attribute
RC=FR+NFR 4

PC=IOC * RC +COCOMO 37.45 Required Reliability and Software
Complexity is very low

TC=1.17+2 3.17

Suppose programmer capability=Low
and he is new employee in company,
with previous experience in similar
projects

SC 00 one stakeholder in programmer
company

DC 00
HRC=TC+SC/2 1.585
PRC=1*1 01
RBC=((PC*HRC)+DC)*PRC 59.35

Figure 2. Program Code for Calculating the area of a triangle

IV. CONCLUSION AND FUTURE WORK
In this article, we propose requirement based complexity. This metric considers all of the complexity factors

of the first phase of SDLC.

According to the importance of quality and productivity issues in software engineering and close relationship
between these issues and complexity, it can be said that this metric is helpful in early identification and estimation

Ghazal Keshavarz et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2489

software complexity and results in saving on cost and human resource wastage, more importantly, leading to
lower maintenance costs.

In future activities, we are going to find a relationship between the proposed metric and required effort to do
the software project and also provide a complexity model too.

REFERENCES
[1] Adam West, "Nasa Study on Flight Software Complexity", Final report, May 2009
[2] Zuse, H., "software Complexity-measures and methods. Berlin: Walter de Gruyter", Berlin: Walter de Gruyter & Co, 1991
[3] Eberlein A., Requirements Acquisition and Specification for Telecommunication Services, PhD Thesis, University of Wales,

Swansea, UK, 1997
[4] The Chaos Report (1995) the Standish Group International,http://www.standishgroup.com/sample_research/index.php
[5] W. P. Stevens, G. J. Myers, and L. L. Constantine, "Structural Design", IBM Systems Journal, vol. 13, no. 2, Jun. 1976, pp. 113-

129
[6] Albrecht, A. J. and J. E. Gaffney. Jr. “Software Function, Source Lines of Code, And Development Effort Prediction: A Software

Science Validation”, IEEE Trans. Software Eng. SE-9, 6, Nov. 1983, pp. 639-648.
[7] Halstead M., "Element of Software Science", Amsterdam: Elsevier, 1977
[8] Thomas J.McCabe, "A Complexity Measure", IEEE Transactions On Software Engineering,1976, pages: 308-320
[9] Henry, S., Kafura, K.: Software structure metrics based on information flow. IEEE, Transactions on Software Engineering, 1982,

pages: 510–518
[10] Kushwaha, D.S. and Misra, A.K., Improved Cognitive Information Complexity Measure: A metric that establishes program

comprehension effort, ACM SIGSOFT Software Engineering, Volume 31 Number 5, September 2006
[11] Ashish Sharma, D.S. Kushwaha, "A Complexity measure based on Requirement Engineering Document", journal of computer

science and engineering, volume 1, issue 1, may 2010

AUTHORS PROFILE

Ghazal Keshavarz received her BA. Degree in Computer Engineering from Shiraz Technical University,
Shiraz, Iran in the year 2006. Currently she is pursuing M.Sc. in Computer Engineering from Islamic Azad
University (Science and Research branch), Tehran, Iran under the guidance of Dr Modiri. She is presently
working on Requirement Based Complexity metric and Software Quality and Complexity Model.

Dr. Nasser Modiri received his M.Sc and PhD in Electronics engineering from the University of Southampton
(UK) and the University of Sussex (UK). Assistant Professor of Department of Computer Engineering in
Islamic Azad University (Zanjan/Iran).

Dr. Mirmohsen Pedram, Assistant Professor of Department of Computer Engineering in Tarbiat Moallem
University (Karaj/Iran).

Ghazal Keshavarz et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2490

