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Abstract—This paper proposes a mixed-mode signal processing architecture for radix-2 DHT.  In the 
known algorithms, the stage structures perform all the additions and multiplications. The proposed 
algorithm introduces multiplying structures which perform all the multiplications with the cosine 
coefficients and their related additions. This leads to i) simplification of the stage structures which now 
perform only the additions, and ii) a reduction in the number of multiplications without affecting the 
number of additions. A mixed-mode signal processing architecture to implement the algorithm utilizing 
an N-bit ring counter, sample-and-hold array and analog block structure is proposed. The validity of this 
design has been tested by simulating it with the help of Orcad PSpice.  

Keywords- Decimation-in-time; decimation-in-frequency; discrete Hartley transform; mixed-mode 
architecture; radix-2. 

I.  INTRODUCTION  
The discrete Hartley transform (DHT) has been established as a potential tool for signal processing. An N-

point one dimensional DHT XH of a sequence x(n) is defined as  
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where cas (.) = cos (.) + sin (.). 

The fast Hartley transform (FHT) algorithm introduced by Bracewell [1] performs the DHT in a time 
proportional to NN 2log  using decimation-in-time (DIT). Meckelburg and Lipka presented the decimation-in-
frequency (DIF) FHT algorithm [2] claiming it to be faster than the one in [1].  Sorenson et al. [3] further 
analyzed the FHT having the same decomposition as [1], using the index mapping approach, implemented the 
algorithms for both DIT and DIF, and verified their operational complexities to be the same.  Prado [4] presented 
an in-place version of the FHT in [1] along with its operational complexity. The signal flow diagram originally 
proposed in [1] has been restructured for clarity, and by applying the transposition theorem a DIF algorithm 
having the same operational complexity has been obtained by Kwong and Shiu [5]. The above approaches 
required computation of the cosine coefficients (CCs) and sine coefficients (SCs) which are stage-dependent. Hou 
[6] concluded that the FHT algorithm, in essence, is a generalization of the Cooley-Tukey fast Fourier transform 
(FFT) algorithm to compute the discrete Fourier transforms (DFT), but it requires only real arithmetic 
computations as compared to complex arithmetic operations in any standard FFT. Hao [7] examined both the pre- 
and post-permutation algorithms in [1] and [2] and suggested improvements to make them faster by use of fast 
rotation to reduce the multiplications and by incorporating in-place or distributed permutation. Malvar [8] 
presented a new factorization of the DHT which involves the discrete cosine transform (DCT). His algorithms 
minimize the multiplications at the expense of an increased number of additions. Rathore [9] reported, for both 
the DIT in [1] and the DIF in [2], that the operational complexity involved is the same. He further utilized the 
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matrix approach, derived some properties of the DHT [10], obtained the relations for computational complexity 
and presented DHT-based DFT and DFT-based DHT algorithms.  

Various architectures have been reported in the literature to compute the DHT. Chakrabarti and Jaja [11] have 
proposed a modular bit-level systolic architecture. Dhar and Banerjee [12] have employed a set of linear arrays of 
Givens rotors. Chang and Lee [13] have derived two models of linear systolic arrays and have suggested the use 
of cordic algorithms to make the systolic arrays more efficient in computation. Hsiao et al. [14] have modified the 
above cordic processor and obtained a higher throughput and cost effective architecture. Kar and Rao [15] 
proposed a unified systolic architecture for sliding window computation of discrete transforms. Nayak and Meher 
[16] have implemented a bit-level systolic architecture for discrete orthogonal transforms using a serial–parallel 
vector–matrix multiplication scheme based on the Baugh–Wooley algorithm. Guo [17, 18] presented two 
architectures; one using parallel adders and the other using a distributed arithmetic based array that utilizes 
identical ROM modules and eliminates the accumulation loop in the processing elements. Amira and Bouridane 
[19, 20] have developed architectures to implement the DHT on field programmable gate arrays. Meher et al. [21] 
have presented a design framework for scalable and modular memory based implementation of the DHT in 
systolic hardware. These architectures compute the DHT using digital VLSI techniques. However, there are 
architectures which compute the DHT based on analog blocks. Culhane et al. [22] presented an analog circuit 
which utilizes a linear programming neural net to compute the DHT. Raut et al. [23] presented basic switched 
capacitor building blocks in systolic array architecture to implement the DFT. A two dimensional DCT structure 
proposed by Kawahito et al. [24] has been designed with fully differential switched-capacitor circuits. Digitally 
controlled analog circuits have been proposed by Chen et al. [25] which utilize the principle of charge scaling for 
computing the DCT and DFT. Mal and Dhar [26] proposed an analog sampled data architecture for the DHT.   

The growing computational demand for complex information processing has motivated significant research in 
the design of power efficient signal processing systems. One method for achieving low-power designs is to move 
processing on system inputs from the digital processor to analog hardware. However, for analog systems to be 
desirable to digital signal processing engineers, they need to provide a significant advantage in terms of size and 
power. They should be relatively easy to use and integrate into a larger digital system. Reconfigurable analog 
arrays, dubbed field-programmable analog arrays (FPAAs), can speed the transition of systems from digital to 
analog by providing the ability to rapidly implement advanced, low-power signal processing systems [27]. The 
drive towards analog integrated circuits has demanded the development of high performance analog circuits that 
are reconfigurable and suitable for CAD methodologies. If analog circuits are mixed with digital control, to meet 
the application requirements an analog-digital mixed system is obtained. In this mixed mode, sampled analog 
processing comes into picture. In analog signal processing level and time are continuous. In digital signal 
processing both level and time are discrete. In discrete-time signal processing (sampled analog processing) the 
level remains continuous but time is discrete. It is better for high frequency applications where time available for 
data conversion or for computations is limited. DSP algorithms can be used directly off-the-shelf with little or no 
modification. Analog circuits based on the current feedback operational amplifier (CFA) technique are suitable 
for high frequency applications [28]-[30].  

In this paper we present the design of a simple, versatile, generalized and easy to implement basic analog 
circuit based on operational amplifiers. It can be easily reconfigured as a stage structure analog block or 
multiplying structure analog block. A mixed-mode signal processing architecture for the DHT utilizing these 
blocks along with a ring counter for digital control and a sample-and-hold array for converting the input into 
sampled analog data has been proposed.  

II. THE PROPOSED ALGORITHM  
The operation of the proposed radix-2 decimation-in-time algorithm is obtained as a sequence of matrix 

operations on the data. It has the same permutation matrix, Pr, as in [1]-[5]. It modifies the existing stage structure 
matrices (SSMs), LS and introduces multiplying structure matrices (MSMs), LSM, to simplify the computation. 
SSM performs only additions, and MSM performs the multiplications with the cosine coefficients (CCs) and their 
related additions and are introduced for the stages 2 < S < P. The matrix formulation has been verified to obtain 
the DHT as ( ) ( ) ( )nxPLLLLLLLLNX rMMPPPMPH 123311

1 −−
−= . A succession of P stage operations leads stage by 

stage to the outputs, ( )nx1  through ( )nxP . 

A. Generalized Structure  
Fig. 1 depicts a signal flow diagram (SFD) showing the generalized structure that consists of both the 

multiplying structure (MS) and the stage structure (SS). The introduction of LSM in the expression of the DHT 
reflects in the form of a multiplying structure (MS) in the SFD which performs all the multiplications with the 
CCs and their related additions. The SFD for the SS is simple, follows a regular pattern and performs only 
additions. The structures are then utilized as per the algorithm to obtain the overall SFD. For each MS, there are 
multipliers for different elements as shown in Fig. 1. 
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Elements from 0 to m/2 have no multipliers. Each element (m/2) + i has no multiplier for i = m/4, a multiplier 
707.0  for i = m/8, and multipliers iα , iβ  for i = 1 to (m/8) – 1 and (m/8) + 1 to (m/4) – 1. Each element m – i has 

a multiplier 707.0  for i = m/8, and multipliers iα− and  iβ  for i = 1 to (m/8) – 1 and (m/8) + 1 to (m/4) – 1, 

where 
m

i
i

πα 2cos=  and 





 −= im

mi 4
2cos πβ  are the CCs other than 0.707. For each stage S from 3 to P, MSs 

are introduced, and the maximum number of CCs are required in the MS corresponding to the last stage S = P. 
The number of CCs in the MSs for the other stages is lesser and their values belong to the set of CCs for the last 
stage. Hence, for all the MSs, only (N/4) – 1 stage independent CCs are to be computed.  
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Figure 1.  SFD for the generalized structure, N = 2P  

B. Operational Complexity 
The known radix-2 algorithms [1]-[5], implement the FHT with operation counts of NA additions and NM 

multiplications given by 

 ( )
2

43log3 2 +−= NNNN A , (2) 

 43log2 +−= NNNN M . (3) 

The additions are performed by both the MS and SS. Number of MSs required per stage 
m
N= , where Sm 2= . 

Each MS requires (m/2) – 2 additions. Additions per stage 
m
Nm







 −= 2

2
 

m
NN 2

2
−= . The number of additions 
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for all the MSs are 
=







 −
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S
S

NN
3 2

2
2

. Each SS requires N additions, for N = 2P, the number of stages are P, hence, 

total number of additions for all the SSs = NP. For the entire SFD including all the MSs and SSs 

 NPNNN
P

S
SA 

=
−

+





 −=

3
122

( )
2

43log3 2 +−= NNN .               (4) 

It is clear from (2) and (4) that NA remains the same. 

The multiplications are performed within the MSs. Each MS requires m – 6 multiplications. Multiplications 

per stage ( )
m
Nm 6−=  

m
NN 6−= . The number of multiplications for all the MSs are  

 
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12
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From (3) and (5) it is seen that NM is lesser for N ≥ 8 in the proposed algorithms as compared to the existing 
algorithms in [1] – [5]. It is evident that the number of non-trivial arithmetic operations is reduced by 2 
multiplications (M) for each MS introduced. The reduction of 2M at the first stage is due to one MS 
corresponding to stage 1 and a reduction of 4M at the second stage is due to two MSs corresponding to stage 2. 
As the values of P and N increase, the MSs for the corresponding stages also increase, leading to a further 

reduction in the M. The total number of M reduces by 
2

4−N  for N ≥ 8. The comparison of the operational 

complexities of the existing radix-2 algorithms with the proposed algorithm for various transform lengths is 
shown in Table I.  

TABLE I.  COMPARISON OF OPERATIONAL COMPLEXITIES  

 Length 
Radix-2 FHT algorithms 

[1]-[5] 
Proposed Radix-2 

Algorithm 
N NM NA Total NM NA Total 

8 4 26 30 2 26 28 
16 20 74 94 14 74 88 
32 68 194 262 54 194 248 
64 196 482 678 166 482 648 

128 516 1154 1670 454 1154 1608 
256 1284 2690 3974 1158 2690 3848 
512 3076 6146 9222 2822 6146 8968 

1024 7172 13826 20998 6662 13826 20488 
2048 16388 30722 47110 15366 30722 46088 
4096 36868 67586 104454 34822 67586 102408 

 

III. DESIGN OF ANALOG BLOCK STRUCTURE  
 

Consider the circuit shown in Fig. 2.  
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Figure 2.  Basic analog circuit 

Thus, the circuit acts as a weighted summer and subtractor. 

Case (i): Choosing 

 4321 RRRR ===  and 1
8
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6 ==
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R   

 BA VVV +=1 , (8) 

 BA VVV −=2 . (9) 

Thus it may be utilized as a stage structure analog block (SAB). 

Case (ii): Choosing 
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 BiAi VVV βα +=1 , (10) 

 BiAi VVV αβ −=2 . (11) 

Thus it may be utilized as a multiplying structure analog block (MAB). 

IV. THE PROPOSED ARCHITECTURE 
The proposed mixed-mode signal processing architecture block diagram and corresponding circuit diagram 

for obtaining the DHT for N = 8 is shown in Fig. 3 (a) and (b) respectively. The latter is utilized for simulation in 
Orcad PSpice.  
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(b) 

Figure 3.  Mixed-Mode signal processing architecture for DHT (a) Circuit diagram for N = 8 (b) Block diagram 

 

 

Gautam A. Shah et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2559



A. Ring counter 
A shift register is an N-bit register with a provision for shifting its stored data by one bit position at each clock 

tick. The 74194 is an MSI 4-bit bidirectional parallel in parallel out shift register. Two such ICs are connected in 
cascade to form an 8 bit ring counter. The rightmost bit of the ring counter is pulled high and all the other seven 
bit are pulled low. This is utilized initially to load the counter with the pattern ‘0000-0001’. The S0 pins of the 
ICs are utilized to first load the pattern and then maintain the shift registers in the shift-left mode. At each clock 
tick the bit moves to the left and the patterns generated are 0000-0010, 0000-0100, and so on till finally the 
pattern is 1000-0000. On the next clock tick the pattern changes back to 0000-0001 due to the feedback and 
subsequently the sequence repeats. The ring counter does not count in an ascending or descending binary 
sequence, but is useful in control applications. The waveforms obtained at the output of the ring counter after 
simulation is as shown in Figure 4. 

 

Figure 4.  Waveforms obtained at the output of the ring counter  

B. Sample and Hold  
The basic sample and hold (SAH) circuit consists of a switch, hold capacitor and buffer amplifier. It has two 

basic and distinct operational states. In one state, the input signal is sampled and simultaneously transmitted to the 
output (sample). In the second, the last value of input sampled is held (hold) until the input is sampled once again. 
The ring counter digitally controls the SAH array. It asserts its output only one bit at a time from the first to the 
last and continuously repeats the sequence. Each bit controls its respective SAH circuit which samples the input 
data on the rising edge of the bit, tracks it till the falling edge, and holds it over the period from the falling edge to 
the next rising edge. Essentially it converts the real-time input into sampled analog data and presents it to the 
analog block structure. The waveforms obtained at the output of the sample and hold array after simulation are as 
shown in Figure 5. The input applied was a positive going ramp. 

 

Figure 5.  Waveforms obtained at the output of the sample and hold array 
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C. Analog Block Structure 
The analog block structure to obtain the DHT for N = 2, 4 and 8 is shown in Fig. 6. Each butterfly in the SS is 

implemented by a single SAB. Each stage has N/2 butterflies and hence requires N/2 SABs to implement it. 
Similarly, each butterfly in the MS is implemented by a single MAB. For each stage S from 3 to P, there are 2(P - S) 
MSs and each MS has (2(S - 2) – 1) MABs. The total number of MABs for each stage are 2(P - S) · (2(S - 2) – 1). The 
analog block structure computes the DHT and makes it available at the output. 
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Figure 6.  Analog block structure to obtain the DHT for (a) N = 2, (b) N = 4 and (c) N = 8 

V. SIMULATION RESULTS  
The architecture for N = 8 has been tested by simulating it with the help of Orcad PSpice. The simulation 

results are shown in Fig. 7.  

 

 

Figure 7.  Waveforms obtained at the output of the Analog block structure for N = 8 
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The forward transformation of the DHT has been tested by applying a positive going ramp input. The ramp is 
sampled by the SAH array which is digitally controlled by the ring counter. The output of the SAH array forms 
the input sequence and is denoted as V(XN) which is applied to the analog block structure. The output sequence 
after the forward transformation is obtained at the output of the analog block structure and is denoted as V(YN). 
The theoretically calculated output values and the measurement values obtained by simulation of the forward 
transformation are tabulated in Table II and are in good agreement. 

TABLE II.  COMPARISON OF THEORETICAL VALUES AND SIMULATION RESULTS 

n 
Input 
 x(n)  

Theoretical 
Values of  
output XH 

Simulation 
Results of  
output XH 

0 0.2 0.900 0.890 
1 0.4 -0.341 -0.349 
2 0.6 -0.200 -0.201 
3 0.8 -0.141 -0.139 
4 1.0 -0.100 -0.099 
5 1.2 -0.059 -0.060 
6 1.4 0.000 0.003 
7 1.6 0.141 0.139 

VI. CONCLUSIONS 
In the algorithms [1]-[5], the stage structures perform the additions and multiplications. The proposed 

algorithm introduces multiplying structures which perform all the multiplications with the cosine coefficients and 
their related additions. This simplifies the stage structures which now perform only the additions. The distinct 
advantage is that the number of multiplications is reduced without affecting the number of additions. It has been 
shown that the proposed analog circuit can perform both the additions and multiplications. The architecture being 
modular and can be scaled for large values of N unlike the neural net approach in [22]. The proposed architecture 
is a mixed-mode architecture in which the analog block structure is mixed with digital control. The real-time 
signal is converted into sampled analog data with the help of the SAH array. The analog block structure then 
processes the sampled analog data simultaneously at each stage, hence the architecture is faster than those based 
on the multiply and accumulate approach [26]. The architecture for the forward DHT has been tested by 
performing the simulation on Orcad PSpice. It can easily be modified to implement a decimation-in-frequency 
algorithm as well as the inverse transformation. The architecture could prove suitable for signal processing using 
field programmable analog arrays [27]-[28]. 
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