
An Integer Programming-based Local
Search for Large-Scale Multidimensional

Knapsack Problems

Junha Hwang
Department of Computer Engineering

Kumoh National Institute of Technology
Gumi, Korea

Sungjae Park
Department of Computer Engineering

Kumoh National Institute of Technology
Gumi, Korea

In Yeup Kong
School of Electronic Engineering

Kumoh National Institute of Technology
Gumi, Korea

Abstract—Integer programming-based local search (IPbLS) is a metaheuristic recently proposed for
solving linear combinatorial optimization problems. IPbLS is basically the same as the first-choice hill-
climbing except for using integer programming for neighbor generation. Meanwhile, the
multidimensional knapsack problem (MKP) is one of the most well-known linear combinatorial
optimization problems and has received wide attention. Integer programming (IP) is very effective for
small-scale or mid-scale MKP but suffers from large memory requirement for large-scale MKP. In this
paper, we present an IPbLS for solving large-scale MKP. First, an initial solution is generated by IP, and
then neighbor solutions are repeatedly obtained by IP using problem reduction. We used the largest 30
problem instances available on the OR-Library as experimental data. The proposed method could find
better solutions than the best-known solutions for 6 problem instances. Furthermore, we confirmed that
our average result of the best solutions outperforms the result of the best-known method.

Keywords-Multidimensional Knapsack Problem; Integer Programming; Integer Programming-based Local
Search

I. INTRODUCTION
Integer Programming-based Local Search (IPbLS) is a recent method proposed for linear combinatorial

optimization problems [1, 2]. It is basically like first choice hill climbing [3] and repeatedly uses integer
programming for neighbor generation. In the previous researches [1] and [2], IPbLS was respectively applied to
the N-Queens maximization problem and the maximal covering problem which are linear combinatorial
optimization problems, and also the effectiveness of IPbLS was verified by comparing with other search
techniques like pure integer programming, tabu search, simulated annealing, and so on. However, since the search
algorithms and the data for experiment were made by on their own, there were not enough evidences about the
performance of IPbLS. Thus, in this paper, we are going to prove the superiority of IPbLS once again by applying
it to the well-known multidimensional knapsack problem (MKP) and by using public MKP data on the OR-
Library [4]. Since many previous studies have used the data for the MKP, this approach allows us to more easily
verify the effect of IPbLS.

The MKP is a well-known NP-hard combinatorial optimization, which can be linearly expressed as following
equations [5]. A set of n items with profits pj > 0 and m resources with capacities ci > 0 are given. Each item j
consumes an amount wij ≥ 0 from each resource i. The 0-1 decision variables xj indicate which items are selected.
According to (1), the goal is to choose a subset of items with maximum total profit. Selected items must, however,
not exceed resource capacities. This is expressed by the knapsack constraints (2).

Junha Hwang et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2257

(MKP) maximize
=

=
n

j
jj xpz

1

 (1)

subject to ,,...,1 ,
1

micxw
n

j
ijij =≤

=

 (2)

.,...,1 },1,0{ njx j =∈ (3)

A set of large MKP instances available on the OR-Library have been mainly used for testing the suggested
algorithms. It was made by Chu and Beasly [6] and consists of 270 correlated instances generated using the
procedure proposed in [7]. The instances were generated by varying combinations of constraints with m = 5, 10,
30 and variables with n = 100, 250, 500. A set of 30 instances was generated for each n-m combination. Most of
the best-known solutions for the instances were obtained by combined linear programming and tabu search with a
variable fixing heuristic [8]. Since then, some advanced results have been reported for relatively small data. We
have not, however, seen any better results for the largest instances with m = 30 and n = 500. So we will apply
IPbLS to the largest instances with m = 30 and n = 500, and compare the results with any other existing
algorithms including the best-known research [8]. Experimental results show that the proposed method based on
IPbLS outperforms the state-of-the art results.

The structure of the paper is as follows. Section II describes the related works about the MKP and IPbLS.
Section III suggests IPbLS for the MKP and Section IV presents experimental results. Finally, in section V we
draw the conclusion and discuss future works.

II. RELATED WORK

A. The Multidimensional Knapsack Problem

The MKP has many applications such as capital budgeting, loading problem, resource allocation, and so on
[9]. Although the MKP is expressed as a simple formulation, it has been paid attention for a long time due to its
complexity and importance. Especially, the MKP has been often used as a test problem to evaluate new
metaheuristics. Table I presents a summary of some important research articles and their main approaches.

TABLE I. A SUMMARY OF SOME IMPORTANT RESEARCH ARTICLES

Reference Year Author Approach Note

[6] 1998 Chu genetic algorithm making the MKP data on the OR-Library
[10] 2001 Vasquez linear programming, tabu search the first remarkable results
[11] 2004 Alaya ant colony optimization
[8] 2005 Vasquez linear programming, tabu search, variable fixing improved results of [10]
[12] 2005 Puchinger variable neighborhood search
[13] 2005 James dynamic programming, enumeration exact method

[14] 2006 Puchinger core concept, memetic algorithm,
variable neighborhood search

[15] 2007 Akcay greedy-like heuristic
[16] 2007 Gallardo branch and bound, memetic algorithm
[17] 2008 Nhicolaievna bee colony optimization

[18] 2008 Vimont constraint propagation, implicit enumeration,
variable fixing exact method

[19] 2009 Wilbaut linear programming, variable fixing
[20] 2009 Boussier branch and bound exact method
[21] 2009 Wilbaut linear programming, integer programming better results than [8] in a few instances
[22] 2010 Puchinger core concept

[23] 2010 Al-Shihabi nested partition, ant colony optimization,
linear programming

[24] 2010 Boussier brach and bound, depth first search exact method
[25] 2010 Hill lagrangian relaxation
[26] 2010 Ke ant colony optimization
[27] 2011 Croce core concept, linear programming
[28] 2011 Hanafi linear programming

Although there are some papers in which the data on the OR-Library are not used, we just included research
articles which use the data on the OR-Library in the table I. For example, there was a research using tabu search
before the data was made [29], and in recent years, the previous research [30] introduced a computational model
simulating the dynamic process of human immune response and [31] introduced a hybridized scheme using

Junha Hwang et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2258

Dantzig algorithm and the genetic algorithm to solve the MKP. However, since it is hard to directly compare our
result with their results because they did not use the same data, we do not consider the researches any more.

As you can see from the table I, many methods like linear programming, tabu search, ant colony optimization,
branch and bound, and so on, have been applied to find better solutions since the MKP data on the OR-Library
had been made to verify the performance of genetic algorithm [6]. The first significant result was made by the
hybrid method of linear programming and tabu search [10]. This result is far better than the result of [6]. And then,
in the research [8], the improved result was obtained by adding variable fixing heuristic to the hybrid method of
[10] by the same researcher. In fact, the result of the paper [8] has been recognized as the best result until now. In
particular, we have not seen any similar results as well as any better results on the largest instances with m = 30, n
= 500. Only the research by Wilbaut has shown the better results on 3 instances out of 30 instances with m = 30, n
= 500 [21]. However, in [21], the results on 18 instances are worse and the average result is also far worse than
the result of [8].

The contribution of some papers can be recognized in the following ways. First, some papers like [19, 23, 27]
show a little better results or similar results in a relatively small-scale data instances. However, the results on
average are not better than the result of [8], and in addition, the results are far worse than the result of [8] on the
largest instances with m = 30, n = 500. Another contribution is that the previous researches [14, 22, 28] could find
good solutions in a relatively short time. In the research [8], total execution time per data instance with m = 30, n
= 500 was 100 hours, and on average it took about 33 hours until the best-known solutions were found. On the
other hand, it took a few hours to get their final solutions in the papers [14, 22, 28]. However, their final results
are significantly worse than the result of [8]. We guess that to emphasize the short execution time is in itself an
evidence that they cannot reach the result of [8], so they may not find the best-known solutions after 100 hours.
Several other papers are by and large worse than [8], or it is hard to compare with [8] since they only deal with
some parts of the data.

Meanwhile, the previous studies [13, 18, 20, 24] are classified as the exact method which guarantees finding
an optimal solution. [13] found the optimal solutions on a number of m = 5, n = 500 instances and [18] obtained
several new optimal solutions never published before. The optimal solutions of the instances with m = 10, n = 500
were found in [20] and the optimal solutions of some of m = 30, n = 250 instances were found in [24]. However,
the optimal solutions have not been still found for all the largest instances with m = 30, n = 500.

In conclusion, the goal of this paper is to find better solutions than the best-known solutions described in [8]
for the largest instances with m = 30, n = 500 using IPbLS. We will compare our results with the results of the
previous researches [6, 10, 21] as well as [8] which are the most important studies for the MKP.

B. Integer Programming-based Local Search

IPbLS was first proposed to solve a nurse scheduling problem [32], and it was applied to solve a classic
network design problem [33]. IPbLS was also developed to solve N-Queens maximization problem which is a
kind of linear constraint satisfaction optimization problem [1], and it was recently used to solve the maximal
covering problem [2].

Fig. 1 shows the structure of IPbLS [2]. IPbLS is basically based on first choice hill climbing. Most of the
combinatorial optimization problems can be expressed as n variables, and a neighbor solution can be made by
changing the values of k variables out of n variables. General first choice hill climbing makes neighbor solutions
by randomly changing the values until one is generated that is better than the current solution, and then moves to
the neighbor solution [3].

Figure 1. General Integer Programming-based Local Search

Junha Hwang et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2259

However, IPbLS selects k variables and then moves to a locally optimal neighbor solution since it considers
all the neighborhood solutions being able to be made by changing the k variables. Integer programming used as a
neighbor generation tool makes this possible, which is an exact method for solving linear combinatorial
optimization problems based on branch and bound [34]. In addition, k of IPbLS can be set to a far larger value
unlike general local search where the value of k is set relatively small. This is also due to integer programming
which can find an optimal solution more efficiently when k is relatively large.

III. INTEGER PROGRAMMING-BASED LOCAL SEARCH FOR THE MULTIDIMENSIONAL KNAPSACK PROBLEM
IPbLS for the MKP is very simple. First of all, an initial solution should be made. In the previous studies [1]

and [2] , greedy heuristic methods were used to generate an initial solution. A greedy heuristic can be also applied
to generate an initial solution for the MKP, however, we use integer programming (IP) for this work. IP may be
effective or not according to the given problem but at least IP seems to be very effective for the MCP.
Nevertheless, IP exhausts the given memory in a few hours since IP especially needs much memory for large-
scale problems. Therefore, execution time limit for generating an initial solution (ti) is given and the best solution
in the time is set to the initial solution.

Next, the problem is reduced by selecting items participating in the next IP execution. When we select items
for the next IP, we basically select all the items included in the knapsack of the current solution and, in addition,
randomly select some of the items that are not included in the knapsack. The total number of selected items is
represented by k. The variables for the unselected items are fixed to 0, but this is actually implemented by
excluding the variables for the items. Now, IP solves the reduced MKP problem that consists of k variables, but at
this time IP requires excessive time if the value of k is too large. On the other hand, it is hard to improve the
current solution if the value of k is too small. Accordingly, we set the value of k to somewhat large value, and
limit the execution time of IP (tn). After the next solution is obtained, IPbLS for the MKP repeats selecting k
items from the total n items and executing IP until the total execution time reaches the total time limit.

While out method selects all the items included in the knapsack of the current solution, there may be another
method in which we remove some of the items included in the current knapsack. However, according to the
experimental result, it seems not to be effective for the MKP. The removing allows moving to a worse solution
like simulated annealing [3], but it seems useless for IPbLS for the MKP. Therefore, there are 3 parameters for
our method: execution time for generating an initial solution - ti, The number of items joining IP to generate a
neighbor solution - k, execution time of IP for generating a neighbor solution - tn. All these parameter values are
empirically determined.

IV. EXPERIMENTAL RESULT

A. Experimental Environment

As mentioned previously, IPbLS for the MCP proposed in this paper was tested on the largest 30 data
instances with m = 30, n = 500 available on the OR-Library. The 30 instances were generated with different
tightness ratios (α = 0.25, 0.5, 0.75). The values of α are 0.25 for the first ten instances, 0.5 for the next ten
instances and 0.75 for the remaining ten instances.

All the experiments were carried on a PC with Intel Core2 Duo with 3GHz and 2GB memory. Execution time
of one run was limited to 56 hours, and five runs were carried out per each instance. The value of the parameter tn
is 300 seconds that is identical in all data instances, but the values of the parameters ti and k are different
depending on the instance. The value of ti is various from 300 to 1150 seconds which is the time taken to get the
best solution depending on the instance. Thus, in fact, IPbLS starts from the best solution found by IP. The value
of k is different according to the tightness ratio α. The values are respectively 350, 400, 450 when α = 0.25, 0.5,
0.75. The values of the parameters k and tn were determined based on just several experiments on some instances.
Therefore, we think that the performance of IPbLS can be improved by more carefully adjusting the values.

We used IBM ILOG CPLEX 12.1 as an integer programming development tool [35]. IBM ILOG CPLEX is
the present most widely used linear and integer programming library in the world for commercial and academic
purpose.

B. Experimental Results

Table II presents the detailed results obtained by our approach on the 30 instances and the results are
compared with five important other approaches. The meaning of the columns is as follows.

• GA: results obtained by genetic algorithm [6]
• LP+TS: results obtained by combined linear programming with tabu search [10]
• LP+TS+Fix: results obtained by combined linear programming with tabu search and variable fixing

which is the best-known approach [8]

Junha Hwang et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2260

• IRH: results obtained by iterative relaxation-based heuristic [21]
• IP [CPLEX]: results obtained by integer programming using IBM ILOG CPLEX 12.1
• IPbLS: result obtained by our method
• z*: best value found by each of the six methods
• t*: time in seconds to find the best solution by each method
• zavg of IRH: average value of 60 runs by IRH
• zavg of IPbLS: average value of 5 runs by IPbLS

The best values are marked in bold shade on each problem instance. From the best values z*, we can see that
IRH found the better solutions than LP+TS+Fix in only three problems 2, 3, 15 and the improved values are 29,
16, 29 respectively. However, IRH is worse than LP+TS+Fix in other 19 problems and, in addition, the average
values zavg of IRH are far worse than LP+TS+Fix. On the other hand, we can see that IPbLS is better than
LP+TS+Fix in six problems 2, 3, 4, 7, 10, 29 and the improved values are 29, 41, 28, 55, 4, 10 respectively which
are far better results than the best-known solutions. IPbLS shows worse results than LP+TS+Fix in six problems
11, 13, 22, 23, 26, 27 and the values are 3, 25, 4, 17, 4, 8 respectively, but the differences are not relatively large.
Also, average values zavg of IPbLS are not so much worse than LP+TS+Fix and, in addition, IPbLS shows better
average results in two problems 3 and 4. The execution times to find the best solutions are different in
LP+TS+Fix and IPbLS. It seems that IPbLS somewhat takes shorter than LP+TS+Fix, but it is impossible to
directly compare the two methods since the experimental environments are differ from each other. We just
present the information about the execution time for reference.

TABLE II. EXPERIMENTAL RESULTS FOR THE 30 INSTANCES

Problem
GA [6] LP + TS [9] LP + TS + Fix [8] IRH [20] IP [CPLEX] IPbLS

z* z * z * t* z * zavg z * z * zavg t*

0 115,868 115,991 116,056 15,771 115,948 115,512 115,946 116,056 116,023 136,917
1 114,667 114,810 114,810 120,414 114,780 114,338 114,701 114,810 114,793 6,014
2 116,661 116,683 116,712 121,769 116,741 116,244 116,685 116,741 116,710 82,134
3 115,237 115,301 115,329 85,670 115,345 114,856 115,242 115,370 115,332 86,403
4 116,353 116,435 116,525 603 116,516 116,052 116,516 116,553 116,536 17,393
5 115,604 115,694 115,741 616 115,741 115,236 115,734 115,741 115,737 49,364
6 113,952 114,003 114,181 110,873 114,111 113,696 114,058 114,181 114,167 33,026
7 114,199 114,213 114,348 282,523 114,344 113,930 114,249 114,403 114,339 72,765
8 115,247 115,288 115,419 112,849 115,419 115,050 115,419 115,419 115,419 300
9 116,947 117,055 117,116 121,248 117,116 116,687 117,020 117,116 117,106 3,609
10 217,995 218,068 218,104 96,952 218,068 217,683 218,068 218,108 218,092 41,496
11 214,534 214,562 214,648 167,224 214,645 214,314 214,626 214,645 214,638 16,238
12 215,854 215,903 215,978 178,701 215,922 215,592 215,846 215,978 215,954 95,939
13 217,836 217,910 217,910 308,469 217,885 217,538 217,875 217,885 217,879 49,561
14 215,566 215,596 215,689 144,793 215,640 215,320 215,604 215,689 215,682 77,676
15 215,762 215,842 215,890 117,102 215,919 215,555 215,847 215,890 215,875 47,210
16 215,772 215,838 215,907 1,637 215,907 215,561 215,796 215,907 215,902 95,300
17 216,336 216,419 216,542 4,775 216,510 216,146 216,444 216,542 216,516 185,574
18 217,290 217,305 217,340 4,742 217,313 216,935 217,287 217,340 217,338 190,574
19 214,624 214,671 214,739 109,785 214,690 214,312 214,695 214,739 214,730 2,407
20 301,627 301,643 301,675 143,430 301,675 301,385 301,675 301,675 301,675 900
21 299,985 300,055 300,055 218,994 300,055 299,742 300,055 300,055 300,055 1,200
22 304,995 305,028 305,087 118,929 305,080 304,751 305,062 305,083 305,082 10,369
23 301,935 302,004 302,032 156,377 302,008 301,683 302,004 302,015 302,015 34,518
24 304,404 304,411 304,462 238,811 304,425 304,089 304,412 304,462 304,449 79,048
25 296,894 296,961 297,012 12,191 296,969 296,658 296,946 297,012 297,005 45,285
26 303,233 303,328 303,364 213,316 303,329 303,025 303,322 303,360 303,337 127,218
27 306,944 306,999 307,007 45,781 306,999 306,679 306,893 306,999 306,982 90,171
28 303,057 303,080 303,199 235,005 303,199 302,906 303,158 303,199 303,193 1,352
29 300,460 300,532 300,572 82,949 300,572 300,229 300,538 300,582 300,558 167,591

Junha Hwang et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2261

Table III shows a summary of the compared results with LP+TS+Fix according to the tightness ratio, with the
number of improved values (#Improved), equal values (#Equal) and lower values (#Lower). The total number of
improved values is the same as the total number of lower values. An interesting result is that the number of
improved values is much larger than the number of lower values when α = 0.25 and the number of improved
values is slightly smaller than the number of lower values when α = 0.5 and α = 0.75.

TABLE III. SUMMARY OF THE RESULTS COMPARED WITH LP+TS+FIX

Problem #Improved #Equal #Lower

0 ~ 9 (α = 0.25) 4 6 0

10 ~ 19 (α = 0.5) 1 7 2

20 ~ 29 (α = 0.75) 1 5 4

Total 6 18 6

Table IV gives a summary of the results obtained by the three methods LP+TS+Fix, IRH and IPbLS
according to the tightness ratio. Each line is the average value of the best values z* over 10 instances. We also
present the number of problems with the best value by each method at the last row. The total average value of
IPbLS is 211,452 which outperforms not only IRH but also LP+TS+Fix. Especially, IPbLS shows outstanding
result when α = 0.25. IPbLS is slightly worse than LP+TS+Fix when α = 0.5 and α = 0.75, but the differences are
insignificant. The number of best solutions by IPbLS is 23 which is the same as the one by LP+TS+Fix.

TABLE IV. SUMMARY OF THE AVERAGE RESULTS

Problem
LP + TS + Fix [8] IRH [20] IPbLS

z * z * zavg z * zavg

0 ~ 9 (α = 0.25) 115,624 115,606 115,160 115,639 115,616

10 ~ 19 (α = 0.5) 216,275 216,250 215,896 216,272 216,261

20 ~ 29 (α = 0.75) 302,447 302,431 302,115 302,444 302,435

Total Average 211,448 211,429 211,057 211,452 211,437

of best solutions 23 9 - 23 -

From these results, we can confirm that the overall performance of IPbLS outperforms LP+TS+Fix known as
the best method, and especially IPbLS is far better than LP+TS+Fix when α = 0.25. IPbLS is slightly worse than
LP+TS+Fix when α = 0.5 and α = 0.75, but it is supposed that IPbLS can be improved by adjusting parameter
values or by utilizing problem specific knowledge.

V. CONCLUSION AND FUTURE WORK
In this paper, we have presented a method applying IPbLS for large-scale MKP. We used the MKP data on

the OR-Library, which is the most widely used for the MKP, to easily compare with other existing research
results. Especially, we focused on the 30 largest instances with m = 30, n = 500 which is the most difficult data
set out of the MKP data on the OR-Library. Experimental results showed that the proposed method could find the
better solutions than the best-known solutions for 6 data instances, and also on average, outperformed the best-
known method. We could confirm the effectiveness of IPbLS more objectively through this research, which is the
first goal of this paper.

We could achieve remarkable results by only a simple application of IPbLS. Therefore, it is supposed that we
can get much better solutions if we utilize the problem and/or data specific knowledge or finely adjust the
parameter values. We will perform additional research on this issue with small or medium-scale MKP data as
well as large-scale MKP data. Meanwhile, since IPbLS can be viewed as a kind of metaheuristic for linear
combinatorial optimization problems, it can be easily applied to not only the MKP but also many other linear
combinatorial optimization problems. Thus, we will continuously develop methods to utilize IPbLS for solving
other optimization problems.

REFERENCES
[1] J. Hwang, “Integer programming-based local search technique for linear constraint satisfaction optimization Problem,” Journal of The

Korea Society of Computer and Information, vol. 15, no. 9, pp. 47-55, 2010.
[2] J. Hwang, and S. Kim, “An integer programming-based local search for large-scale maximal covering problems,” International Journal

on Computer Science and Engineering, vol. 3, no. 2, pp. 837-843, 2011.
[3] S. Russel, and P. Norvig, Artificial Intelligence A Modern Approach, 2nd ed., Prentice Hall, 2003.

Junha Hwang et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2262

[4] J. E. Beasley, “OR-Library: distributing test problems by electronic mail,” The Journal of the Operational Research Society, vol. 41,
no. 11, pp. 1069-1072, 1990.

[5] J. Puchinger, G. R. Raidl, and U. Pferschy, “The multidimensional knapsack problem: structure and algorithms,” INFORMS Journal
on Computing, vol. 22, no. 2, pp. 250-265, 2010.

[6] P. C. Chu, and J. E. Beasley, “A genetic algorithm for the multidimensional knapsack problem,” Journal of Heuristics, vol. 4, no. 1, pp.
63-86, 1998.

[7] A. Freville, and G. Plateau, “An efficient preprocessing procedure for the multidimensional 0-1 knapsack problem,” Discrete Applied
Mathematics, vol. 49, no. 1-3, 1994.

[8] M. Vasquez, and Y. Vimont, “Improved results on the 0-1 multidimensional knapsack problem,” European Journal of Operational
Research, vol. 165, no. 1, pp. 70–81, 2005.

[9] C. Wilbaut, S. Hanafi, and S. Salhi, “A survey of effective heuristics and their application to a variety of knapsack problems,” IMA
Journal of Management Mathematics, vol. 19, no. 3, pp. 227-244, 2008.

[10] M. Vasquez, and J. K. Hao, “A hybrid approach for the 0–1 multidimensional knapsack problem,” Proceedings of the International
Joint Conference on Artificial Intelligence 2001, pp. 328–333, 2001.

[11] I. Alaya, C. Solnon, and K. Ghdira, “Ant algorithm for the multidimensional knapsack problem,” Proceedings of the International
Conference on Bioinspired Optimization Methods and their Applications (BIOMA 2004), pp. 63-72, 2004.

[12] J. Puchinger, and G. R. Raidl, “Relaxation guided variable neighborhood search,” Proceedings of the 18th Mini EURO Conference on
Variable Neighborhood Search, 2005.

[13] R. J. W. James, and Y. Nakagawa, “Enumeration methods for repeatedly solving multidimensional knapsack sub-problems,” IEICE
Transactions on Information and Systems, vol. E88-D, no. 10, pp. 2329-2340, 2005.

[14] J. Puchinger, G. R. Raidl, and U. Pferschy, “The core concept for the multidimensional knapsack problem,” Evolutionary Computation
in Combinatorial Optimization - EvoCOP 2006, LNCS, vol. 3906, pp. 195-208, 2006.

[15] Y. Akcay, H. Li, and S. H. Xu, “Greedy algorithm for the general multidimensional knapsack problem,” Annals of Operations
Research, vol. 150, pp. 17-29, 2007.

[16] J. E. Gallardo, C. Cotta, and A. J. Fernández, “On the hybridization of memetic algorithms with branch-and-bound techniques,” IEEE
Transactions on Systems, Man and Cybernetics, Part B, vol. 37, no. 1, pp. 77-83, 2007.

[17] P. N. Nhicolaievna, and L. V. Thanh, “Bee colony algorithm for the multidimensional knapsack problem,” Proceeding of the
International Multi-Conference of Engineers and Computer Scientists, vol. 1, pp. 1-5, 2008.

[18] Y. Vimont, S. Boussier, and M. Vasquez, “Reduced costs propagation in an efficient implicit enumeration for the 0-1
multidimensional knapsack problem,” Journal of Combinatorial Optimization, vol. 15, no. 2, pp. 165-178, 2008.

[19] C. Wilbaut, S. Salhi, and S. Hanafi, “An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem,”
European Journal of Operational Research, vol. 199, no. 2, pp. 339-348, 2009.

[20] S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, and P. Michelon, “Solving the 0-1 multidimensional knapsack problem with
resolution search,” VI ALIO/EURO Workshop on Applied Combinatorial Optimization, 2009.

[21] C. Wilbaut, and S. Hanafi, “New convergent heuristics for 0-1 mixed integer programming,” European Journal of Operational
Research, vol. 195, no. 1, pp. 62-74, 2009.

[22] J. Puchinger, G. R. Raidl, and U. Pferschy, “The multidimensional knapsack problem: structure and algorithms,” INFORMS Journal
on Computing, vol. 22, no. 2, pp. 250-265, 2010.

[23] S. Al-Shihabi, and S. Ólafsson, “A hybrid of nested partition, binary ant system, and linear programming for the multidimensional
knapsack problem,” Computers & Operations Research, vol. 37, no. 2, pp. 247-255, 2010.

[24] S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, and P. Michelon, “A multi-level search strategy for the 0–1 multidimensional
knapsack problem,” Discrete Applied Mathematics, vol. 158, no. 2, pp. 97-109, 2010.

[25] R. R. Hill, Y. K. Cho, and J. T. Moore, “Problem reduction heuristic for the 0-1 multidimensional knapsack problem,” Computers &
Operations Research, Article in Press, 2010.

[26] L. Ke, Z. Feng, Z. Ren, and X. Wei, “An ant colony optimization approach for the multidimensional knapsack problem,” Journal of
Heuristics, vol. 16, no. 1, pp. 65-83, 2010.

[27] F. D. Croce, and A. Grosso, “Improved core problem based heuristics for the 0/1 multi-dimensional knapsack problem,” Computers &
Operations Research, Article in Press, 2011.

[28] S. Hanafi, and C. Wilbaut, “Improved convergent heuristics for the 0-1 multidimensional knapsack problem,” Annals of Operations
Research, vol. 183, no. 1, pp. 125-142, 2011.

[29] S. Hanafi, A. Freville, “An efficient tabu search approach for the 0-l multidimensional knapsack problem,” European Journal of
Operational Research, vol. 106, pp. 659-675, 1998.

[30] M. Gong, L. Jiao, W. Ma, and S. Gou, “Solving multidiemensional knapsack problems by an immune-inspired algorithm,”
Proceedings of the 2007 IEEE Congress on Evolutionary Computation, pp. 3385-3391, 2007.

[31] F. Djannaty, and S. Doostdar, “A hybrid genetic algorithm for the multidimensional knapsack problem,” International Journal of
Contemporary Mathematical Sciences, vol. 3, no. 9, pp. 443-456, 2008.

[32] S. Hasegawa, and Y. Kosugi, “Solving nurse scheduling problem by integer-programming-based local search,” 2006 IEEE
International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1474-1480, 2006.

[33] M. Hewitt, G. L. Nemhauser, and M. W. Savelsbergh, “Combining exact and heuristic approaches for the capacitated fixed charge
network flow problem,” INFORMS Journal on Computing, vol. 22, no. 2, pp. 314-325, 2009.

[34] L. A. Wolsey, Integer Programming, Wiley, 1998.
[35] IBM ILOG, CPLEX User’s Manual and Reference Manual, Version 12.1, 2009.

Junha Hwang et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2263

AUTHORS PROFILE

Junha Hwang received his B.S., M.S. and Ph.D. degree in Computer Engineering from Pusan National
University, Korea in 1995, 1997 and 2002 respectively. He is an Associate Professor in Dept. of Computer
Engineering, Kumoh National Institute of Technology, Korea since 2002. His main research interests are
combinatorial optimization, machine learning and artificial intelligence.

Sungjae Park received his B.S. degree in Computer Engineering from Kumoh National Institute of Technology,
Korea in 2010. He is pursuing his master’s degree in Dept. of Computer Engineering, Kumoh National Institute
of Technology. His main research interests are combinatorial optimization, machine learning and artificial
intelligence.

In Yeup Kong received her B.S., M.S. and Ph.D. degree in Computer Engineering from Pusan National
University, Korea in 2000, 2002 and 2007 respectively. She is an Full-time Instructor in School of Electronic
Engineering, Kumoh National Institute of Technology, Korea since 2008. Her main research interests are
context awareness based on ontology and network optimization.

Junha Hwang et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2264

