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Abstract—This paper investigates the problem of anti-synchronization of identical hyperchaotic Liu 
systems (2008), hyperchaotic Qi systems (2008) and non-identical hyperchaotic Liu and hyperchaotic Qi 
systems using active nonlinear control. Sufficient conditions for achieving anti-synchronization of the 
identical and different hyperchaotic Liu and hyperchaotic Qi systems using active nonlinear control are 
derived based on Lyapunov stability theory. Since the Lyapunov exponents are not required for these 
calculations, the active control method is very effective and convenient to achieve anti-synchronization of 
identical and different hyperchaotic Liu and hyperchaotic Qi systems. Numerical simulations are shown 
to demonstrate the effectiveness of the anti-synchronization schemes derived in this paper. 
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I.  INTRODUCTION   
Chaotic systems are dynamical systems that are highly sensitive to initial conditions. The sensitive nature of 

chaotic systems is commonly called as the butterfly effect [1].  

 Since the pioneering work of Pecora and Carroll [2], chaos synchronization has been studied extensively and 
intensively in the last two decades [2-17].  Chaos theory has been explored in a variety of fields including 
physical systems [3], chemical systems [4] and ecological systems [5], secure communications [6-8] etc.  

In the recent years, various schemes such as PC method [2], OGY method [9], active control [10-12], adaptive 
control [13-14], time-delay feedback approach [15], backstepping design method [16], sampled-data feedback 
synchronization method [17], sliding mode control [18], etc. have been successfully applied for chaos 
synchronization. Recently, active control has been applied to anti-synchronize identical chaotic systems   [19-20] 
and different hyperchaotic systems [21].  

In most of the chaos anti-synchronization approaches, the master-slave or drive-response formalism is used. 
If a particular chaotic system is called the master or drive system and another chaotic system is called the slave 
or response system, then the idea of the anti-synchronization is to use the output of the master system to control 
the slave system so that the states of the slave system have the same amplitude but opposite signs as the states of 
the master system asymptotically. In other words, the sum of the states of the master and slave systems are 
expected to converge to zero asymptotically when anti-synchronization appears.   

In this paper, we derive new results for the anti-synchronization of identical Liu systems (2004), identical 
Chen systems (1999) and non-identical Liu and Chen chaotic systems using the active nonlinear control method.  
The stability results derived in this paper are established using Lyapunov stability theory.  

This paper has been organized as follows. In Section II, we give the problem statement and our 
methodology. In Section III, we discuss the chaos anti-synchronization of two identical hyperchaotic Liu 
systems ([22], 2008). In Section IV, we discuss the chaos anti-synchronization of two identical hyperchaotic Qi 
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systems ([23], 2008). In Section V, we discuss the anti-synchronization of hyperchaotic Liu and hyperchaotic Qi 
systems. In Section VI, we summarize the main results obtained in this paper. 

II. PROBLEM STATEMENT AND OUR METHODOLOGY USING ACTIVE CONTROL 
Consider the chaotic system described by 

           ( )x Ax f x= +                                                                                                                       (1) 

where nx ∈R is the state of the system, A is the n n×  matrix of the system parameters and : n nf →R R is 
the nonlinear part of the system. We consider the system (1) as the master or drive system. 

As the slave or response system, we consider the following chaotic system described by the dynamics 

            ( )y By g y u= + +                                                                                                               (2) 

where ny ∈R is the state of the system, B is the n n× matrix of the system parameters, : n ng →R R is the 

nonlinear part of the system and nu ∈R is the controller of the slave system. 

If A B= and ,f g= then x and y are the states of two identical chaotic systems.  

If A B≠ or ,f g≠ then x and y are the states of two different chaotic systems.  

In the nonlinear feedback control approach, we design a feedback controller ,u which anti-synchronizes the 

states of the master system (1) and the slave system (2) for all initial conditions (0), (0) .nx y ∈R  

If we define the anti-synchronization error as 

            ,e y x= +                                                                                                                                   (3) 

then the error dynamics is obtained as  

           ( ) ( )e By Ax g y f x u= + + + +                                                                                             (4) 

Thus, the global chaos anti-synchronization problem is essentially to find a feedback controller u so as to 
stabilize the error dynamics (4) for all initial conditions (0) .ne ∈R  

Hence, we find a feedback controller u so that 

       lim ( ) 0
t

e t
→∞

=  for all (0) .ne ∈R                                                                                                 (5) 

We take as a candidate Lyapunov function 

            ( ) ,TV e e Pe=                                                                                                                            (6) 

where P is a positive definite matrix.  

Note that  

                   : nV →R R   

is a positive definite function by construction.  

We assume that the parameters of the master and slave system are known and that the states of both systems 
(1) and (2) are measurable. 

If we find a feedback controller u so that 

           ( ) ,TV e e Qe= −                                                                                                                         (7) 

where Q is a positive definite matrix, then : nV → R R is a negative definite function.  

Thus, by Lyapunov stability theory [24], the error dynamics (4) is globally exponentially stable and hence 
the condition (5) will be satisfied.  
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Hence, the states of the master system (1) and the slave system (2) will be globally and exponentially anti-
synchronized for all initial conditions (0), (0) .nx y ∈R  

III. ANTI-SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC LIU SYSTEMS 

A. Theoretical Results 

In this section, we apply the active control method for the global chaos anti-synchronization of identical 
hyperchaotic Liu systems. 

The hyperchaotic Liu system is one of the paradigms of the four-dimensional hyperchaotic systems 
discovered by L Liu, C. Liu and Y. Zhang ([22], 2008). 

Thus, the master system is described by the hyperchaotic Liu dynamics 

                

1 2 1

2 1 1 3 4

3 1 2 3 4

4 1 2

( )x a x x

x bx x x x

x x x cx x

x dx x

= −
= + −
= − − +
= +









                                                                                                    (8) 

where 1 2 3 4, , ,x x x x  are state variables of the system and , , ,a b c d are positive, constant parameters of the 
system. 

The four-dimensional system (8) is hyperchaotic when the parameter values are taken as 

             10,   35,   1.4a b c= = =  and  5.d =  

The state orbits of the hyperchaotic Liu system (8) are illustrated in Fig. 1. 

 
Figure 1.  State Portrait of the Hyperchaotic Liu System 

The slave system is described by the controlled hyperchaotic Liu dynamics 
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1 2 1 1

2 1 1 3 4 2

3 1 2 3 4 3

4 1 2 4

( )y a y y u

y by y y y u

y y y cy y u

y dy y u

= − +
= + − +
= − − + +
= + +









                                                                                                (9) 

where 1 2 3 4, , ,y y y y are state variables and 1 2 3 4, , ,u u u u are the controllers to be designed.  

The anti-synchronization error is defined by 

             ,  ( 1, 2,3,4)i i ie y x i= + =                                                                                                     (10) 

The error dynamics is easily obtained as 

             

1 2 1 1

2 1 4 1 3 1 3 2

3 3 4 1 2 1 2 3

4 1 2 4

( )e a e e u

e be e y y x x u

e ce e y y x x u

e de e u

= − +
= − + + +
= − + − − +
= + +









                                                                                        (11) 

We choose the active nonlinear controller as 

            

1 2

2 1 2 4 1 3 1 3

3 4 1 2 1 2

4 1 2 4

u ae

u be e e y y x x

u e y y x x

u de e e

= −
= − − + − −
= − + +
= − − −

                                                                                          (12) 

Substituting (12) into (11), we obtain the linear error system 

            

1 1

2 2

3 3

4 4

e ae

e e

e ce

e e

= −
= −
= −
= −









                                                                                                                                   (13) 

Next, we consider the quadratic Lyapunov function defined by 

            ( )2 2 2 2
1 2 3 4

1 1( ) ,
2 2

TV e e e e e e e= = + + +                                                                                   (14) 

Differentiating V along the trajectories of (13), we get 

          2 2 2 2
1 2 3 4( ) ,V e ae e ce e= − − − −                                                                                                    (15) 

which is a negative definite function on 4.R  

Thus, the error dynamics (13) is globally exponentially stable for all initial conditions 4(0) .e ∈R  

Hence, we obtain the following result. 

Theorem 1. The identical hyperchaotic Liu systems (8) and (9) are globally and exponentially anti-
synchronized for all initial conditions by the active nonlinear controller defined by (12).   

B. Numerical Results  

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 610h −= is used to 
solve the hyperchaotic Liu systems (8) and (9) with the active controller u given by (12) using MATLAB. 

In the hyperchaotic case, the parameter values are     
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 The initial values of the master system (21) are taken as 

             1 2 3 4(0) 36,   (0) 14,   (0) 25,   (0) 18x x x x= = = =  

and the initial values of the slave system (22) are taken as 

             1 2 3 4(0) 12,   (0) 28,  (0) 34,   (0) 27y y y y= = = =  

Fig. 2 illustrates the complete synchronization of the identical hyperchaotic Liu systems (8) and (9). 

 

 
Figure 2.  Anti-Synchronization of Identical Hyperchaotic Liu Systems 

IV. ANTI-SYNCHRONIZATION OF IDENTICAL HYPERCHAOTIC QI SYSTEMS 

A. Theoretical Results 

In this section, we apply the active control method for the global chaos anti-synchronization of identical 
hyperchaotic Qi systems. 

The hyperchaotic Qi system is one of the paradigms of the four-dimensional hyperchaotic systems discovered 
by G. Qi, M.A. Wyk, B.J. Wyk and G. Chen  ([23], 2008). 

Thus, the master system is described by the hyperchaotic Qi dynamics 

                 

1 2 1 2 3

2 1 2 1 3

3 3 4 1 2

4 4 3 1 2

( )
( )

x x x x x

x x x x x

x x x x x

x x fx x x

α
β
γ ε
δ

= − +
= + −
= − − +
= − + +









                                                                                                 (16) 
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where 1 2 3 4, , ,x x x x  are state variables of the system and , , , , , fα β γ δ ε are positive, constant parameters of 
the system. 

The four-dimensional system (16) is hyperchaotic when the parameter values are taken as 

             50,  24,  13,  8,  33α β γ δ ε= = = = =  and  30.f =  

The state orbits of the hyperchaotic Qi system (16) are illustrated in Fig. 3. 

 
Figure 3.  State Orbits of the Hyperchaotic Qi System 

The slave system is described by the controlled hyperchaotic Qi dynamics 

              

1 2 1 2 3 1

2 1 2 1 3 2

3 3 4 1 2 3

4 4 3 1 2 4

( )
( )

y y y y y u

y y y y y u

y y y y y u

y y fy y y u

α
β
γ ε
δ

= − + +
= + − +
= − − + +
= − + + +









                                                                                                (17) 

where 1 2 3 4, , ,y y y y are state variables and 1 2 3 4, , ,u u u u are the controllers to be designed.  

The anti-synchronization error is defined by 

             ,   ( 1, 2,3,4)i i ie y x i= + =                                                                                                     (18) 

The error dynamics is easily obtained as 

             

1 2 1 2 3 2 3 1

2 1 2 1 3 1 3 2

3 3 4 1 2 1 2 3

4 4 3 1 2 1 2 4

( )
( )

e e e y y x x u

e e e y y x x u

e e e y y x x u

e e fe y y x x u

α
β
γ ε
δ

= − + + +
= + − − +
= − − + + +
= − + + + +









                                                                                       (19) 

We choose the active nonlinear controller as 
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1 2 2 1 2 3

2 1 2 1 2 4 1 3 1 3

3 4 3 4 1 2 1 2

4 3 1 2 3 4 1 2

( )( )
( 1) ( )

( ) ( 1)

u e a x x y y

u e e b x x x y y x x

u e c x x y y x x

u fe dx x fx dx y y

α α
β β β β

ε γ ε

= − − − − −
= − − + − − + + + −
= − − − + − +
= − − − + − −

                                           (20) 

Substituting (20) into (19), we obtain the linear error system 

            

1 1

2 2

3 3

4 4

e e

e e

e e

e e

α

γ
δ

= −
= −
= −
= −









                                                                                                                                  (21) 

Next, we consider the quadratic Lyapunov function defined by 

            ( )2 2 2 2
1 2 3 4

1 1( ) ,
2 2

TV e e e e e e e= = + + +                                                                                   (22) 

Differentiating V along the trajectories of (21), we get 

          2 2 2 2
1 2 3 4( ) ,V e e e e eα γ δ= − − − −                                                                                                 (23) 

which is a negative definite function on 4.R  

Thus, the error dynamics (21) is globally exponentially stable for all initial conditions 4(0) .e ∈R  

Hence, we obtain the following result. 

Theorem 2. The identical hyperchaotic Qi systems (16) and (17) are globally and exponentially anti-
synchronized for all initial conditions by the active nonlinear controller defined by (20).   

B. Numerical Results  

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 610h −= is used to 
solve the hyperchaotic Qi chaotic systems (16) and (17) with the active controller u given by (20) using 
MATLAB. 

Also, the parameter values are taken as 50,  24,  13,  8,  33α β γ δ ε= = = = = and 30.f =  
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Figure 4.  Anti-Synchronization of Identical Hyperchaotic Qi Systems 

The initial values of the master system (21) are taken as  

             1 2 3 4(0) 12,   (0) 44,   (0) 32,   (0) 16x x x x= = = =  

and the initial values of the slave system (22) are taken as 

             1 2 3 4(0) 42,   (0) 38,  (0) 17,   (0) 25y y y y= = = =  

Fig. 4 illustrates the complete synchronization of the identical hyperchaotic Qi systems (21) and (22). 

V. ANTI-SYNCHRONIZATION OF HYPERCHAOTIC LIU AND HYPERCHAOTIC QI SYSTEMS 

A. Theoretical Results 

In this section, we apply the active control method for the global chaos anti-synchronization of non-identical 
hyperchaotic Liu and hyperchaotic Qi systems. We take the hyperchaotic Li system ([22], 2008) as the master 
system and the hyperchaotic Qi system ([23], 2008) s the slave system. 

Thus, the master system is described by the hyperchaotic Liu dynamics 

                

1 2 1

2 1 1 3 4

3 1 2 3 4

4 1 2

( )x a x x

x bx x x x

x x x cx x

x dx x

= −
= + −
= − − +
= +









                                                                                                         (24) 

where 1 2 3 4, , ,x x x x  are state variables and , , ,a b c d are positive, constant parameters of the system. 

The slave system is described by the controlled hyperchaotic Qi dynamics 
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1 2 1 2 3 1

2 1 2 1 3 2

3 3 4 1 2 3

4 4 3 1 2 4

( )
( )

y y y y y u

y y y y y u

y y y y y u

y y fy y y u

α
β
γ ε
δ

= − + +
= + − +
= − − + +
= − + + +









                                                                                           (25) 

where 1 2 3 4, , ,y y y y are state variables,  , , , , , fα β γ δ ε  are positive, constant parameters of the system and 

1 2 3 4, , ,u u u u are the controllers to be designed.  

The anti-synchronization error is defined by 

           

1 1 1

2 2 2

3 3 3

4 4 4

e y x

e y x

e y x

e y x

= +
= +
= +
= +

                                                                                                                            (26) 

The error dynamics is easily obtained as 

           

1 2 1 2 1 2 3 1

2 1 2 1 2 4 1 3 1 3 2

3 3 4 3 4 1 2 1 2 3

4 4 3 1 2 3 4 1 2 4

( ) ( )( )
( ) ( )

( ) ( 1)

e e e a x x y y u

e e e b x x x y y x x u

e e e c x x y y x x u

e e fe dx x fx x y y u

α α
β β β
γ ε γ ε
δ δ

= − + − − + +
= + + − − − − + +
= − − + − + + + − +
= − + + + − + + +









                                            (27) 

We choose the active nonlinear controller as 

            

1 2 2 1 2 3

2 1 2 1 2 4 1 3 1 3

3 4 3 4 1 2 1 2

4 3 1 2 3 4 1 2

( )( )
( 1) ( )

( ) ( 1)

u e a x x y y

u e e b x x x y y x x

u e c x x y y x x

u fe dx x fx x y y

α α
β β β β

ε γ ε
δ

= − − − − −
= − − + − − + + + −
= − − − + − +
= − − − + − −

                                           (28) 

Substituting (28) into (27), we obtain the linear error system 

            

1 1

2 2

3 3

4 4

e ae

e e

e ce

e e

= −
= −
= −
= −









                                                                                                                                  (29) 

Next, we consider the quadratic Lyapunov function defined by 

            ( )2 2 2 2
1 2 3 4

1 1( ) ,
2 2

TV e e e e e e e= = + + +                                                                                   (30) 

which is a positive definite function on 4.R  

Differentiating V along the trajectories of (29), we get 

          2 2 2 2
1 2 3 4( ) ,V e ae e ce e= − − − −                                                                                                    (31) 

which is a negative definite function on 4.R  

Thus, the error dynamics (29) is globally exponentially stable for all initial conditions (0) .ne ∈R  

Hence, we obtain the following result. 
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Theorem 3. The non-identical hyperchaotic Liu system (24) and hyperchaotic Qi system (25) are globally and 
exponentially anti-synchronized for all initial conditions by the active nonlinear controller defined by (28).   

B. Numerical Results  

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 610h −= is used to 
solve the hyperchaotic systems (24) and (25) with the active controller u given by (28) using MATLAB. 

For the hyperchaotic Liu system (24), the parameter values are taken as 

             10,   35,   1.4a b c= = =     and   5.d =  

For the hyperchaotic Qi system (25), the parameter values are taken as 

            50,  24,  13,  8,  33α β γ δ ε= = = = = and 30.f =  

 The initial values of the master system (21) are taken as 

             1 2 3 4(0) 25,   (0) 10,   (0) 38,   (0) 48x x x x= = = =  

and the initial values of the slave system (22) are taken as 

             1 2 3 4(0) 14,   (0) 20,  (0) 34,   (0) 12y y y y= = = =  

Fig. 5 illustrates the complete synchronization of the non-identical hyperchaotic Liu system (24) and 
hyperchaotic Qi system (25). 

 
Figure 5.  Anti-Synchronization of Non-Identical Hyperchaotic Liu and Hyperchaotic Qi Systems 

VI. CONCLUSIONS 
In this paper, we have applied active control method for the derivation of state feedback control laws so as to 

achieve global chaos anti-synchronization of identical hyperchaotic Liu systems (2008), identical hyperchaotic 
Qi systems (2008) and non-identical hyperchaotic Liu and Qi systems. Our anti-synchronization results have 

Dr. V. Sundarapandian et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2447



been proved using Lyapunov stability theory. Since the Lyapunov exponents are not required for these 
calculations, the active control method is very effective and convenient to achieve global chaos anti-
synchronization for the identical and non-identical hyperchaotic Liu and Qi systems. Numerical simulations 
have been shown to demonstrate the effectiveness of the anti-synchronization schemes derived in this paper. 
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