
Inheritance Hierarchy Based Reuse &
Reusability Metrics in OOSD

Nasib S. Gill
Professor & Head, Department of Computer Science & Applications

 Maharshi Dayanand University (India)

Sunil Sikka
Research Scholar, Department of Computer Science & Applications

 Maharshi Dayanand University (India)

Abstract— Reuse and reusability are two major aspects in object oriented software which can be
measured from inheritance hierarchy. Reusability is the prerequisite of reuse but both may or may not be
measured using same metric. This paper characterizes metrics of reuse and reusability in Object
Oriented Software Development (OOSD). Reuse metrics compute the extent to which classes have been
reused and reusability metrics computes the extent to which classes can be reused. In this paper five new
metrics namely- Breadth of Inheritance Tree (BIT), Method Reuse Per Inheritance Relation (MRPIR),
Attribute Reuse Per Inheritance Relation (ARPIR), Generality of Class (GC) and Reuse Probability (RP)
have been proposed. These metrics help to evaluate reuse and reusability of object oriented software.
Four extensively validated existing object oriented metrics, namely- Depth of Inheritance Tree (DIT),
Number of Children (NOC), Method Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF)
have been selected and investigated for comparison with proposed metrics. All metrics can be computed
from inheritance hierarchies and classified according to their characteristics. Further, metrics are
evaluated against a case study. These metrics are helpful in comparing alternative inheritance hierarchies
at design time to select best alternative, so that the development time and cost can be reduced.

Keywords- Inheritance Hierarchy, Inheritance Metrics, Reuse, Reusability

I. INTRODUCTION
Software reuse is the use of existing artifacts to create new software and reusability is the degree to which the

artifacts can be reused. Software reuse reduces the development efforts and increases the quality of software. It is
well recognized by both researchers and software industries that Object Oriented Software Development (OOSD)
approach is capable of developing software by reusing existing classes and for developing reusable classes.
OOSD reuse the existing classes to fulfill the current requirements of customer and also promise to develop the
reusable classes to fulfill the future or changing requirements of customer. OOSD supports reuse in three ways (1)
Verbatim reuse through instantiation and use of previously defined classes (2) Generic reuse through generic
templates (3) Leveraged reuse through inheritance [1]. Among these, inheritance is the foremost technique of
reuse. Inheritance is the relationship among classes, wherein an object in a class acquires characteristics from one
or more other classes [2]. By organizing classes into “classification hierarchy”, inheritance gives an extra
dimension to the encapsulation of the abstract data types because it enables classes to inherit attributes and
methods from other classes [3].

Different inheritance hierarchies may be designed to implement inheritance for a problem therefore, it
becomes essential to assess inheritance hierarchy from reuse and reusability point of views for increasing its
potential benefits. Many object oriented metrics are available in literature for assessing inheritance hierarchy but
these metrics do not distinguish reuse and reusability. Reuse and reusability metrics evaluates two different
aspects of inheritance hierarchy. Reuse metrics answers the question “What is the amount of reuse among classes
in the software?” and reusability metrics answers the question “Whether the classes are reusable in future”. This
paper investigates four existing metrics- Depth of Inheritance Tree (DIT), Number of Children (NOC), Method
Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF) and also proposes five new metrics- Breadth of
Inheritance Tree (BIT), Method Reuse Per Inheritance Relation (MRPIR), Attribute Reuse Per Inheritance
Relation (ARPIR), Generality of Class (GC) and Reuse Probability (RP). All inheritance based metrics are
classified into two categories: Reuse Based Metrics (RBM) and Reusability Prediction Metrics (RPM). RBM are
further classified into two categories- Reuse Indicator Metrics (RIM) and Reuse Estimation Metrics (REM).

 Rest of the paper is organized in six sections. Section 2 presents the related work and motivation of this
research work. Section 3 explains the concept of reuse and reusability. Section 4 presents the taxonomy of
inheritance based metrics, investigates the four existing inheritance based metrics and proposes five new

Nasib S. Gill et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2300

inheritance based metrics. Section 5 conducts an analysis of metrics by applying metrics on two alternative
inheritance hierarchies of same problem and interprets the result. Finally Section 6 presents conclusion and future
directions.

II. RELATED WORK AND MOTIVATION

Since the proposal of six object oriented metrics by Chidamber and Kemerer’s[4] many metrics have been
proposed by various researchers. Many of the work focus on metrics of reuse and reusability. Abreu et al. [5]
define many metrics among them two metrics- MIF and AIF measures the reuse using inherited methods and
attributes. Sheldon et al. [6] propose metrics for understandability and modifiability of a class inheritance
hierarchy and compare the proposed metrics with Chidamber & Kemerer’s and Handerson-Sellers’s metrics.
Bhatia et al. [7] define reusability of a class as a function of DIT, NOC and Coupling Between Object classes
(CBO). Authors state that reusability in whole class diagram is equal to the reusability of class having maximum
reusability. DIT and NOC have positive effect on reusability where as CBO has negative effect on reuability of a
class. Gandhi et al. [8] propose four metrics (Number of Template Children (NTC), Depth of Template Tree
(DTT), Method Template Inheritance Factor (MTIF) and Attribute Template Inheritance Factor (ATIF)) based on
template and state that proposed metrics as reusability metrics. Sandhu et al. [9] define reusability in terms of
tuned version of CK-metrics suite and propose a neuro-fuzzy based model for automatic identification reusability
of object-oriented software components. Rajnish et al. [10] propose three metrics namely- Derive Base Ratio
Metric (DBRM), Average Number of Direct Child (ANDC) metric and Average Number of Indirect Child
(ANIC) metric for measuring class inheritance tree. Authors compare proposed metrics with metrics proposed by
Sheldon et al.[6] and Henderson-Seller. Suri et al. [11] define reusability of a component in terms of its
independency. Higher independency is treated as indicator of more reusability.

Most of the work in this filed is related to proposal of inheritance based metrics and models. For better
understanding of these metrics proper classification of metrics required. This triggers the approach used in this
paper to differentiate the inheritance based metrics and to propose five new metrics.

III. EXPLORING REUSE AND REUSABILITY

Software reuse is the key activity in software development for improving the software productivity and
quality by using existing software artifacts or knowledge to develop the new software. Effective software reuse
can be only achieved through systematic quantified process. Effective reuse pays maximum productivity and
quality benefits at fewer cost. Reusability is the property of any artifact that makes it reusable. Reusability of any
artifact can be defined as the degree to which it can be reused [12]. Morisio et al. defines software reuse as a
systematic practice of developing software from a stock of building blocks[13]. Building blocks for reuse in
OOSD are classes. OOSD includes both reuse of the existing classes as well as design of new classes that can be
reused in future. Reuse is achieved by establishing various relationships among classes such as inheritance or
composition. Features of class such as high generality level (i.e. less application specificity) and less coupling
increases its reusability. Introducing reusability features in the classes must be the goal of inheritance hierarchy at
design time.

Concept of reuse and reusability can be understood from following example. Suppose a web based software
development company wants to analyze the optimization of its sites due to code, content and user interface. Code
optimization deals with programming techniques to load and index the pages quickly. Effective contents of
website deal with the keywords which can drive the visitors to the website. Good user interface makes the website
interactive and user friendly. It is decided to design three classes: CodeOptimizationAnalyzer,
ContentOptimizationAnalyzer and UserInterfaceOptimizationAnalyzer to measure the performance of website
due to code, content and user interface respectively. It is found that some of the features of these three classes are
same therefore, by following the basic principle of designing of inheritance hierarchy that common features
should be contained in superclass, one more class OptimizationAnalyzer is designed which contains that common
features. CodeOptimizationAnalyzer, ContentOptimizationAnalyzer and UserInterfaceOptimizationAnalyzer
classes are derived from OptimizationAnalyzer class as shown in Fig. 1.

OptimizationAnalyzer class is reused by CodeOptimizationAnalyzer, ContentOptimizationAnalyzer and
UserInterfaceOptimizationAnalyzer classes. This inheritance hierarchy is reasonable as per the current
requirements. However, in future the company may analyze the optimization from more different point of views
such as graphics optimization, search engine optimization , database optimization etc. Therefore, the inheritance
hierarchy should be more generalized so that more classes can be inherited in future. Another alternative of
same problem is show in Fig. 2. Three new classes: PerformanceOptimizationAnalyzer,
BusinessOptimizationAnalyzer and DesignOptimizationAnalyzer are introduced to increase the reusability of
inheritance hierarchy. Newly added classes in alternative-2 generalize the optimization analyzers and contain the

Nasib S. Gill et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2301

common features of all the optimization analyzers which fall into same categories. Altternative-2 provides more
opportunity for reuse in future.

Figure 1. Inheritance Hierarchy for Website Optimization Problem - Alternative1

Figure 2. Inheritance Hierarchy for Website Optimization Problem - Alternative2.

IV. INHERITANCE HIERARCHY BASED METRICS
Designing inheritance hierarchy must be supported by reuse and reusability metrics to measure its

effectiveness. Metrics can be used as indication of improvement of reuse and reusability in inheritance hierarchy.
Reuse metrics are used to compute the amount of reuse among classes and reusability metrics are used to predict
the extent to which classes can be reused. For better understanding of inheritance based metrics it is necessary to
classify them. This paper categorizes inheritance based metrics into two categories- RBM and RPM as shown in
Fig. 3. RBM is further classified into two categories RIM and REM. RIM of a class just gives the idea of reuse
amount whereas REM actually computes the amount of reuse on the basis of method/attribute reused. RPM of a
class computes the extent up to which it can be reused in future. RPM computes reusability only on the basis
dimension and characteristics of inheritance tree. RPM don’t take account of actual number of method and
attribute inherited in the computation.

CodeOptimizationAnalyzer UserInterfaceOptimizationAnalyzer

OptimizationAnalyzer

PerformanceOptimizationAnalyzer

ContentOptimizationAnalyzer

BusinessOptimizationAnalyer

DesignOptimizationAnalyzer

OptimizationAnalyzer

CodeOptimizationAnalyzer

ContentOptimizationAnalyzer

UserInterfaceOptimizationAnalyzer

Nasib S. Gill et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2302

Figure 3. Taxonomy of Inheritance Based Metrics.

Inheritance based metrics investigated and proposed in this paper are listed in Table-1.

TABLE 1. REUSE AND REUSABILITY METRICS

Metric Name Acronym Source Category
Depth of Inheritance Tree DIT CK Metrics[4] RIM+RPM
Number of Children NOC CK Metrics[4] RIM
Method Inheritance Factor MIF MOOD Metrics[5,15] REM
Attribute Inheritance Factor AIF MOOD Metrics[5,15] REM
Breadth of Inheritance Tree BIT Proposed RIM
Method Reuse Per Inheritance Relation MRPIR Proposed REM
Attribute Reuse Per Inheritance Relation ARPIR Proposed REM
Generality of Class GC Proposed RPM
Reuse Probability RP Proposed RPM

A. EXISTING METRICS INVESTIGATED

Many inheritance metrics are available in literature out of which four metrics which have been widely validated
in literature are selected for further investigation and comparison with proposed metrics. Selected metrics are
described as follows.

1) Depth of Inheritance Tree (DIT)

DIT of a class computes the maximum path length from that class to the root of the inheritance tree. Higher the
DIT of a class, greater the number of methods it is likely to inherit, i.e. higher reuse. The class having higher
DIT is less reusable as compare to class having lower DIT due to class at higher depth is more specialized as
compare to class at lower depth in inheritance hierarchy. More specialized class provides less opportunity to
inherit it. Therefore, DIT is RIM as well as RPM metric.

2) Number of Children (NOC)

NOC of a class is the number of immediate sub-classes of that class. Greater number of subclasses/children is
indicator of greater reuse. NOC indicates the reuse among classes therefore, it is RIM metric.

3) Method Inheritance Factor (MIF)

MIF computes the system level reuse in terms of total number of methods inherited and declared in the classes.
It is computed as follows
MIF = (total number of methods inherited in all classes) / (total number of methods declared and inherited in all
classes)
Higher the value of MIF more is the amount of reuse in the software. Zero value of MIF indicates there is no
method inheritance in the classes, this may be due to the scope of methods don’t permits method inheritance.
MIF measures the amount of reuse in the inheritance hierarchy therefore, it is REM.

4) Attribute Inheritance Factor (AIF)

Like MIF, AIF is also system level metric and computes reuse in terms of total number of attributes inherited

Inheritance Based Metric (IBM)

Reuse Based Metric (RBM) Reusability Prediction Metric (RPM)

Reuse Indicator Metric (RIM) Reuse Estimation Metric (REM)

Nasib S. Gill et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2303

and declared in the classes. It is computed as follows
AIF = (total number of attribute inherited in all classes) / (total number of attributes declared and inherited in all
classes)
AIF is also categorized in REM category.

B. NEW METRICS PROPOSED

Following are five proposed metrics.

1) Breadth of Inheritance Tree (BIT)

Breadth of inheritance tree is equal to the total number of leaf nodes in the inheritance hierarchy

BIT= Number of Leaf Nodes

For example BIT of inheritance hierarchy given in Fig. 4 is 6 because its has six leaf nodes (E, I, J, C, G, H)

Figure 4. Inheritance Hierarchy for computing BIT.

BIT is indicator of reuse. Higher BIT means higher number of methods/attributes reused in the derived class. It
don’t computes actual amount of inheritance but only indicates the reuse therefore, it is classified as RIM
metric.

Comparison with existing Metrics
As compare to NOC metric which computes number of immediate sub classes of a class BIT measures the
breadth of whole inheritance tree. As compare to DIT it gives another dimension to inheritance tree i.e. breadth.
As compare to MIF and AIF, it doesn’t computes the actual number of method and attribute inherited therefore,
categorized into RIM category.

2) Method Reuse Per Inheritance Relation (MRPIR)

MRPIR computes the total number of methods reused per inheritance relation in the inheritance hierarchy. It
applies on whole inheritance hierarchy in the system. It can be computed as follows

r

MI
r

k
k

== 1MRPIR

Where r= Total number of inheritance relationships
MIk=No. of methods inherited through kth inheritance relationship
If same method is inherited through different inheritance relationships then it is computed separately in each
relationship.

A

B C D

E F HG

I J

Nasib S. Gill et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2304

Figure 5. Weighted Inheritance Hierarchy for computing MRPIR

Consider an inheritance hierarchy given in Fig. 5. Weight of each arc is the number of methods and attributes
inherited from base class to derived class. First number of weight represents number of methods inherited and
second number of weight represents number of attributes inherited. MRPIR of this inheritance hierarchy is
(2+2+2+4+4+5+5+7+7)/9=4.22. This metrics is classified in REM category because it computes the amount of
reuse by taking account of number of methods inherited in the inheritance hierarchy.

Comparison with existing metrics
DIT and NOC are two dimensions of inheritance hierarchy and are useful as indicator of reuse. However,
MRPIR actually computes average number of method reused in the inheritance hierarchy. It gives clearer picture
of reuse due to inheritance. As compare to MIF which considers method declared and inherited in all classes,
MRPIR considers only reused methods and inheritance relationships only.

3) Attribute Reuse Per Inheritance Relation (ARPIR)

It computes the total number of attributes reused per inheritance relation in the inheritance hierarchy. Like
MRPIR It is also categorized into REM category.

r

AI
ARPIR

r

k
k

== 1

Where AIk=No. of attributes inherited through kth inheritance relationship
For example ARPIR of inheritance hierarchy given in Fig. 5 is (1+1+1+2+2+1+1+2+2)/9=1.44.

Comparison with existing metrics
ARPIR is similar to MRPIR and can be compared with DIT, NOC and AIF in same way as MRPIR is compared
with DIT, NOC and MIF.

4) Generality of Class (GC)

Generality of a class is the measure of its relative abstraction level. Higher the generality of a class more it is
likely to be reused. GC can be computed as follows

al

a
GC =

Where a = Abstraction level of the class
al = Total number of possible abstraction levels

Higher the value of GC of a class means higher reusability. For example if OptimizationAnalyzer class has three

4,2
4,2 5,1 5,1

7,2
7,2

2,1 2,1 2,1

A

B C D

E F H G

I J

Nasib S. Gill et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2305

abstraction level (OptimizationAnalyzer, DesignOptimizationAnalyzer and UserInterfaceOptimizationAnalyzer)
and the abstraction level of OptimizationAnalyzer, DesignOptimizationAnalyzer and
UserInterfaceOptimizationAnalyzer is 3 , 2 and 1 respectively then their GC is 3/3,2/3 and 1/3 respectively.
OptimizationAnalyzer class is having the highest value of GC therefore; it is more reusable as compared to other
two classes.

Comparison with existing Metrics
DIT metric considers only depth of a class in inheritance tree and takes higher depth as indicator of higher reuse.
DIT does not consider characteristics of the class whereas GC considers the generality of the class a feature of
reusability. However the relationship may exist between GC and DIT metric. A class with a small DIT has much
potential for reuse it tends to be a general abstract class[14]. As classes at higher depth are more specific as
compare to the classes at lower depth therefore, higher depth indicates less abstraction level.

5) Reuse Probability (RP)

It is the probability of reusing classes in the inheritance hierarchy. It can be computed as follows

N

NN
RP i lg−

=

Where

Ni = Total number of classes that can be inherited

Nlg = Total number of classes that can be inherited but having lowest possible generic level
N = Total number of classes in the inheritance hierarchy

The final/sealed classes can’t be inherited. The class having lowest generic level is most specialized class and
assumed non inheritable. Higher the number of such classes in the software lower is the probability of reuse
therefore, less reusability.

In best case RP=1, in this case all the classes are inheritable and their generic level allow them to inherit. In
worst case RP=0, in this case all classes are non inheritable and having lowest generic level. Higher probability
indicates more reusability of classes in inheritance hierarchy therefore, it is categorized into RPM category.

Comparison with existing Metrics
GC is depth and breadth independent metric. It computes reuse probability by taking account of number of
inheritable and non inheritable classes only. As it is RPM metric it do not need to compute method/attributed
inherited and declared like in MIF and AIF metric.

V. CASE STUDY

One case study is designed to assess the metrics discussed in Section 4. This case study is small and simple but
shows the significance of metrics. The case study presents two alternative inheritance hierarchies of software for
educational institute as shown in Fig. 6 and Fig. 7. It is hypothesized that second alternative have more reuse
and reusability as compare to first alternative. Generalization scale for classes is shown in Fig. 8. It is assumed
that all methods are inheritable and attributes are non inheritable in both the alternatives. Results are presented
in Table-2 and Table-3. In Table-2 class number 1, 2, 3, 4 and 5 represents Student, Bcastudent, Mcastudent,
Bbastudent and Mbastudent respectively. In Table-3 class number 1, 2, 3, 4, 5, 6 and 7 represents Student,
ITstudent, Mngstudent, Bcastudent, Mcastudent, Bbastudent and Mbastudent respectively.

Nasib S. Gill et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2306

Figure 6. Inheritance Hierarchy for Educational Institute - Alternative1.

Figure 7. Inheritance Hierarchy for Educational Institute – Alternative2.

ITstudent

tot_language

getdata()
putdata()

Mngstudent

tot_plantvisit
tot_presentation

getdate()
putdata()

Bcastudent

marks

getdata()
putdata()

findresult()
displayresult()

Mcastudent

major_project
training

internal_marks
external_marks

getdata()
putdata()

findresult()
displayresult()

Mbastudent

specialization
major_project

training
internal_marks
external_marks

getdata()
putdata()

findresult()
displayresult()

Bbastudent

marks
minor_project

getdata()
putdata()

findresult()
displayresult()

Student
rollno
name

address

getdata()
putdata()

Mcastudent

tot_language
major_project

training
internal_marks
external_marks

getdata()
putdata()

findresult()
displayresult()

Bbastudent

tot_plantvisit
tot_presentation

marks
minor_project

getdata()
putdata()

findresult()
displayresult()

Mbastudent

tot_plantvisit
tot_presentation
specialization
major_project

training
internal_marks
external_marks

getdata()
putdata()

findresult()
displayresult()

Student
rollno
name

address

getdata()
putdata()

Bcastudent

tot_language
marks

getdata()
putdata()

findresult()
displayresult()

Nasib S. Gill et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2307

Figure 8. Generalization scale for Student Class

TABLE 2. RESULTS OF ALTERNATIVE-1

Metric

Class No.
1 2 3 4 5

DIT 0 1 1 1 1
NOC 4 0 0 0 0
GC 1 0.33 0.33 0.33 0.33
MIF 0.31
AIF 0

BIT 4

MRPIR 2

ARPIR 0
RP 0.2

TABLE 3. RESULTS OF ALTERNATIVE-2

Metric

Class No.
1 2 3 4 5 6 7

DIT 0 1 1 2 2 2 2
NOC 2 2 2 0 0 0 0
GC 1 0.67 0.67 0.33 0.33 0.33 0.33
MIF 0.35
AIF 0
BIT 4

MRPIR 3.33
ARPIR 0

RP 0.43

Discussion on Results

Maximum DIT of alternative-2 is higher than alternative-1 therefore, indicates higher reuse. BIT of both the
alternative is same however alternative-2 has more number of inherited methods as compare to alternative-
1.Maximum NOC of alternative-1 is higher as compare to alternative-2 but overall total number of subclasses in
alternative-1 is 4 which is less than total number of subclasses of alternative-2.MIF of alternative-2 is higher as
compare to alternative-1. Therefore, higher amount of methods are reused in alternative-2. MRPIR of alternative-2
is higher MRPIR of alternative -1. Therefore, alternative-2 has more reuse as compare to alternative-1. AIF and
ARPIR of both alternatives are 0 because no attribute inheritance is considered. RP of alternative-2 is higher than
as compare to RP of alternative-1. Therefore, alternative-2 is more reusable. Classes of alternative-1 have only two
distinct values of GC (1, 0.33). Whereas classes of alternative-2 have three different values of GC (1, 0.67, 0.33).
Average value of GC alternative-2 (0.52) which is higher than average value of GC (0.46) of alternative-1.
Therefore, alternative-2 is more reusable.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper assesses inheritance hierarchy from two different views i.e. reuse and reusability, which are helpful for
increasing reuse and reusability and comparing two alternative inheritance hierarchies of same problem. Taxonomy
of inheritance based metrics is given for its better understanding. Four existing inheritance based metrics (DIT,
NOC, MIF and AIF) have been investigated and five new metrics (BIT, MRPIR, ARPIR, GC and RP) have been
proposed for assessing reuse and reusability. Analysis of metrics on a case study shows that these metrics are
helpful for assessing reuse and reusability. This study is supported by simple and small case study however the
same study can be replicated empirically with industrial projects to generalize results.

Student of particular
stream

Any Student Student of particular
course

Low High

Nasib S. Gill et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2308

REFERENCES
[1] Santhi Karunanithi, James M Bieman “Candidate Reuse Metrics For Object Oriented and Ada Software” Proc. IEEE International

Software Metrics Symposium, pp. 120-128, May 1993.
[2] Dr. Linda H.Roshanberg “Applying and Interpreting Object Oriented Metrics”. In Software Technology Conference (April 1998)

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html
[3] Dr. Kadhim M.Breesam “Metrics for Object-Oriented Design Focusing on Class Inheitance Metric” IEEE 2nd International

Conference on Dependability of Computer Systems (DepCoS-RELCOMEX’07) 2007.
[4] Shyam R.Chidamber, Chris F.Kemerer “A Metrics Suite For Object Oriented Designs” IEEE Transaction on Software Engineering.

Vol.20 No.6, June 1994.
[5] F. B. Abreu, R. Carapuça(1994) "Object-Oriented Software Engineering: Measuring and Controlling the Development Process"

Proceedings of the 4th International Conference on Software Quality, McLean, Virginia, USA, October 1994.
[6] Frederick T.Sheldon, Kshamta Jerath and Hong Chung "Metrics for Maintainability of Class Inheritance Hierarchies",Journal of

Software Maintenance and Evolution: Research and Practice, Vol. 14, pp. 1-14, 2002.
[7] Pradeep Kumar Bhatia, Rajbeer Mann, “An Approach to Measure Software Reusability of OO Design” Proceedings of 2nd National

Conference on Challenges & Opportunities in Information Technology (COIT-2008) RIMT-IET, Mandi Gobindgarh. March 29, 2008
[8] Parul Gandhi & Pradeep Kumar Bhatia “Reusability Metrics for Object-Oriented System: An Alternative Approach” International

Journal of Software Engineering (IJSE), Volume (1): Issue (4) December 2010.
[9] Parvinder S. Sandhu and Harpreet Kaur “A Reusability Evaluation Model for OO-Based Software Components”. International Journal

of Computer Science Volume 1 Number 4, 2006, pp.259-264.
[10] Kumar Rajnish, Arbind Kumar Choudhary and Anand Mohan Agrawal “Inheritance Metrics for Object-Oriented Design” International

Journal of Computer Science & Infomation Technology, Volume 2, Number 6, December 2010.
[11] P. K. Suri and Neeraj Garg “ Software Reuse Metrics: Measuring Component Independence and its applicability in Software Reuse”

IJCSNS International Journal of Computer Science and Network Security, Vol.9 No.5, May 2009.
[12] Frakes, William and Terry, Carol “Software Reuse: Metrics and Models”; ACM Computing Surveys, 28, 2 (1996), pp. 415-435.
[13] Maurizio Morisio, Michel Ezran, Colin Tully “Success and Failure Factors in Software Reuse” IEEE Transactions on Software

Engineering, Volume 28 Number 4, pp: 340–357,2002.
[14] Dr. E. Chandra 1, P. Edith Linda “Class Break Point Determination Using CK Metrics Thresholds” Global Journal of Computer

Science and Technology Vol.10 Issue 14 (Ver.1.0) November 2010.
[15] K.K.Aggarwal, Yogesh Singh, Arvind Kaur, Ruchika Malhotra “Empirical Study of Object-Oriented Metrics” Journal of Object

Technologies, vol. 5 no.8 November-December 2006, pp 149-173.

AUTHORS PROFILE

Dr. Nasib S. Gill is currently working as Professor & Head, Department of Computer Science & Applications,
Maharshi Dayanand University, Rohtak, Haryana (India). He has more than 20 years of experience in teaching
and research. He is the recipient of Commonwealth Fellowship Award availed at Brunel University, West
London (United Kingdom) for the year 2001-2002. His major current research interests include designing and
development of Component-Based Metrics and Software Complexity Metrics.

Sunil Sikka is a research scholar with the Department of Computer Science & Applications, Maharshi
Dayanand University, Rohtak, Haryana (India). His area of research is Object Oriented Software Measurement.
His other area of interest includes Software Engineering, Artificial Intelligence and Object Oriented
Programming.

Nasib S. Gill et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 6 June 2011 2309

