
Introducing a New Language for Stream
Applications

Mohamad Dabbagh
Department of Computer Science

Shabestar Branch
Islamic Azad University

Shabestar, Iran
mohamad_dbgh@yahoo.com

Abstract— Stream programs represent an important class of high-performance computing. These
programs are rich in parallelism and can be naturally targeted to distributed and multi-core
architectures. Since computer architectures gradually become multi-core, there is a pressing need to
provide an efficient programming language that supports all aspects of parallelism in the streaming
applications. In this paper, we introduce a new flexible stream programming language, called FSPL. The
FSPL, is an architecture-independent programming language designed for high-performance streaming
application development. It aims to improve programmer productivity and program efficiency within the
streaming domain. In the FSPL language, each program is a collection of independent filters which
communicate by the means of data channels. This model lends itself naturally to concurrent and efficient
implementations on modern multiprocessors. One of most significant features supported in FSPL is that
when you define a filter, it is not needed to specify the amount of data produced and consumed by that
filter.

Keywords: Data channel; filters; FSPL; Stream Programming;

I. INTRODUCTION
As applications designed around some notion of streams continue to increase, there is a need to provide better

software support in the form of flexible languages modeled around the concept of streams of data. Using the
notion of streams makes it possible for programmers to structure programs in ways that provides the compiler
with enough information about parallelism, program- and data-flows, which the compiler can make use of in
order to produce efficient translations to parallel machines.

By streams we mean the continuous one directional flow of data in any format as shown in “Fig. 1” and
streaming applications are applications that process single or multiple streams in the incoming and outgoing
directions. Examples include digital signal processing in radar systems, or in a software FM radio [1],
communication protocols, speech coders, audio beam-forming, image processing, cryptographic kernels, and
network processing.

Figure 1. Binary streams of 1’s and 0’s in the direction of the arrow

Streaming applications are generally compute intensive and demand real time processing of the data they
receive thereby, making it imperative that processing is done in the most efficient manner. They are suitably
mapped to parallel architectures where most memory operations are localized in the processing units and the
notion of global variables do not exist. This is very difficult to deal with in languages that schedule tasks
sequentially. Most of the high level languages in use today fall into this category e.g. C, C++ etc. They are
optimized for general purpose application programming on machines that have centralized memory architectures
and therefore need a great deal of difficult programming to express the parallelism that is inherent in today’s
parallel architectures.

Using them on parallel and reconfigurable architectures with distributed memory systems, limits the gains in
efficiency, speed and lower power consumption that are expected from these architectures. Moreover, general
purpose languages do not provide a natural and intuitive representation of streams, thereby having a negative
effect on readability, flexibility, and programmer productivity.

Mohamad Dabbagh et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 2119

These problems have made it necessary to rely on hardware implementations, like application specific
integrated circuits (ASIC), field programmable gate arrays (FPGA) and special purpose digital signal processing
(DSP) hardware, in areas that require industrial high performance processing. However, these come with a major
shortcoming, namely, lack of flexibility [2].

For instance, in third generation (3G) radio base stations, considering the expected long life cycles that are
often required, it is not desirable to encapsulate critical functions into hardware since minor changes could require
a complete removal of the hardware modules involved. Software modules make it possible to integrate added
functionalities or improve on algorithms with minimal hardware changes [2]. Therefore, to reduce cost, speed up
design time and improve on the ability to provide for the customer’s various needs while reducing down time
required for upgrades, there is need to use commercially available reconfigurable processors while developing
compilers that can exploit the parallelism that these processors provide and at the same time avoiding
performance penalties.

On the other hand, despite the prevalence of stream applications, there is surprisingly little language and
compiler support for practical, large-scale stream programming. Of course, the notion of a stream as a
programming abstraction has been around for decade, and a number of special-purpose stream languages have
been designed. Many of these languages and representations are elegant and theoretically sound, but they often
lack features and are too inflexible to support straightforward development of modern stream applications, or
their implementations are too inefficient to use in practice. In a stream programming language, a program is a
collection of filters connected by data channels. Each filter is a functional unit that consumes data from its input
channels and produces results on its output channels. In their purest form, stream programming languages are
ideally suited to parallel implementations as the output behavior of a filter is deterministic function of the data on
its input channels and its internal state. As filters are independent and isolated from one another, they can be
scheduled in parallel without concern about data races or other concurrent programming pitfalls that plague
shared memory concurrent programs. The appeal of this model is evidenced by a number of stream programming
languages and systems include Borealis [3], Cg [4], StreamIt [5] and Brook [6]. These languages have a long
lineage which can be traced back to Wadge and Ashcroft’s Lucid [7] data flow language and, to some extent, to
the Esterel and Lustre family of synchronous languages [8], [9].

All reasons mentioned above, motivate us to design and implement a Flexible Stream Programming Language,
hereafter referred to as FSPL. FSPL is a language and compiler specifically designed for modern stream
programming. The FSPL language has a main goal: to provide high-level stream abstractions that improve
programmer productivity and program efficiency within the streaming domain.

The remainder of this paper is organized as follows. In section 2, we characterize the domain of streaming
programs that motivates the design of FSPL. In section 3, we provide a detailed description of the FSPL
language. We present a detailed example of a lexical analyzer implemented with FSPL in section 4 and describe
related work in section 5 and finally section 6 contains our conclusions.

II. STREAMING APPLICATION DOMAIN
The applications that make use of a stream abstraction are diverse, with targets ranging from embedded

devices, to consumer desktops, to high-performance servers. However, we have observed a number of properties
that these programs have in common-enough so as to characterize them as belonging to a distinct class of
programs, which we will refer to as streaming applications. The following are the salient properties of a streaming
application, independent of its implementation:

• Large streams of data. Perhaps the most fundamental aspect of a stream program is that it operates on
a large (or virtually infinite) sequence of data items, hereafter referred to as a data stream. Data
streams generally enter the program from some external source, and each data item is processed for a
limited time before being discarded. This is in contrast to scientific codes, which manipulate a fixed
input set with a large degree of data reuse.

• Independent stream filters. Conceptually, a streaming computation represents a sequence of
transformations on the data streams in the program. We will refer to the basic unit of this
transformation as a filter: an operation that – on each execution step – reads one or more items from
an input stream, performs some computation, and writes one or more items to an output stream.
Filters are generally independent and self-contained, without references to global variables or other
filters. A stream program is the composition of filters into a stream graph, in which the outputs of
some filters are connected to the inputs of others.

• A stable computation pattern. The structure of the stream graph is generally constant during the
steady-state operation of the program. That is, a certain set of filters are repeatedly applied in a
regular, predictable order to produce an output stream that is a given function of the input stream.

• Sliding window computations. Each value in a data stream is often inspected by consecutive
execution steps of the same filter, a pattern referred to as a sliding window. Examples of sliding

Mohamad Dabbagh et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 2120

windows include moving averages and differences; error correcting codes; bio-sequence analysis;
natural language processing; image processing (sharpen, blur, etc.); motion estimation; and network
packet inspection.

• Occasional modification of stream structure. Even though each arrangement of filters is executed for a
long time, there are still dynamic modifications to the stream graph that occur on occasion. For
instance, if a wireless network interface is experiencing high noise on an input channel, it might react
by adding some filters to clean up the signal; or it might re-initialize a sub-graph when the network
protocol changes from 802.11 to Bluetooth.

• Occasional out-of-stream communication. In addition to the high-volume data streams passing from
one filter to another, filters also communicate small amounts of control information on an infrequent
and irregular basis. Examples include changing the volume on a cell phone, printing an error message
to a screen. These messages are often synchronized with some data in the stream–for instance, when a
frequency hopping radio changes frequencies at a specific point of the transmission.

• High performance expectations. Often there are real-time constraints that must be satisfied by stream
programs; thus, efficiency (in terms of both latency and throughput) is of primary concern.
Additionally, many embedded applications are intended for mobile environments where power
consumption, memory requirements, and code size are also important.

III. FSPL OVERVIEW
FSPL is an architecture-independent programming language intended for large-scale and high-performance

streaming application development. This language introduces abstractions, such as having functions implemented
in filters, hierarchically structured streams that are designed to facilitate modularity, programmer productivity,
and flexibility. FSPL aims to allow programmers to easily and naturally express their design of streaming
applications.

This language is inspired from the StreamIt language [5], but is not identical. The FSPL language,
incorporates new ideas that have been judged to be necessary but have not been supported in StreamIt.

The major limitation of StreamIt is that it requires filters to have static input and output rates. That is, the
number of data items peeked, popped, and pushed by each filter must be constant from one invocation of the filter
to the next [5]. So, applications such as compression and lexical analyzer that have dynamic flow rates could not
be easily implemented with this language.

In the FSPL language, when you define a filter, it is not needed to specify the amount of data produced and
consumed by that filter. This feature leads programmer to develop more sophisticated applications in an easily
and efficient manner.

Another restriction of StreamIt is that input and output channels are created implicitly whenever filters want to
communicate with each other [5]. In our language, FSPL, channels are independent from filters and programmer
can define them explicitly whenever he/she wants. Then, filters can read data from or write data to these channels.

A. Filters

In the FSPL language, a program is a collection of computational unit that operates on a large sequence of
data. The basic unit of computation in FSPL is called filter. Indeed, filter reads one or more data item(s) from its
input channel (consuming data), performs some operations, and writes one or more data item(s) to its output
channel (producing data). Filters are atomic and independent, so they have the potential to execute in parallel.

In FSPL, filter is defined using the module keyword which must be followed by a module name. The body of a
filter includes four main parts in its complete form:

- Declaring input and output ports along with variables declaration if needed.
- Defining constructor of the module. Constructor name should be the same as the module name.
- Defining destructor of the module. Destructor should start with ~ sign and its name should be the same as

the module name.
- The main part of the module, which is responsible for performing computations, defined using the process

keyword. Each module should have at most one process.

A basic filter declaration in FSPL looks like “Fig. 2”.

Mohamad Dabbagh et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 2121

Figure 2. General format of filters in FSPL

FSPL’s representation of a filter is an improvement over general-purpose languages. In a procedural language,
the analog of a filter is a block of statements in a complicated loop nest. This representation is unnatural for
expressing feedback and parallelism that is inherent is streaming systems. Also, there is no clear abstraction
barrier between one filter and the other one, and high-volume stream processing is muddled with global variables
and control flow. The loop nest must be rearranged if the input or output ratios of a filter changes, and scheduling
optimizations further inhibit the readability of the code. In contrast, FSPL places the filter in its own independent
unit, making explicit the parallelism and inter-filter communication while hiding the grungy details of scheduling
and optimization from the programmer.

FSPL language very naturally allows also hierarchical system design. Each filter can be specified as a network
of filters. This approach facilitates modularity, where the internal specification of any filter can be modified
without impacting other filters.

B. Channels

In the FSPL language, we introduce channel variables in order to establish a communication between modules.
These channel variables is used for transferring data items between any two filters. The role of the channel for
establishing communication between two modules is shown in “Fig. 3”.

Figure 3. The role of the channel in FSPL

As can be seen, a channel variable receives data from the writer module and transferring its value to reader
module. In other words, the producer filter writes data items into the channel, afterward the consumer filter reads
the same data items from the same channel.

In FSPL, channel is defined using the channel keyword followed by the data type of channel variable and an
identifier indicates the channel’s name. As an example, channel char c defines a character channel named c.

Two operators are supported on these channels; ‘!>’ and ‘!<’ . The former is used for reading data items from

the channel and the latter is used for writing data items into the channel.

C. Filter’s Input and Output Ports

As we mentioned, in the FSPL language, we can define filter’s input and output ports explicitly. The input
port is defined using the in keyword followed by the data type of the port and an identifier indicates the name of

module Module_Name
{

//ports declaration
//variables declaration
Module_Name()
{

//constructor
}

 ~Module_Name()
{

//destructor
}
process
{

//read data from input port
//computations
//write data to output port

}
}

write read

Mohamad Dabbagh et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 2122

the input port. As an example, in integer input_1 indicates an input port named input_1 which holds integer
values. Similarly, the output port is defined using the out keyword followed by the data type of the port and an
identifier indicates the name of the output port. As an example, out integer output_1 indicates an output port
named output_1 which holds integer values.

D. The Operators of Input and Output Ports

There are two explicit operators in FSPL for reading and writing values from and to input and output ports
denoted ‘!>’ and ‘!<’ respectively that can be defined informally as follows.

If input is a an input port and ch is a variable then the command ch !> input is interpreted informally as: read
the first value from the input port named input and assign this value to variable ch. If input is empty then
execution of this command is delayed. Similarly, If output is a an ouput port and ch is a variable then the
command output !> ch is interpreted informally as: read the value of ch variable and write this value to the output
port named output. It should be noted that the reading and writing operations from and to input and output ports
must be defined in the process of the module.

E. Data Types in FSPL

This section describes the various data types used in the FSPL programs. Data types are passed between
modules and also can be used as local variables. Data types are always created atomically. They are of fixed size,
and are generally statically allocated. The following data types exist in FSPL (see TABLE I).

TABLE I
PRIMITIVES DATA TYPES IN FSPL

Name Description Size

char character 1byte
short short integer 2bytes

int integer 4bytes
long long integer 4bytes
bool Boolean value. It can take one of two values: true or false. 1byte
float floating point number 4bytes

double Double precision floating point number. 8bytes

The operators that are supported on these primitive data types are the same as they are used in c language.

F. Variable Declarations in FSPL

The variable declaration in FSPL is like variable declaration in c language which is defined using data type
followed by an identifier. A variable declaration may declare one or multiple variables, possibly with initializers;
multiple variables are separated with commas.

Also, we can declare another data types such as arrays and struct in FSPL if needed. Their syntax is the same
as c language.

IV. DETAILED EXAMPLE
As we described in the previous sections, the most important feature supported in FSPL is that it is suitable for

developing applications with dynamic rates of data production and assumption. Because when programmer
defines a filter, it is not needed to specify the amount of data produced and consumed by that filter.

One of these applications is lexical analyzer. It is the first phase of a compiler. Lexical analyzer takes in a
sequence of characters at its input and produces a sequence of tokens at its output (see “Fig. 4”). The critical point
we should consider is that lexical analyzer has not any information about the length of a token; one token may
consist of 20 characters while another consists of 5 characters and etc. but we can easily implement this
application in FSPL.

The program for implementing lexical analyzer in FSPL is a collection of five filters named read, tokenizer,
write, combination and main. These filters are represented in “Fig. 5”. Read filter takes in the stream of characters
from input file and produces the stream of characters on its output port. Tokenizer filter reads stream of characters
from its input port, converts them into a token and writes stream of token into its output ports. Write filter reads
stream of token from its input port and writes stream of tokens on output file. In order to implement this program
hierarchically, we define a filter named combination which encapsulates read and tokenizer filter into one distinct
filter. Main filter is responsible for connecting filters, scheduling filters and finally executing program.

Mohamad Dabbagh et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 2123

Figure 4. The lexical analyzer

module READ
{
 out char output;
 FILE *fr;
 READ()
 {
 fr = fopen("input.txt","r");
 }
 ~READ()
 {
 fclose(fr);
 }
 process
 {
 char ch = getc(fr);
 output !< ch;
 }
}

module Tokenizer
{
 in char input;
 out char output[1000];
 int i;
 char arr[1000];
 Tokenizer()
 {
 i = 0;
 }
 ~Tokenizer()
 {
 }
 process
 {
 char ch;
 ch !> input;
 if(ch != '')
 {
 arr[i] = ch;
 i++;
 }
 else
 {
 arr[i++] = NULL;
 i = 0;
 output !< arr;
 }

 }
}

module WRITE
{
 in char input[1000];
 FILE *fw;
 WRITE()
 {
 fw = fopen("output.txt","w+");
 }
 ~WRITE()
 {
 fclose(fw);
 }
 process
 {

Lexical Analyzer
characters tokens

error message

Mohamad Dabbagh et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 2124

 char arr[1000];
 arr !> input;
 fputs(arr,fw);
 fprintf(fw,"\n");
 }
}

module COMBINATION
{
 out char output;
 COMBINATION()
 {
 channel char c;
 module READ r;
 module Tokenizer t;
 r !< c;
 t !> c;
 t !< output;
 }
}

module main
{
 main()
 {
 channel char ch[1000];
 module COMBINATION c;
 module WRITE w;
 c !< ch;
 w !> ch;
 }
}

Figure 5. Implementing lexical analyzer in FSPL

V. RELATED WORK
There has been a wealth of research of various stream languages and projects. This section will introduce some

of the other projects.
A large number of programming languages have included a concept of a stream; see [10] for a survey.

Synchronous languages such as LUSTRE [9], Esterel [8], and Signal [11] also target the embedded domain, but
they are more control-oriented than StreamIt [5] and are not aggressively optimized for performance. Sisal
(Stream and Iteration in a Single Assignment Language) is a high performance, implicitly parallel functional
language [12]. The Distributed Optimizing Sisal Compiler [12] considers compiling Sisal to distributed memory
machines, although it is implemented as a coarse-grained master/slave runtime system instead of a fine-grained
static schedule.

Ptolemy [13] is a simulation environment for heterogenous embedded systems, including Synchronous Data
Flow that is similar to static-rate stream graphs in StreamIt. SDF programs, however, do not include the peeking
and messaging constructs of StreamIt. In SDF languages, actors are the active computational elements (Filters).
SDF computation model does not impose structure on the program. All actors are allowed to have multiple input
and output channels.

Cg is a system for programming graphics hardware. The Cg language is based on both the syntax and
philosophy of C. In particular Cg is intended to be general purpose, rather than application specific, and is a
hardware oriented language. Cg also adopts a few features from C++ and Java. But unlike these languages Cg is
intended to be a language for programming in the small rather than programming in the large [14].

The StreamC language in combination with C++ is to be used for writing programs that utilize the Imagine
stream processing system. StreamC includes commands for transferring streams of data to and from the Imagine
system and between Imagine processors, for reading and writing microcontroller variables, and for executing
kernels [15].

VI. CONCLUSION
Parallel processing is one of most important issue in computer science. There are many approaches to

parallelizing programs such as parallelizing loops or developing advanced parallel compilers. But using stream
programming paradigm, programmer writes his code implicitly parallel.

In this paper, we introduced a flexible stream programming language, called FSPL. The FSPL is an
independent-architecture programming language for high performance stream applications. FSPL aims to allow
programmers to easily and naturally express their design of streaming applications.

Mohamad Dabbagh et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 2125

The most important ideas implemented in FSPL is that when you define a filter, it is not needed to specify the
amount of data produced and consumed by that filter. The advantage of using this idea is flexibility for
developing stream applications.

REFERENCES
[1] The StreamIt Cookbook, Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge. MA 02139, Nov.

2004. [Online]. Available: http: //cag.csail.mit.edu/streamit/index.shtml,accessed,November-11-2006.
[2] J. Bengtsson, “Thesis for the degree of licentiate of engineering, efficient implementation of streaming applications on processors

arrays, technical report,” School of Information Science, Computer and Electrical Engineering, Halmstad University, Tech. Rep.,
2006.

[3] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik. The Design of the Borealis Stream Processing Engine. In Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005), Asilomar, CA, January 2005.

[4] Soga A., Shiba M., and Kawamoto T., 2008, An attempt of real time Cg control with multi touch devices, In the proceedings of the
2008 ACM symposium on virtual reality software and technology, ACM, New York, USA.

[5] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language for streaming applications. In International Conference on
Compiler Construction (CC’02), Apr. 2002.

[6] Liao S., Du Z., Wu G. and Lueh G., 2006, Data and computation transformations for Brook streaming applications on
multiprocessors, Proceedings of the international symposium on code generation and optimization, pages 196-207, IEEE computer
society, Washington DC.

[7] E. A. Ashcroft and W. W. Wadge. Lucid, a non-procedural language with iteration. Communications of the ACM, 20(7):519–526,
July 1977.

[8] F. Boussinot and R. De Simone. The ESTEREL language. Proc. IEEE, 79(9):1293–1304, Sept. 1991.
[9] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative language for programming synchronous systems. In

Conference Record of the Fourteenth Annual ACM Symposium on Principles of Programming Languages (POPL), pages 178–188,
Munich,West Germany, Jan. 21–23, 1987. ACM SIGACT-SIGPLAN, ACM Press.

[10] Robert Stephens. A Survey of Stream Processing. Acta Informatica, 34(7), 1997.
[11] Thierry Gautier, Paul Le Guernic, and Loic Besnard. Signal: A declarative language for synchronous programming of real-time

systems. Springer Verlag Lecture Notes in Computer Science, 274, 1987.
[12] "J. Gaudiot, W. Bohm, T. DeBoni, J. Feo, and P. Mille". The Sisal Model of Functional Programming and its Implementation. In

Proceedings of the Second Aizu International Symposium on Parallel Algorithms/Architectures Synthesis, 1997.
[13] Edward A. Lee. Overview of the Ptolemy Project. UCB/ERL Technical Memorandum UCB/ERL M01/11, Dept. EECS, University of

California, Berkeley, CA, March 2001.
[14] William R. Mark, R. Steven Glanvile, Kurt Akeley, Mark J. Kilgard, “Cg: A system for Programming Graphics Hardware in C-Like

Language”, proceedings of the international conference on computer graphics and interactive techniques, San Diego, California, 2003.
[15] Abhishek Das, William J. Dally, Peter Mattson, “Compiling for stream processing”, proceedings of the 15th international conference

on parallel architectures and compilation techniques, Seattle, Washington, USA, 2006.

Mohamad Dabbagh et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 2126

