
A GENETIC ALGORITHM FOR
REGRESSION TEST CASE

PRIORITIZATION USING CODE
COVERAGE

Arvinder Kaur
Associate Professor,

University School of Information Technology
G.G.S. Indraprastha University, Delhi- 110043

Shubhra Goyal
Research Student

University School of Information Technology,
G.G.S. Indraprastha University, Delhi- 110043

Abstract— Regression testing is a testing technique which is used to validate the modified software. The regression
test suite is typically large and needs an intelligent method to choose those test cases which will detect maximum or all
faults at the earliest. Many existing prioritization techniques arrange the test cases on the basis of code coverage with
respect to older version of the modified software. In this approach, a new Genetic Algorithm to prioritize the
regression test suite is introduced that will prioritize test cases on the basis of complete code coverage. The genetic
algorithm would also automate the process of test case prioritization. The results representing the effectiveness of
algorithms are presented with the help of an Average Percentage of Code Covered (APCC) metric.

Keywords: Genetic Algorithm; Prioritization; Regression Testing; Automation Testing.

I. INTRODUCTION

Regression testing is retesting changed segments of application system. It is performed frequently to ensure the
validity of the altered software. In most of the cases, time and cost constraint is prominent; hence the whole test
suite cannot be run. Thus, prioritization of the test cases becomes essential. The priority criteria can be set
accordingly e.g. to increase rate of fault detection, to achieve maximum code coverage, and so on.
One of the performance goals is to run those test cases that achieve total code coverage at the earliest [9]. Here,
we propose a technique that achieves 100% code coverage. The three broad categories for prioritization are
Greedy algorithms, non-evolutionary algorithms and evolutionary algorithms. Evolutionary algorithms (EA)
have been chosen as they are global optimization methods and scale well to higher dimensional problems. They
can be easily adjusted to the problem at hand and can be change and customized.
 It is interactive and meta-heuristic process that operates on a set of population. Most of the implementations of
evolutionary algorithms came from any of these three basic types: Genetic Algorithm (GA), Evolutionary
Programming (EP) and Evolutionary Strategies (ES). All these are strongly related but independently developed.
Among evolutionary techniques, the GA, invented by John Holland in the 1960s at the University of Michigan,
study the phenomenon of evolution and adaptation as it occurs in nature. They depend on the use of selection,
crossover (recombination) and mutation operators [9]. Automated software testing has been considered critical
for big software development organizations but is often too expensive or difficult for smaller companies to
implement. This algorithm automates the process of prioritize the test suites as per the criteria given to genetic
algorithm.

II. RELATED WORK

Many researchers addressed prioritization problem and proposed various techniques for it. Many techniques are
used for prioritization such as Greedy algorithms for test case prioritization [13], 2-optimal algorithms [7], non-
evolutionary algorithms such as goal programming method [4], logarithmic least square method [5], weighted
least square method [5] and evolutionary algorithms[3]. Most frequent among all is total fault-detection
technique [15].

Arvinder Kaur et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 1839

 In the test case prioritization using genetic algorithms, the prioritization criterion is based on fitness function of
population and genetic operators [11]. Further, Genetic algorithm is used for network security in cryptography
[8]. GA is also used in Data Mining operations [12] and Robotics [14].

III. THE GENETIC ALGORITHM

Over several years, organisms are evolving on the basis of fundamental principle “survival of fittest” to
accomplish noteworthy results. In 1975, Holland employed principle of natural evolution to optimization
problems and built first GA.
 In GA, a population P = (c1… cm) is formed from a set of chromosomes and each chromosome is
composed of genes. The GA populates the population of chromosomes by successively replacing one population
with another based on fitness function assigned to each chromosome. The strong individual is included in next
population and individuals with low-fitness are eliminated from each generation. [10]. There are two main
concepts in genetic algorithm viz: crossover and mutation.

A. Crossover

The crossing over (key operator) is process of yielding recombination of alleles via exchange of segments
between pairs of chromosomes.Crossover is applied on an individual by switching one of its allele with another
allele from another individual in the population. The individuals resulting from crossover are very different from
their initial parents. The code below suggests an implementation of individual using crossover:

Child1 = c*parent1 + (1-c)*parent2 (1)
Child2 = (1-c)*parent1 + c*parent2 (2)

B. Mutation

The mutation is a process wherein one allele of gene is randomly replaced by (or modified to) another to yield
new structure .It alters an individual in the population. It can regenerate all or a single allele in the selected
individual. To maintain integrity, operations must be secure or the type of information an allele holds should be
taken into consideration. That is, mutation must be aware of binary operations, or it must be able to deal with
missing values.
A simple piece of code:
child = generateNewChild(); (3)

The optimization problems are solved by GA’s recombination and replacement operators, where recombination
is key operator and frequently used, whereas, replacement is optional and applied for solving optimization of
problem.

IV. GENETIC ALGORITHM FOR PRIORITIZATION OF TEST CASES

The initial population is automatically generated and the evaluation of the set of candidate solution has been
done with the help of genetic algorithm. The stopping criteria used in this approach is total code coverage.

A. Flowchart

 Figure 1. Flowchart of Genetic Algorithm.

Arvinder Kaur et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 1840

B. Algorithm

STEP 1. Generation of initial population
 Generate ‘n’ number of chromosomes {c1, c2… cn}

STEP 2. Initialization of population
 Set Test Suite= No. of chromosomes (n)

STEP 3. Fitness function criterion set
 Set fitness function= total code coverage

STEP 4. Select suitable population on the basis of Fitness Function
 SELECT (Best 2 chromosomes based on fitness function)

STEP 5. Genetic Operators Applied
 Do for selected Chromosome(s)
 While (all conditions are covered)
 Do crossover
 Do mutation
 Remove Duplicacy
 EndWhile
 EndFor

STEP 6. Optimization of solution cheked.
 If (solution!= feasible)
 Goto STEP 5
 Else END.

C. Algorithm Explained:

In GA, the optimal solution is searched on the basis of desired population which further can be replaced with the
new set of population. The generation and initialization of test cases (population) is done according to the
problem. The two fitness criterion chosen are maximum fault covered in minimum execution time and total code
coverage. Henceforth, this fitness function will help in selecting suitable population for problem. Further, the
genetic operations are performed. Firstly, crossover, which recombines two individuals. Secondly, mutation,
which randomly swaps the individuals. Thirdly, the redundant individuals are removed. Finally, the solution is
checked for optimization. If solution is not optimized, then, the new population is reproduced and genetic
operators are applied.

D. Problem Definition:
Prioritization based on total code coverage is done by structural testing. This is achieved through path testing
which is a group of test techniques based on selecting a set of test paths through the program. Flow graph
generation is the first step of path testing. Then decision to decision (DD) path graph is generated form flow
graph. It is used to find independent paths. An independent path is any path through the DD path graph that
introduces at least one new set of processing statements or new conditions. Therefore, we need to execute all
independent paths at least once during path testing. The example is explained below:

The example taken for code coverage is the triangle problem which takes the three sides (a positive integer in
the range of 0 to 100) of the triangle as input and gives the output as scalene, isosceles, equilateral, not a triangle
and invalid inputs according to the input[11]. The test cases, conditions and independent paths covered by them
are shown in the table 4.

Arvinder Kaur et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 1841

Figure2. DD Path graph of Triangle problem.

Following are the independent paths of the triangle problem:

i. ABFGNPQR
ii. ABCDEGHJKMQR

iii. ABCDEGHIMQR
iv. ABCDEGNOQR
v. ABCEGNPQR

vi. ABCDEGHJLMQR
vii. ABFGNOQR

INPUTS

Table I. Test cases with inputs and outputs

TEST
CASE
NO.

INDEPENDENT
PATH

CONDITION
COVERED

1 abfgnpqr 3
2 abcdeghjkmqr 5
3 abcdeghjkmqr 5
4 abcdeghimqr 4
5 abcdeghjkmqr 5
6 abcdegnoqr 4
7 abcegnpqr 4
8 abfgnpqr 3
9 abcdeghjlmqr 5
10 abcdeghjkmqr 5
11 abcdeghjkmqr 5
12 abcdeghjkmqr 5
13 abfgnoqr 3
14 abcegnpqr 4
15 abfgnpqr 3
16 abcdeghjkmqr 5
17 abcdeghjlmqr 5
18 abcdeghimqr 4
19 abcdegnoqr 4
20 abcegnpqr 4

Step 1: Test case Generation
We are applying the foremost step of our algorithm by selecting the randomized test suites. The number of test
cases is the number of chromosomes generated. This is explained in the table 5 given below.

Arvinder Kaur et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 1842

Table II. Execution of Example, G-Genes, C- Chromosome

CHROMOSO
MES

 OBSERVATIONS FOR 1st ITERATION

 C1 G T1 T5 T6 T9 T4 T7 T11 T17 T20
 C2 G T2 T4 T9 T12 T16 T18 T7 T8 T10 T6 T20
 C3 G T3 T15 T17 T19 T6 T20 T4 T13 T5 T14
 C4 G T4 T6 T17 T9 T12 T10 T20 T1 T3 T12 T7
 C5 G T5 T8 T12 T15 T19 T20 T14 T6 T11 T10 T7
 C6 G T6 T12 T1 T20 T16 T2 T19 T4
 C7 G T7 T9 T13 T15 T14 T18 T19 T20 T4
 C8 G T8 T10 T14 T20 T12 T4 T9 T2 T6 T7
 C9 G T9 T19 T12 T8 T1 T5 T4 T10 T17 T20
 C10 G T10 T12 T14 T16 T18 T20 T6 T2 T4 T13
 C11 G T11 T13 T15 T20 T19 T1 T18 T17 T3 T4
 C12 G T12 T14 T16 T18 T4 T20 T9 T7
 C13 G T13 T17 T20 T19 T6 T14 T12 T6 T7 T4
 C14 G T14 T4 T19 T6 T8 T12 T5 T20 T3 T1
 C15 G T15 T3 T7 T9 T4 T1 T18 T10 T14 T20
 C16 G T16 T10 T19 T20 T5 T11 T8 T14 T4 T12
 C17 G T17 T5 T1 T16 T7 T6 T17 T12 T20 T2 T4
 C18 G T18 T19 T15 T17 T5 T20 T8 T9 T2 T4
 C19 G T19 T4 T13 T14 T3 T6 T1 T7 T3 T20
 C20 G T20 T4 T1 T2 T8 T3 T18 T6 T9 T16 T19

Step 2: Select an input for GA algorithm based on the fitness function

The fitness function in this is selecting minimum test cases to cover all the independents paths with minimum
test cases. Two test suites of eight test cases and two test suites of nine test cases are selected as per the fitness
function. The crossover is applied on test suites of similar length. The 3-point crossover is applied on two sets of
test suites.
Two offsprings are formed on applying crossover. One of the two offspring covers all the independent paths
while the other does not cover all the independent paths and hence that offspring is discarded.
Thus based on this fitness function, we get two iterations with test suite {T6,T12,T1,T20,T16,T2, T19 and T4}
and {T12,T14,T16,T18,T4,T20,T9,and T7}.

Step 3: Apply Genetic Algorithm on test suite of nine test cases does not yield optimized result. Thus, we apply
on test suite of eight test cases to further prioritize.

Step 3.1. Do crossover

Figure 3. Applying crossover on the test suite

Thus the test suites we get after crossover as two offsprings are

T6

T12

T1

T18

T4

T20

T9

T7

Arvinder Kaur et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 1843

 And

The first offspring i.e. test suite obtained after crossover covers all the independent paths and that test suite is
selected for mutation. The test suite selected is as:

Step 3.2 Do mutation on one of the best offspring and the process shown is as:

Figure 4. Applying mutation on the resulted test suite

The result obtained after applying mutation is

Step 3.3 removing the duplicates from the test suites

Thus, removing the duplicate test cases T18 and T12, we get the final test suite which covers all the seven
independent paths as below and this is the final result.

T6

T7

T1

T9

T4

T20

E. Algorithm Analysis:

To analyze code coverage based testing effectively the Average Percentage of Condition Coverage (APCC)[16]
approach has been used where average percentage of test suite to be executed with respect to average
condition’s covered.Table-9 shows various orders for Example-3 and corresponding APCC is plotted in figure
9. In this paper, Example-3has used APCC. The APCC is given as:

 APCC= (4)

Where, T = test suite been executed
n = number of test cases,
m = number of conditions to be covered,

i = First test case covering ith condition.

Table III shows the final percentage calculated from APCC for example. Table IV shows proposed technique is
comparable with optimum order for the examples.

T12

T14

T16

T20

T16

T2

T19

T4

T6

T12

T1

T18

T4

T20

T9

T7

T6

T7

T1

T9

T4

T20

T18

T12

Arvinder Kaur et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 1844

Table III. Representing APFD and APCC values.

Technique Example
APCC %

No Order 90
Random Order 89.2
Reverse Order 89.2
Optimal Order 91.7
GA Order 88.3

Table IV. Order of test cases for various prioritization approaches for example of maximum code coverage.

No
Order

Reverse
Order

Random
Order

Optimum
Order

GA
Order

T1 T20 T6 T9 T6
T2 T19 T8 T7 T8
T3 T18 T10 T4 T10
T4 T17 T5 T2 T2
T5 T16 T4 T18 T20
T6 T15 T2 T1 T15
T7 T14 T1 T13 T13
T8 T13 T9 T3 T9
T9 T12 T7 T5 T7
T10 T11 T3 T8 T1
T11 T10 T16 T6 T3
T12 T9 T13 T10 T12
T13 T8 T19 T19 T16
T14 T7 T20 T11 T14
T15 T6 T17 T15 T11
T16 T5 T19 T12 T17
T17 T4 T12 T16 T19
T18 T3 T18 T14 T5
T19 T2 T11 T17 T18
T20 T1 T14 T20 T4

Figure 5. APCC chart for example 1 of maximum code coverage.

F. Threats to Validity:

The GA algorithm proposed here has been executed and following areas have been detected as threat to validity.
1. The optimal result depends on observing the final result.
2. The algorithm has been tested on less number of programs. More analysis is needed.

V. APPLICATION OF THE PROPOSED APPROACH

This approach may be used by the software practitioners to reduce the time and effort required for prioritization
of test cases in the test suite. The proposed approach may lead to greater savings of time and effort in larger and

Arvinder Kaur et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 1845

complex projects as compared to smaller ones. Using GA approach, software practitioners can effectively select
& prioritize test cases from a test suite, with minimum execution time. Hence, the proposed algorithm may
prove to be useful in real-life situations.

VI. CONCLUSION

The algorithm has been proposed to prioritize test cases using Genetic Algorithm. Here, different prioritization
approaches have been analyzed, namely: total fault coverage with in time constrained environment and amount
of code coverage on different examples and their finite solution obtained, respectively. Through Genetic
Algorithm technique, an approach has been identified to pull out suitable population, which was further
formulated by GA operations to make it more flexible and efficient. The elaborations of results are shown with
the help of APCC values. The APCC has been calculated for example for code coverage testing to evaluate the
usefulness of the proposed algorithm.
The algorithm is solved manually and is a step towards Test Automation. In future an automation tool is to be
developed to implement the proposed algorithm which can solve large number of test cases in efficient time.

REFERENCES

[1] K.K. Aggarwal, and Y. Singh, “A book on software engineering”, New Age International (P) Ltd.; Publishers, 4835/24, Ansari Road,

Daryaganj, New Delhi, 2001.
[2] K.K. Aggarwal, Y. Singh, and A. Kaur, “Code coverage based technique for prioritizing test cases for regression testing”, ACM

SIGSOFT Software Engineering Notes, New York, NY, USA Volume 29 Issue 5. 2004.
[3] N.M.A. AL-Salami, “Evolutionary Algorithm Definition”, American J. of Engineering and Applied Sciences 2 (4): Science

Publications, pp.789-795, 2009.
[4] N. Byson, “A goal programming method for generating priorities vectors”, Journal of Operational Research Society, Palgrave

Macmillan Ltd.,Houndmills, Basingstoke, Hampshire, RG21 6XS, England,pp. 641-648,1995.
[5] A.T.W, Chu, R.E. Kalaba, and K. Springam, “A comparison of two methods for determining the weights of belonging to fuzzy sets”,

Journal of Optimization Theory and Applications, US,volume 27, pg. 531-541, 1979.
[6] G. Crawford, and C. William, “A note on the analysis of subjective judgment matrices”, Journal of Mathematical Psychology, Elsevier

Inc,volume 29,pg. 387-405, 1985.
[7] G. Duggal, and B. Suri, “Understanding Regression Testing Techniques”,2008.
[8] Gorodilov, and V. Morozenko, “Genetic Algorithm for finding the key’s length and cryptanalysis of the permutation cipher”,

International Journal information theories and application, Institute of Information Theories and Applications FOI ITHEA vol.15,
2008.

[9] J.H. Holland, “Adaptation in Natural and Artificial Systems”, Journal of Computer and System Sciences, MIT Press, Cambridge,
MA, USA, volume 64, 1992.

[10] R. W. Kristen, “Prioritizing Regression Test Suites for Time-Constrained Execution Using a Genetic Algorithm”, Department of
Computer Science, Allegheny College, 2005.

[11] R. Krishnamoorthi, S.A. Sahaaya , and A. Mary, “Regression Test Suite Prioritization using Genetic Algorithms”, International
Journal of Hybrid Information Technology, 2009.Kamble, “Incremental Clustering in Data Mining using Genetic Algorithm”,
International Journal of Computer Theory and engineering, vol. 2, no. 3, 2010.

[12] Z. Li, M. Harman, and R.M. Hierons, “Search algorithms for regression test case prioritization”, IEEE Transactions On Software
Engineering, San Francisco, CA, USA, volume 33, no.4, 2007.

[13] D.K. Pratihar, K. Deb, and A. Ghosh, “A genetic-fuzzy approach for mobile robot navigation among moving obstacles”, International
Journal of Approximate Reasoning, Elsevier Inc, Volume 20, Issue 2, pg. 145-172, 1999.

[14] G. Rothermel, R.H. Untch, C. Chu, and M. H Jean, “Test Case Prioritization: An Empirical Study, In Proceedings of the International
Conference on Software Maintenance”, IEEE Computer Society Washington, DC, USA, pg. 179-188, 1999.

[15] L. Shanmugapriya, A. Askarunisa, and N. Ramaraj, “Cost and Coverage Metrics for Measuring the Effectiveness of Test Case
[16] Prioritization Techniques”, INFOCOMP Journal of Computer Science, pp. 1-10, 2009.
[17] K. R. Walcott, G. M. Kapfhammer, M. L. Soffa, and R. S. Roos, “Time- aware test suite prioritization, International Symposium on

Software Testing and Analysis”, Association in Computing Machinery, Portland, Maine USA, pp. 1-19, 20 July, 2006.

AUTHORS PROFILE

ArvinderKaur

Dr. ArvinderKaur is an Associate Professor with the University School of Information
Technology, Guru Gobind Singh Indraprastha University, India. She obtained her
doctorate from Guru Gobind Singh Indraprastha University and her master’s degree in
computer science from Thapar Institute of Engineering and Technology. Prior to
joining the school, she worked with B.R. Ambedkar Regional Engineering College,
Jalandhar and Thapar Institute of Engineering and Technology. She is a recipient of the
Career Award for Young Teachers from the All India Council of Technical
Education, India. Her research interests include software engineering, object-oriented
software engineering, software metrics, software quality, software project management,
and software testing. She also is a lifetime member of ISTE and CSI. Kaur has
published 60 research papers in national and international journals and conferences.

Arvinder Kaur et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 1846

Shubhra Goyal

She received B.Tech from Guru Gobind Singh Indraprastha University in 2009. She is
currently pursuing M.Tech from Guru Gobind Singh Indraprastha University. Her
area of interest is Software Engineering.

Arvinder Kaur et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 5 May 2011 1847

