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Abstract—This paper investigates the problem of global chaos synchronization of identical Pehlivan 
chaotic systems (Pehlivan and Uyaroglu, 2010) by sliding mode control. The stability results derived in 
this paper for the synchronization of identical Pehlivan systems are established using Lyapunov stability 
theory. Since the Lyapunov exponents are not required for these calculations, the sliding mode control 
method is very effective and convenient to achieve global chaos synchronization of the identical Pehlivan 
chaotic systems. Numerical simulations are shown to illustrate the effectiveness of the synchronization 
schemes derived in this paper for the identical Pehlivan chaotic systems. 
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I.  INTRODUCTION   

Chaotic systems are dynamical systems that are highly sensitive to initial conditions. This sensitivity is 
popularly known as the butterfly effect [1]. Since the seminal work by Pecora and Carroll ([2], 1990), chaos 
synchronization problem has been studied extensively and intensively in the literature [2-17]. Chaos theory has 
been applied to a variety of fields such as physical systems [3], chemical systems [4], ecological systems [5], 
secure communications [6-8] etc. 

In the last two decades, various schemes have been successfully applied for chaos synchronization such as PC 
method [2], OGY method [9], active control method [10-12], adaptive control method [13-14], time-delay 
feedback method [15], backstepping design method [16], sampled-data feedback synchronization method [17], 
etc. 

In most of the chaos synchronization approaches, the master-slave or drive-response formalism is used. If a 
particular chaotic system is called the master or drive system and another chaotic system is called the slave or 
response system, then the goal of the global chaos synchronization is to use the output of the master system to 
control the slave system so that the states of the slave system track the states of the master system asymptotically. 
In other words, global chaos synchronization is achieved when the difference of the states of the master and slave 
systems converge to zero asymptotically with time. 

In this paper, we derive new results based on the sliding mode control [18-20] for the global chaos 
synchronization of identical Pehlivan chaotic systems (Pehlivan and Uyaroglu, 2010). In robust control systems, 
sliding mode control is often adopted due to its inherent advantages of easy realization, fast response and good 
transient performance as well as its insensitivity to parameter uncertainties and external disturbances. 

This paper has been organized as follows. In Section II, we describe the problem statement and our 
methodology using sliding mode control. In Section III, we discuss the global chaos synchronization of identical 
Pehlivan systems ([21], 2010). In Section IV, we summarize the main results obtained in this paper. 

II. PROBLEM STATEMENT AND OUR METHODOLOGY USING SLIDING MODE CONTROL 

In this section, we describe the problem statement for the global chaos synchronization for identical chaotic 
systems and our methodology using sliding mode control. 

Consider the chaotic system described by 

         ( )x Ax f x                                                                                                                                (1) 

where nxR is the state of the system, A is the n n  matrix of the system parameters and : n nf R R is 
the nonlinear part of the system.   

We consider the system (1) as the master or drive system. 
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As the slave or response system, we consider the following chaotic system described by the dynamics 

        ( )y Ay f y u                                                                                                                         (2) 

where nyR is the state of the system and muR is the controller to be designed.  

If we define the synchronization error as  

         ,e y x                                                                                                                                      (3) 

then the error dynamics is obtained as   

         ( , ) ,e Ae x y u                                                                                                                  (4) 

where  

            ( , ) ( ) ( )x y f y f x                                                                                                            (5) 

The objective of the global chaos synchronization problem is to find a controller u such that 

         lim ( ) 0
t

e t


     for all (0) .ne R  

To solve this problem, we first define the control u as 

         ( , )u x y Bv                                                                                                                      (6) 

where B is a constant gain vector selected such that  ( , )A B    is controllable.  

Substituting (5) into (4), the error dynamics simplifies to 

        e Ae Bv                                                                                                                                   (7) 

which is a linear time-invariant control system with single input .v  

Thus, the original global chaos synchronization problem can be replaced by an equivalent problem of 
stabilizing the zero solution 0e  of the system (7) by a suitable choice of the sliding mode control. In the 
sliding mode control, we define the variable 

     1 1 2 2( ) n ns e Ce c e c e c e                                                                                                  (8) 

where  1 2 nC c c c  is a constant vector to be determined. 

In the sliding mode control, we constrain the motion of the system (7) to the sliding manifold defined by 

      | ( ) 0nS x s e  R  

which is required to be invariant under the flow of the error dynamics (7). 

When in sliding manifold ,S the system (7) satisfies the following conditions: 

         ( ) 0s e                                                                                                                                        (9) 

which is the defining equation for the manifold S and 

          ( ) 0s e                                                                                                                                     (10) 

which is the necessary condition for the state trajectory ( )e t  of (7) to stay on the sliding manifold .S  

Using (7) and (8), the equation (10) can be rewritten as 

         ( ) 0s e C Ae Bv                                                                                                            (11) 

Solving (11) for ,v we obtain the equivalent control law  

      1
eq ( ) ( )  ( )v t CB CA e t                                                                                                       (12) 

where C is chosen such that 0.CB   
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Substituting (12) into the error dynamics (7), we obtain the closed-loop dynamics as 

          1( )e I B CB C Ae                                                                                                             (13) 

The row vector C is selected such that the system matrix of the controlled dynamics 1( )I B CB C A   is 

Hurwitz, i.e. it has all eigenvalues with negative real parts. Then the controlled system (13) is globally 
asymptotically stable.  

To design the sliding mode controller for (7), we apply the constant plus proportional rate reaching law 

           sgn( )  s q s k s                                                                                                                   (14) 

where sgn( ) denotes the sign function and the gains 0,q   0k  are determined such that the sliding 
condition is satisfied and sliding motion will occur.  

From equations (11) and (14), we can obtain the control ( )v t as 

          1( ) ( ) ( ) sgn( )v t CB C kI A e q s                                                                                 (15) 

which yields 

        
 
 

1

1

( ) ( ) , if ( ) 0
( )

( ) ( ) , if ( ) 0

CB C kI A e q s e
v t

CB C kI A e q s e





   


   





                                                                    (16) 

Theorem 1. The master system (1) and the slave system (2) are globally and asymptotically synchronized for all 

initial conditions (0), (0) nx y R by the feedback control law 

        ( ) ( , ) ( )u t x y Bv t                                                                                                             (17) 

where ( )v t is defined by (15) and B is a column vector such that ( , )A B is controllable. Also, the sliding mode 

gains ,k q are positive. 

Proof.  First, we note that substituting (17) and (15) into the error dynamics (4), we obtain the closed-loop error 
dynamics as 

        1( ) ( ) sgn( )e Ae B CB C kI A e q s                                                                             (18) 

To prove that the error dynamics (18) is globally asymptotically stable, we consider the candidate Lyapunov 
function defined by the equation 

       21
( ) ( )

2
V e s e                                                                                                                            (19) 

which is a positive definite function on .nR  

Differentiating V along the trajectories of (18) or the equivalent dynamics (14), we get 

      2( ) ( ) ( ) sgn( )V e s e s e ks q s s                                                                                          (20) 

which is a negative definite function on .nR   

This calculation shows that V is a globally defined, positive definite, Lyapunov function for the error 

dynamics (18), which has a globally defined, negative definite time derivative .V   

Thus, by Lyapunov stability theory [22], it is immediate that the error dynamics (18) is globally 

asymptotically stable for all initial conditions (0) .ne R  

This means that for all initial conditions (0) ,ne R we have 

       lim ( ) 0
t

e t


  
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Hence, it follows that the master system (1) and the slave system (2) are globally and asymptotically 

synchronized for all initial conditions (0), (0) .nx y R  

This completes the proof.  

III. GLOBAL CHAOS SYNCHRONIZATION OF THE IDENTICAL PEHLIVAN CHAOTIC SYSTEMS 

A. Theoretical Results 

In this section, we apply the sliding mode control results derived in Section II for the global chaos 
synchronization of identical Pehlivan chaotic systems (Pehlivan and Uyaroglu, [21], 2010). 

Thus, the master system is described by the Pehlivan dynamics 

          

1 2 1

2 2 1 3

3 1 2

x x x

x ax x x

x b x x

 
 
  







                                                                                                                              (21) 

 where 1 2 3, ,x x x  are state variables and ,a b are positive, constant parameters of the system. 

The slave system is also described by the Pehlivan dynamics 

          

1 2 1 1

2 2 1 3 2

3 1 2 3

y y y u

y ay y y u

y b y y u

  
  
   







                                                                                                                (22) 

where 1 2 3, ,y y y are state variables and 1 2 3, ,u u u are the controllers to be designed. 

The Pehlivan systems (21) and (22) are chaotic when  

           0.5a   and  0.5.b   

Fig. 1 illustrates the chaotic portrait of the Pehlivan chaotic system (21). 

 
Figure 1.  Chaotic Portrait of the Pehlivan Chaotic System 

The chaos synchronization error is defined by 

       ,  ( 1, 2,3)i i ie y x i                                                                                                                  (23) 
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The error dynamics is easily obtained as 

         

1 2 1 1

2 2 1 3 1 3 2

3 1 2 1 2 3

e

e

e

e e u

ae y y x x u

y y x x u



  
  
  







                                                                                                     (24) 

We write the error dynamics (24) in the matrix notation as 

             ( , )e Ae x y u                                                                                                                   (25) 

where 

 

     

1 1 0

0 0 ,

0 0 0

A a

 
   
  

  1 3 1 3

1 2 1 2

0

( , )x y y y x x

y y x x


 
    
  

  and   

1

2

3

u

u u

u

 
   
  

.                                              (26) 

The sliding mode controller design is carried out as detailed in Section II. 

First, we set u as 

     ( , )u x y Bv                                                                                                                           (27) 

where B is chosen such that ( , )A B is controllable. 

We take B as 

        

1

1 .

1

B

 
   
  

                                                                                                                                        (28) 

In the chaotic case, the parameter values are  

         0.5a   and   0.5.b   

The sliding mode variable is selected as 

        1 2 31 6 5 6 5s Ce e e e e                                                                                           (29) 

which makes the sliding mode state equation asymptotically stable.  

We choose the sliding mode gains as 6k  and 0.1.q   

We note that a large value of k can cause chattering and an appropriate value of q is chosen to speed up the 
time taken to reach the sliding manifold as well as to reduce the system chattering. 

From Eq. (15), we can obtain ( )v t as 

          1 2 3( ) 2.5 20 15 0.05 sgn( )v t e e e s                                                                             (30) 

Thus, the required sliding mode controller is obtained as 
         ( , )u x y Bv                                                                                                                        (31) 

where ( , ),x y B and ( )v t are defined as in the equations (26), (28) and (30). 

By Theorem 1, we obtain the following result. 
Theorem 2. The identical Pehlivan chaotic systems (21) and (22) are globally and asymptotically synchronized 
for all initial conditions with the sliding mode controller u defined by (31).  

B. Numerical Results 

For the numerical simulations, the fourth-order Runge-Kutta method with time-step 610h  is used to solve 
the Liu-Chen four-scroll chaotic systems (21) and (22) with the sliding mode controller u given by (31) using 
MATLAB. 
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In the chaotic case, the parameter values are  

         0.5a   and   0.5.b   

The sliding mode gains are chosen as 6k  and 0.1.q   

 The initial values of the master system (21) are taken as 

         1 2 3(0) 10,  (0) 6,  (0) 8x x x    

and the initial values of the slave system (22) are taken as 

             1 2 3(0) 2,  (0) 9,  (0) 4.y y y    

Fig. 2 illustrates the complete synchronization of the identical Pehlivan chaotic systems (21) and (22). 

 
Figure 2.  Synchronization of Identical Pehlivan Chaotic Systems 

IV. CONCLUSIONS 

In this paper, we have deployed sliding mode control (SMC) to achieve global chaos synchronization for the 
identical Pehlivan chaotic systems (Pehlivan and Uyaroglu, 2010). Our synchronization results for the identical 
Pehlivan chaotic systems have been established using Lyapunov stability theory. Since the Lyapunov exponents 
are not required for these calculations, the sliding mode control method is very effective and convenient to 
achieve global chaos synchronization for the identical Pehlivan chaotic systems. Numerical simulations are also 
shown to illustrate the effectiveness of the synchronization results derived in this paper using sliding mode 
control for the identical Pehlivan chaotic systems. 
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