
An Index Based Skip Search Multiple 
Pattern Matching Algorithm 

 
Raju Bhukya,  

Assistant Professor, Department of CSE,  
National Institute of Technology, Warangal. 

Andhra Pradesh. India 506004 
 

Balram Parmer 

 Department of CSE,  
National Institute of Technology, Warangal. 

Andhra Pradesh. India 506004 

Anand Kulkarni 

Department of CSE,  
National Institute of Technology, Warangal. 

Andhra Pradesh. India 506004. 
 

 
Abstract- DNA Pattern matching, the problem of finding sub sequences within a long DNA sequence has 
many applications in computational biology. As the sequences can be long, matching can be an expensive 
operation, especially as approximate matching is allowed. Searching DNA related data is a common 
activity for molecular biologists. In this paper we explore the applicability of a new pattern matching 
technique called Index based Skip Search Multiple Pattern matching algorithm (ISMPM), for DNA 
sequences. Our approach avoids unnecessary comparisons in the DNA sequence due to this, the number 
of comparisons gradually decreases and comparison per character ratio of the proposed algorithm 
reduces accordingly when compared to other existing popular methods. Our experimental results show 
that there is considerable amount of performance improvement. The total no of comparisons are 
drastically reduced when the length of the pattern increases in our algorithm. 
 
   Keywords: DNA Sequence; Index; Skip Search; Pattern Matching. 

I.   INTRODUCTION 

     We concentrate mainly on the DNA sequence pattern matching using the technique Skip Search based on the 
Indexing. DNA is the basic blue print of the life and it can be viewed as a long sequence over the four alphabets A, 
C, G and T. The field of bioinformatics has many applications in the modern world which includes text editors, 
search engine, molecular medicine, industry, agriculture and Comparative biology. As the size of the data grows it 
becomes more difficult for users to retrieve necessary information from the sequences. Hence more efficient and 
robust methods are needed for fast pattern matching techniques. 

     Let P = {p1, p2, p3,...,pm} be a set of patterns which are strings of nucleotide sequence characters from a fixed 
alphabet set called ∑= {A, C, G, T}. Let T be a large text consists of characters in ∑ denoted as ∑*. The problem 
with us is  to find all the occurrences of pattern P in text T. It is important application widely used in data filtering 
to find selected patterns, in security applications, and also used for DNA searching. Many existing pattern 
matching algorithms are reviewed and classified in two categories. 
 

1. Exact string matching algorithms 
2. Approximate string matching algorithms. 
 

     Exact string matching algorithm is for finding one or all exact occurrences of a string in a sequence. The 
problem can be stated as: Given a pattern p of length m and a string /Text T of length n (m ≤  n). Find all the 
occurrences of p in T. The match is exactly one, which means that the exact word or pattern is found. Some exact 

Raju Bhukya et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1510



matching algorithms are Naïve Brute force algorithm, Boyer-Moore algorithm[1], Knuth-Morris-Pratt 
Algorithm[3]. Inexact /Approximate pattern matching is sometimes referred as approximate pattern matching or 
matches with k mismatches/ differences. This problem in general can be stated as: Given a  pattern P of length m 
and string/text T of length n (m ≤ n). Find all the occurrences of sub string X in T that are similar to P, allowing a 
limited number, say k different character in similar matches. The Edit/transformation operations are insertion, 
deletion and substitution. Inexact/Approximate string matching algorithms are classified into: Dynamic 
programming approach, Automata approach, Bit parallelism approach, Filtering and automation algorithms. 
Inexact sequence data arises in various fields and applications such as computational biology, signal processing 
and text processing. 

     The rest of the paper is organized as follows. We briefly reviewed the background and related work in the 
section II. In section III deal with proposed model i.e., ISMPM algorithm for DNA sequence. Results and 
discussion are presented in section IV and conclusion is provided in section .V.  

II.   BACKGROUND AND RELATED WORK 

     In this section we review some work related to DNA sequences. An alphabet set ∑ = {A, C, G, T} is the set 
of characters for DNA sequence which are used in this algorithm.  

The following notations are used in this paper: 
DNA sequence characters ∑= {A, C, G, T}. 
 denotes empty string. 

     |ܲ| denotes the length of the string P. 
S[n] denotes that a text which is a string of length n. 
P[m] denotes a pattern of length m. 
CPC-Character per comparison ratio. 
 

     String matching mainly deals with problem of finding all occurrences of a string in a given text. In most of 
the applications it is necessary for the user and the developer to be able to locate the occurrences of specific 
pattern in a sequence. In this section we discuss about these different types of string matching methods. Some of 
the exact string matching algorithms are available, such as Naïve string search, Brute-force algorithm, Boyer-
Moore algorithm [1], Knuth-Morris-Pratt algorithms [3], and Skip Search algorithms [2]. 
 
     In Brute-force algorithm the first character of the pattern P is compared with the first character of the string 
T. If it is match, then pattern P and string T are matched character by character until a mismatch is found or the 
end of the pattern P is detected .If mismatch is found, the pattern P is shifted one character to the right and the 
process continues. The complexity of this algorithm is O(mn). The Boyer-Moore algorithm [1] applies larger 
shift-increment for each mismatch detection. A main modification to the Naïve algorithm had is the matching of 
pattern P and string T is done from right to left i.e., after aligning P and string T the last character of P will 
matched to the first of T . If a mismatch is detected, say C in T is not in P then P is shifted right so that C is 
aligned with the right most occurrence of C in P. The worst case complexity is O(m+n) and the average case 
complexity is O(n/m). 

     The Knuth-Morris-Pratt algorithm [3]  is based on the finite state machine automation. The pattern P is pre 
processed to create a finite state machine M that accepts the transition .The finite state machine is usually 
represented as the transition table. The complexity of the algorithm for the average and the worst case 
performance is O(m+n). In approximate pattern matching method the oldest and most commonly used approach 
is dynamic programming. Ukkonen[7] proposed automation method for finding approximate patterns in strings. 
He proposed the idea using a DFA for solving the inexact matching problem. Though automata approach 
doesn’t offer time advantage over Boyer-Moore algorithm [1] for exact pattern matching.  The complexity of 
this algorithm in worst and average case is O(m+n).In this algorithm every row denotes number of errors and 
column represents matching a pattern prefix. Deterministic automata approach exhibits O(n) worst case time 
complexity. 

     In 1996 Kurtz[4] proposed another way to reduce the space requirements of almost O(mn). The idea was to 
build only the states and transitions which are actually reached in the processing of the text. The automation 
starts at just one state and transitions are built as they are needed. The transitions those were not necessary will 
not be build. Wu. S. Manber and Myer. E[8]  proposed the algorithm for approximate limited expression 
matching, and Wu. S. Manber.U proposed the algorithm for fast text searching which allows errors. The first bit-
parallel method is known as “shift-or” which searches a pattern in a text by parallelizing operation of non 
deterministic finite automation. This automation has m+1 states and can be simulated in its non deterministic 
form in O(mn) time. The filtering approach was started in 1990. This approach is based upon the fact that it may 
be much easier to tell that a text position doesn’t match. It is used to discard large areas of text   that cannot 

Raju Bhukya et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1511



contain a match. The advantage in this approach is the potential for algorithms that do not inspect all text 
characters. 

     In the MSMPMA [9] technique the algorithm scans the input file to find the all occurrences of the pattern 
based upon the skip technique. By using this index as the starting point of matching, it compare the file contents 
from the defined point with the pattern contents, and find the skip value depending upon the match numbers 
(ranges from 1 to m-1).In the IFBMPM[5] Index based forward backward multiple pattern matching technique 
the elements in the given patterns are matched one by one in the forward and backward  until a mismatch occurs 
or a complete  pattern matches. In IBKPMPM [6] algorithm we first choose the value of k (a fixed value), and 
divide both the string and pattern into number of substring of length k, each substring is called as a partition. If k 
value is 3 we call it as 3-partition else if it is 4 then it is 4-partition algorithm. We compare all the first 
characters of all the partitions, if all the characters are matching while we are searching then we go for the 
second character match and the process continues till the mismatch occurs or total pattern is matched with the 
sequence. If all the characters match then the pattern occurs in the sequence and prints the starting index of the 
pattern or if any character mismatches then we will stop searching and then go to the next index stored in the 
index table of the same row which corresponds to the first character of the pattern P 

III. AN INDEX BASED SKIP SEARCH MULTIPLE PATTERN MATCHING ALGORITHM (ISMPM) 

   The proposed work uses the indexes for the DNA sequence of character set ∑ to search a pattern in a string. 
Let S be a string of length n and the pattern P of length m. Let ∑* be the set of all possible strings with the 
alphabet set ∑. Then S, P ∑*, |S| = n and |P| = m. Generally |P| ≤ |S| i.e., m ≤ n. 
 
The proposed algorithm consists of two phases i.e., pre-processing and searching phase. In pre-processing phase 
we will collect the indexes of all four letters in different buckets with total number of times that letter occurred 
differently in both pattern and the string in different tables respectively. Next we will find out the letter with 
minimum Multiplicative Value which is calculated by  multiplying  count of  individual letter which occurred  
in pattern  and  the count of the respective letter occurred in string for  all the four letters {A,C,T,G}.  
 
 min_count = Minimum∑(A,C,T,G ) {  (Total no of occurrences in Pattern *(Total no occurrences in String) } 
 
The searching phase start with aligning the selected letter in string with the pattern and start comparing from the 
first character of the pattern with string till a match or a mismatch occurs. Keeping the letter index (i) fixed, we 
will compare the pattern with starting index p=i-j till length of the (i+m-j) where j is the position of occurrence 
of that fixed letter and m is the length of the pattern. The Next index of the fixed character is taken from the 
Index table of the string in such a way that the next index(i) should be greater than the summation of previous 
position index (i) and of the length of rest of the pattern (j) where j is the first index of that same character in the 
pattern. This part is known as Skip Part as there is no possibility to find out the patter in this part of the string 
which is already compared if any such letter occurs in this part then we will exempt that letter and move 
forward. Here we are reducing the total number of time the outer loop runs and hence  total number of 
comparisons are drastically reduced for the larger length Patterns. Our algorithm’s vital part is to reduce the 
total number of times the outer loop run i.e skipping letters in string as much as possible ,and in best case it is 
O(n/m).The pre-processing phase has time complexity O(n+m).The searching phase has time complexity 
O(nm).The total number of character comparisons are approximately  in the order of n/m. Our algorithm works 
well with larger size of pattern. 
 
A. ISMPM Algorithm 
 
Input: String S of n characters and a pattern P of m characters, where S, P ∑*. 
Output: The number of occurrence and the positions of P in S. 
Algorithm: 
N=length of the string, M=length of the pattern. 
S= String ,P=Pattern 
Struct bucket { 
                        int *a; //for storing the index of letters. 

        int count; //store total no  occurrences of the   
        } 

Str_buck[4], Ptr_buck[4] //for storing the indexes of the letters A,C,T and G  
Index   //index of the letter chosen with minimum count. 

1) Pre-Processing Phase  
//Store the index of the pattern 
 1.Loop for i=1 to i=N 
 Str_buck[A,C,T,G].a[i]=i ; 

Raju Bhukya et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1512



 Str_buck[A…T].cout+=1; 
//Store the index of the pattern 
  2.Loop for i=1 to i=M 
         Ptr_buck[A,C,T,G].a[i]=i ; 
 Ptr_buck[A…T].cout+=1; 
3. Find  Index for which  
((Str_buck[A..T].count)*(Str_buck[A…T].count) is minimum; 
Assign , 
mini_scount=Str_buck[Index].count  mini_pcount=Ptr_buck[Index].count 
 

2) Searching Phase 
        LOOP1 i=1 to i=mini_scount 
                 q=S[Index].a[i] 
                LOOP2  j=1 to j=mini_pcount 
IF (q>=Previous Pattern Index + Position of jth Char in Pattern) 

t=Str_buck[index].a[index]-Ptr_buck[index].a[index]; 
 //t store the starting position from where it starts comparison   in the string. 
                             LOOP3 k=1 to k=M 
                            Compare (S[t++],P[k]) until a mismatch    
                           occurs or Match Occurs. 

 PRINT “Starting Index of the string for the Matched Pattern”. 
            END LOOP3 
            END LOOP3 
   END LOOP1 
 
The index based Skip Search multiple pattern matching algorithm uses a table (2D vector) called index 

table. The basic idea here is to store all the indexes of each character in its corresponding row in the 2D vector. 
A new technique called ASCII value based indexing technique, which is used to reduce the pre- processing 
time and number of comparisons. The subscript [(S[i]-64)%5] always returns a subscript value in the range 
0,1,2 and 3 which is needed for subscripting 2D array of size [4][n] . The subscript values 0,1,2,3 represent 
the characters A, C, G and T respectively. So for each character in the string and pattern of the function ((S[i]-
64)%5) and ((P[i]-64)%5) directly references to its corresponding row in the Index Table respectively. The 
vector char Index stores the counter value of each occurrence of each character with reference to [(S[i]-
64)%5].  
 

TABLE I .ARRAY SUBSCRIPT VALUES OF DNA CHARACTERS.  

S.No DNA ASCII Value ASCII Value-64 (ASCIIValue- 64)%5 Array Subscript 

1 A 65 1 1   1 

2 C 67 3 3         3 

3 G 71 7 2   2 

4 T 84 20 0   0 

 
B.  Trivial Cases in Comparisons 
 
If  the Index Table of String is either one of the character having count 0 and  that same character has non-zero 
value in the pattern index table then pattern can’t be found in the String. Other traditional cases are as follows  
Case  i: If S = φ i.e., |S| = 0 and P = φ i.e., |P| = 0 then the number of occurrences of P in S is 0.  
Case ii: If S = φ i.e. |S| = 0 and for any |P| ≥ 0 then the number of occurrences of P in S is 0. 
Case iii: If S ≠ φ i.e., |S| ≠ 0 and for any |P| = 0 then the number of occurrences of P in S is 0.  
Case iv: If S ≠ φ i.e., |S| ≠ 0, P ≠ φ i.e., |P| ≠ 0 and |S| ≤ |P| then the number of occurrences of P in S is 0 
 
C. This Section describes examples of the proposed approach (ISMPM) for the DNA sequences. 
 
 The following sequence and pattern has been taken for example. We have string S and pattern P as shown 
below.  
S= TCAAGGTCACTGACTATCACTACTGACT 

Raju Bhukya et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1513



P= ACTGAC 
 
1). Pre-processing Phase  
 
The following index table stores all the indexes in pattern string of each character A,C,G and T in the 
corresponding row. The 0th row stores the indexes of occurrences  of the charter A, 1st row stores the indexes of 
occurrences of character C, 2nd row stores the indexes of the occurrences of  G, 3rd stores the indexes of 
occurrences of T. 
 

TABLE. II. INDEXES OF A,C,G  AND T IN PATTERN 

Character Character Index Count 

A 0 0 4 2 

C 1 1 5 2

G 2 3  1 

T 3 2  1 
 
The following index table stores all the indexes in input string of each character A,C,G and T  in the 
corresponding row. As we scan the input sequence and corresponding characters are placed in the below shown 
index table in an increasing order as they occur. Till  this it is the pre-processing phase and once the characters 
in the DNA sequence is completed then searching phase begins.  
 

TABLE III INDEX TABLE FOR THE A, C, G, T CHARACTER FOR STRING 

Character Character Index Count 

A0 2 3 8 12 15 18 21 25  8 

C1 1 7 9 13 17 19 22 26   8 

G2 4 5 11 24      4 

T3 0 6 10 14 16 20 23 27  8 

 
From the above table we have will select the letter G as it has the minimum Multiplicative value calculated from 
the sequence index table and from  the pattern table i.e., 4*1=4 as we will go for searching phase with letter G 
only. If we get the two count value in the sequence or in pattern are same then we will choose the letter having 
count with less value from the sequence table. 
 
2). Searching Phase 
  
As G is having the minimum multiplicative value calculated above so first align the letter of sequence G with 
pattern G.  
S= TCAAGGTCACTGACTATCACTACTGACT 
  P= ACTGAC 
Then start matching the first character of the of the pattern character with the sequence character. So it 
mismatches with the first character itself, then we go for the next index of G  
S= TCAAGGTCACTGACTATCACTACTGACT 
      P=ACTGAC 
The next index of G from string table is  5 but this is lesser than the (4+3)=8, so it will not consider it and skip 
this position of G since there is no possibility of getting pattern for this position of G. This step is known and 
Skip Part of our algorithm as now it has stopped the algorithm in the beginning to go through the comparison. 
Now we will go for the next Index of G i.e., 11. 
 S= TCAAGGTCACTGACTATCACTACTGACT 
                     P=ACTGAC                                                        
Here the first character of matched string matches the first character of pattern. So the subsequent characters are 
also compared sequentially.  
S= TCAAGGTCACTGACTATCACTACTGACT 
                    P=ACTGAC 
After comparing the first character it will compare the next character. 

Raju Bhukya et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1514



 
S= TCAAGGTCACTGACTATCACTACTGACT 

     P= ACTGAC 
G is already compared so it will go for the next character A. 
S= TCAAGGTCACTGACTATCACTACTGACT 

     P= ACTGAC 
Next it will compare last character C. 
S= TCAAGGTCACTGACTATCACTACTGACT 

      P=ACTGAC 
So the pattern matches with the string and index of the starting character of the matched string is returned. We 
now go for the next index by using the index table containing G. 
S= TCAAGGTCACTGACTATCACTACTGACT 

         P=ACTGAC 
As first character matches we will compare now the next character C.  
S= TCAAGGTCACTGACTATCACTACTGACT 

         P=ACTGAC 
Here C also matches with the sequence character we will now compare the next character T. 
S= TCAAGGTCACTGACTATCACTACTGAC 

        P=ACTGAC 
After the T character is matched successfully we will now compare the next character A. 
S= TCAAGGTCACTGACTATCACTACTGACT 

         P=ACTGAC 
A also matches after comparing sequentially we will now compare C the last character in the pattern.  
S= TCAAGGTCACTGACTATCACTACTGACT 

         P=ACTGAC 
So the pattern matches with the string and index of the starting character of the matched string is returned. 
 
D. The below shown sequence dataset has been taken from the testing of ISMPM algorithm. The DNA biological 
sequence S∑*of size n=1024 and pattern P ∑*. 
 
AGAACGCAGAGACAAGGTTCTCATTGTGTCTCGCAATAGTGTTACCAACTCGGGTGCCTATTGGCCTCCAAAAAAGGC
TGTTCAACGCTCCAAGCTCGTGACCTCGTCACTACGACGGCGAGTAAGAACGCCGAGAAGGTAAGGGAACTAATGAC
GCGTGGTGAATCCTATGGGTTAGGATCGTGTCTACCCCAAATTCTTAATAAAAAACCTAGGACCCCCTTCGACCTAGAC
TATCGTATTATGGACAAGCTTTAACTGTCGTACTGTGGAGGCTTCAAAACGGAGGGACCAAAAAATTTGCTTCTAGCGT
CAATGAAAAGAAGTCGGGTGTATGCCCCAATTCCTTGCTGCCCGGACGGCCAGGCTTATGTACAATCCACGCGGTAC
TACATCTTGTCTCTTATGTAGGGTTCAGTTCTTCGCGCAATCATAGCGGTACTTCATAATGGGACACAACGAATCGCGG
CCGGATATCACATCTGCTCCTGTGATGGAATTGCTGAATGCGCAGGTGTGAATACTGCGGCTCCATTCGTTTTGCCGT
GTTGATCGGGAATGCACCTCGGGGACTGTTCGATACGACCTGGGATTTGGCTATACTCCATTCCTCGCGAGTTTTCGA
TTGCTCATTAGGCTTTGCGGTAAGTAAGTTCTGGCCACCCACTTCGAGAAGTGAATGGCTGGCTCCTGAGCGCGTCCT
CCGTACAATGAAGACCGGTCTCGCGCTAAATTTCCCCCAGCTTGTACAATAGTCCAGTTTATTATCAAAGATGCGACAA
ATAAATTGATCAGCATAATCGAAGATTGCGGAGCATAAGTTTGGAAAACTGGGAGGTTGCCAGAAAACTCCGCGCCTA
CTTTCGTCAGGATGATTAAGAGTATCGAGGCCCCGCCGTCAATACCGATGTTCTTCGAGCGAATAAGTACTGCTATTTT
GCAGACCCTTTGCCAGGCCTTGTCTAAAGGTATGTTATTAATATTGACAATACATGCGTATGGCCTTTTCCGGTTAACT
CCCTG. 
 

The Index Table (index Table [4][1024]) for sequence S is very large. For different patterns P’s the number 
of occurrences and the number of comparisons is shown in the Table. IV. The proposed ISMPM technique is 
one simple solution which gives better performance and less complexity.  

 
E. System Specification for Algorithm Implementation Detail 
 
We have implemented the algorithm in the C ++ language and implemented and used the Processor with RAM 
2GB and 2GHZ speed with 160GB hard disk. We have taken the sequence of the standard input characters of 
1024 DNA data set for testing which are taken as standard in the other programmers. We have obtained the 
number of comparisons for different input sized texts and calculated the CPC ratio. We have also performed the 
comparative study with respect to the existing methods of pattern matching which includes the Brute-Force, 
MSMPMA, Naïve-string, tri-match, IKPMPM and the other methods. The running complexity of the algorithm 
in terms of time is almost quadratic but includes the scanning of the whole input .The results obtained are purely 
experimental basis and can be considered for the further. 
 
 

Raju Bhukya et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1515



 
 
IV.    RESULTS AND DISCUSSION 
 
      After implementation of the Indexed Based Skip Search Algorithm for the 1024 character and finding the no 
of comparisons and CPC ratio it has been concluded that the number of comparisons decreases drastically as the 
length of the pattern increases. Our algorithm give very good performance in terms of the best case but its 
preprocessing phase time is more of the length of the string is much more than the pattern length. We have 
drawn the a comparative analysis with respect to the various existing algorithm among which the Best case 
algorithm is K–Partition algorithm and Our ISMPM produces almost 50% less no of comparisons then the K-
Partition algorithm .The number of comparisons are reduces as the length of the pattern decreases as we have 
collected the data for various existing algorithm and are shown below in the Table IV.     
 

TABLE IV.  EXPERIMENTAL RESULTS OF ISMPM ALGORITHM 

  
No of 

Occur. 

 

S.No. Pattern 
No of 

Character  No of Comparison  
 

   
 

1 A 1 259 259 
 

2 AG 2 53 237 
 

3 CAT 3 11 542 
 

4 AACG 4 5 200 
 

5 AAGAA 5 2 232 
 

6 AAAAAAGG 8 1 148 
 

7 TTCTTAATAAAA 12 1 260 
 

8 GGCTGTTCAACGCTCC 16 1 90 
 

 

 
      Table.V shows experimental results of different algorithms like MSMPMA, Brute-Force, Trie-Match, 
IKPMPM and naïve-string with the ISMPM algorithm. The performance of ISMPM is observed with two 
parameters namely number of comparisons and comparisons per character ratio (CPC).The results show that 
ISMPM provides best performance and gradually reduces over all the other methods. The number of 
occurrences is same for all the algorithms but the comparison and comparisons per character ratio is different 
for different algorithms. In ISMPM algorithm the CPC ratio is less than 0.5 where as all the other algorithms  
is greater than 1.  
 

TABLE.V.   COMPARISON OF DIFFERENT ALGORITHMS 

Pattern 

ISMPM IBKMPM MSMPMA Brute-Force Tri-Match Naïve String

No.of 
Com 

CPC 
No.of 
Com 

CPC 
No.of 
Com 

CPC 
No.of 
Com 

CPC 
No.of 
Com 

CPC 
No.of 
Com 

CPC 

A 259 0.2 259 0.2 1024 1.0 1024 1.0 1025 1.0 1024 1.0 

AG 237 0.2 518 0.5 1230 1.2 1282 1.2 1284 1.2 1281 1.2 

CAT 542 0.5 542 0.5 1298 1.2 1318 1.2 1321 1.2 1310 1.2 

AACG 200 0.1 614 0.6 1359 1.3 1376 1.3 1380 1.3 1376 1.3 

AAGAA 232 0.2 607 0.5 1375 1.3 1388 1.3 1393 1.3 1387 1.3 

AAAAAAGG 148 0.1 623 0.6 1394 1.3 1409 1.3 1417 1.3 1407 1.3 

TTCTTAATAAAA 260 0.2 634 0.6 1390 1.3 1390 1.3 1402 1.3 1399 1.3 

GGCTGTTCAACGCTCC 90 0.0 580 0.5 1349 1.3 1349 1.3 1365 1.3 1349 1.3 

 
Fig.1 shows comparisons made by different pattern matching algorithms. It is clear that the proposed (ISMPM) 
algorithm outperforms when compared with all other algorithms. The upper lines are being drawn for the Brute 
Force, Naïve Algorithm and Tri-Match algorithm. Our ISMPM algorithm represented in the graph at the lowest 
point where it is compared with the Best algorithm till now that is K-Partition algorithm. Comparison of Different 

Raju Bhukya et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1516



Algorithm with ISMPM as shown below. 
 

 
 
 

Figure.1. Comparison of different algorithms with ISMPM 
 

 It has been observed that the proposed algorithm has been very much improved when compared with  the 
existing techniques. The total number of comparisons reduces as the total number of the character in the pattern 
increases. It gives the CPC ratio less than 0.5 for all the patters. It gives better performance related to the DNA 
sequence which has the lesser number of the input string.  

 
V.  CONCLUSION 

 
Our ISMPM algorithm reduces the total number of comparison as well as the CPC ratio when compared with 
the some of the best known popular algorithm till now and its best case arises when the length of the pattern 
increases. Comparison of proposed algorithm is made with existing algorithms on the basis of the number of 
comparisons and the attempts made by different pattern sizes of different algorithms to complete the task with 
our randomly chosen patterns. Our algorithm outperform in case of number of comparisons related to the DNA 
sequences. The proposed model is shown to be very efficient and fast. Future work may include the work on 
reducing the pre-processing cost of the string which is costly for our proposed algorithm. 

 
REFERENCES 

 
[1] Boyer R. S., and J. S. Moore, ‘‘A fast string searching algorithm, ‘Communications of the ACM 20 (October 1977), pp. 762 772. 
[2] Charras C., Lecroqt., Pehoushek. J.D.,1998, A very fast string matching algorithm for small alphabets and long patterns, in 

Proceedings of the 9th Annual Symposium on Combinatorial Pattern Matching , M. Farach-Colton ed., Piscataway, New Jersey, 
Lecture Notes in Computer Science 1448, pp 55-64, Springer-Verlag, Berlin. 

[3] Knuth D., Morris.J Pratt.V Fast pattern matching in strings, SIAM journal on computing. 
[4] Kurtz. S, Approximate string searching under weighted edit distance.In proceedings of the 3rd south American workshop on string 

processing. (WSP 96). Carleton Univ Press, 1996 156-170. 
[5] Raju Bhukya, DVLN Somayajulu,‘‘An Index Based Forward    backward Multiple Pattern Matching Algorithm, ‘World Academy of 

Science and Technology. (June 2010), pp. 347-355. 
[6] Raju Bhukya and DVLN Somyajulu ,”An indexed based K-Patition Multiple Pattern Matching Algorithm” Proc. of Int. Conf. on 

Advances in Computer Science 2010(ACEEE). 
[7] Ukkonen,E., Finding approximate patterns in strings J.Algor. 6, 1985, 132-137. 
[8] WU.S.,Manber U., and Myers,E .1996, A sub-quadratic algorithm for approximate limited expression matching. Algorithmica 15,1,50-

67, Computer Science Dept, University of Arizona,1992.  
[9] Ziad A.A Alqadi, Musbah Aqel & Ibrahiem M.M.EI Emary, Multiple Skip Multiple Pattern Matching algorithms. IAENG 

International Journal of Computer Science 34:2. 
 

Authors Profile 
Raju Bhukya has received his B.Tech in Computer Science and Engineering from 
Nagarjuna University in the year 2003 and M.Tech degree in Computer Science and 
Engineering from Andhra University in the year 2005. He is currently working as an 
Assistant Professor in the Department of Computer Science and Engineering in National 
Institute of Technology, Warangal, Andhra Pradesh, India. He is currently working in the 
areas of Bio-Informatics and Data Mining.  

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 8 12 16

ISMPM MSMPMA 
TRI-MATCH BRUTEFORCE
NAÏVE STRING IBKPMPM

Raju Bhukya et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1517




