
Exploring the self reconfiguration of FPGA:
design flow, architecture and performance

Abstract - Run-time partial reconfiguration of programmable hardware devices can be applied to enhance many
applications in high-end embedded systems, particularly those that employ recent platform FPGAs. Partial
Reconfigurable FPGAs allow tasks to be placed and removed dynamically at runtime. These reconfigurable systems
have a 2-layer hardware and software architecture that permits a variety of different interfaces. Further, these
systems enable self-reconfiguration under software control through a reconfiguration hardware interface called
Internal Configuration Access Port (ICAP). In this paper, experiments are conducted in order to evaluate the design
complexity and reconfiguration latency of self reconfiguration. The results show that the main goal of self
reconfiguration is to shorten the reconfiguration time while not degrading the performance of the final design.

Key words- self reconfiguration, ICAP, JTAG, FPGA, design flow

I. INTRODUCTION

The partial reconfiguration meets the requirements needed by complex design. Indeed, the dynamic partial
reconfiguration makes hardware more and more flexible and allows user to modify internal structure of FPGA
on the fly, without having to turn off. The partial reconfiguration allows the configuration of parts of FPGA
while other parts are still running. Today’s, a new FPGA chips with partial reconfiguration capability such as
Virtex II, Virtex II Pro, and Virtex-4 families are available. These new devices include two subsets of resources;
the system resources and the operational resources [1]. The system resources may be composed by a processor
(PowerPC) and by other internal peripherals (SRAM modules and RS232 interface, etc). However the
operational resources are zones in the device reserved to the user; it may be used to build reconfigurable
modules. During the execution of application, the content of reconfigurable module may be loaded by many
functions, which are configured one after one. The most important, for the new FPGA families, is their ability to
be self-reconfigured under software control through a reconfiguration hardware interface called Internal
Configuration Access Port (ICAP) [2] [3]. The system utilizes the On-Chip PowerPC core and FPGA logic to
automatically reconfigure bit streams from an external memory, like compact flash. The main benefit to be
gained from using self reconfiguration is the time needed to configure the design. The benefit of reducing
reconfiguration time is particularly apparent when making small changes to large designs but reduced benefit can
still accrue with larger changes on smaller designs. As a result, if the reconfiguration time takes much time then
designer should use self reconfiguration. In fact, result shows that the self reconfiguration may reduce the
reconfiguration time up to 90%. However, the self reconfiguration is fairly preferable if significant control over
the placement of reconfigurable modules in the reconfigurable fabric of the FPGA chip is desired and/or more
flexible area management is required. In generally, the self reconfiguration consumes upper logic resources and
device pins than other configuration port (JTAG). In this paper, a self reconfiguration design flow has been
proposed. Next, in order to demonstrate the performance of self reconfiguration, a comparison of FPGA partial
configuration with two different interfaces: JTAG and ICAP, has been introduced.

II. RELATED WORKS

In the literature there have been some efforts invested in building and loading modules on a partial
reconfigurable device. Xilinx initially proposed two types of dynamic reconfiguration [4]. The modular method
divides the FPGA in modular regions (static and dynamic) for required functions with the limitation that the
modules must occupy the full height of the device and thus the connectivity and topology were limited to 1D.
Resources placed inside the modules could not be shared by other modules nor was any routing permitted
through the module. Communication between modules was carried out by bus macros placed at the edge of the
modules. The second approach, the difference based method is used for minute manual changes to only the
design and is not suitable for large applications. In [5][6] the objective of authors consists in placing modules in

Mohamed Nidhal Krifa
Laboratory of electronics and

microelectronics
Faculty of Science of Monastir,

Tunisia
kmnidhal@yahoo.fr

Bouraoui Ouni
Laboratory of electronics and

microelectronics
Faculty of Science of Monastir,

Tunisia
ouni_bouraoui@yahoo.fr

Abdellatif Mtibaa
Laboratory of electronics and

microelectronics
Faculty of Science of Monastir,

Tunisia
abdellatif.mtibaa@enim.rnu.tn

Mohamed Nidhal Krifa et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1713

optimal places in side the FPGA. The methods proposed by authors were developed under two constraints;
impossible placement zone relative to a module and impossible placement zone relative to boards. The
impossible placement zone of M relative to M', is the zone where M cannot be placed without overlapping with
an already placed module M'. The impossible placement zone relative to board is the zone where M cannot be
placed without overlapping with the device boards. In [7] authors presented a design methodology for dynamic
relocation of hybrid tasks in side the FPGA. The method starts from a unified task representation, and goes to the
final virtual implementation of such hybrid tasks. A framework was also proposed to help user in designing a
hybrid task, which also generates automatically the underlying infrastructure that is in charge of performing the
dynamic relocation of a hybrid task. A design flow was presented in [8] [9] [10], it based on a scheduler and a
placer. The scheduler is used to calculate the optimal time when each module will be submitted to placer. Then,
the placer finds the appropriate place on the device where a received module should be placed. In spite of their
invested efforts in this field, the authors did not show the practical concept that allows mapping a given module
in side the reconfigurable device. Indeed, they just calculated the optimal place of each module inside the device.
In [11] the author proposed a methodology allowing partial reconfiguration of the Xilinx spartan II. But, in his
work the author did not consider the ICAP to load the FPGA. In [12] Raghavan and Sutton’s tool called JPG was
developed for Xilinx Virtex devices. The JPG tool is based on the Xilinx Java-based JBits (JBITS) to instantiate
a component, generate its corresponding bitstream, and download it to a reconfigurable device such as a Virtex
FPGA. In [13] authors describe how integrating microprocessor system into a reconfigurable flow. They propose
a slot based architecture with the novelty that they can give a high level specification of the setup and all the
communication macros are automatically placed. Each module connects to the On-chip Peripheral Pus (OPB) via
the communication macros. The tool flow generates the entire bitstream in EDK and then uses JBITS to cut out
the partial bitstreams. JBits is a tool provided by Xilinx that uses Java classes to represent the bitstream and has
functions to aid modifying the bitstream at runtime. It requires a Java Virtual Machine to run, which is generally
too heavy for an embedded platform, and hence this technique has been restricted to FPGA boards connected to
PCs. A good overview of the tools and techniques needed to meet for partial reconfiguration of Xilinx Virtex II,
virtex II pro and Virtex-4 was presented in [3]. The author presented a design methodology that uses pre-routed
IP cores for communication between static and dynamic modules. Indeed, Authors replaced the hard-wired
tristate buffers (TBUFs) with pre-routed IP, bus macros, to implement the communication ports to interface
static and dynamic regions of a design. In this approach, to test their methods, authors used iMPACT (the Xilinx
tool for downloading bitstreams to program devices) to download partial bitstream via JTAG interface.

III. MODELLING

In this paper, we adopted the model presented in [5][6] for module and reconfigurable architecture, figure 1. The
module M has been defined by four parameters M [(XM, YM), W, H]. Where; XM and YM are the coordinates of
the origin of M, W (width) is number of columns consumed by M and H (height) is number of lines consumed
by M. The FPGA device has been modelled by a matrix Q (Ln Cn), where Ln represents the number of lines and
Cn represents the number of columns.

H

W

(XM , YM)

Figure 1: Models of device and module

IV. SELF RECONFIGURABLE DESIGN FLOW

A number of companies offering FPGA design tools provide a self reconfiguration design flow. The synthesis
tools available to the designer have improved vastly both in speed and in the quality of results. The following
paragraph provides a detailed description of self reconfiguration design flow. As shown in figure 2, the design
flow includes four mainly steps:

- System resources phase
- FPGA area management phase

Mohamed Nidhal Krifa et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1714

- Operational resources phase
- Assembly phase

A. System resources phase

This step aims to build and to map the netlist of the system resources, such as power PC, UART, OPB bus and
BLB bus, ICAP interface, etc in side the FPGA device. The system resource acts as static part of the design.
Xilinx Embedded Tool EDK may be used to build the system resource efficiently. The system resource uses a set
of compiler tools to handle high-level languages such as C, C++, or assembly language, and produce reliable
code for their embedded target. In this context user should develop a software code, executed by the PowerPC,
which aims to load automatically the bitstream files of dynamic functions from the compact flash to appropriate
modules through the ICAP.

Application

T2 T4

T5

T1

T3

LIBRARY ieee;
Use
ieee.std_logic_1164.all;
Entity…

d

HDL file of fonction

HDL file of
toplevel design

LIBRARY ieee;
Use
ieee.std_logic_1164.all;
Entity…
End
Architecture ….

Software code

#include <stdio.h>
#include <string.h>

#include

Power
PC

Block
RAM

PLB/OPB
Bridge

P
L

B

ICAP

ICAP
Controller

O
L

B

UART

Static Module

Building System
Ressource with EDK

Static of System
Ressource

Looking for
free space with
FPGA Editor

Building
reconfigurable
modules in free
space with Plan

Assembly phase

Building netlist
Mapping

Place and route
Bitstream generation

Compact
Flash

Bitfiles of
Other fonctions

with system

MR 2 MR 2 Static part

Reconfigurable
Modules

System Ressource

Synthesis of
System

Ressource

Logic
Synthesis
with xst

Bitstream

Command data
FPGA

Bitfiles of One
fonction

UCF files

Ngc files

Figure 2: Self reconfiguration design flow

B. Looking for free space

In this step, user looks for free space inside the FPGA after implementing the system resource in order to build
reconfigurable modules. The figure 3 shows an example of system resources netlist and the places where
reconfigurable modules may be built.

Netlist of system
resource placed and

routed in side the

Free space may be
used to build
reconfigurable
modules

Figure 3: Free space in side the device

Mohamed Nidhal Krifa et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1715

C. Operational resources phase

This step aims to build reconfigurable modules inside the free space, and then it aims to map each dynamic
functions of the target application to its appropriate reconfigurable module. It composed by the following steps.

1) HDL description:

The reconfigurable modules should be described with HDL as components in side a macro box; the later is
called top level design. In addition the communication means, macro bus, signals, between modules each other,
between modules and the environment should be described in this step. Further, in this step all functions of the
application should be also described.

2) HDL Synthesis:

The synthesis approach allows the generation of optimized architecture from a HDL files described in the first
step. User can use the xilinx XST tool to achieve this synthesis. After this step an ngc file is automatically
created by xilinx XST tool.

3) Building reconfigurable modules:

The goal of the budgeting phase is to determine the size and location of the reconfigurable module and to lock
down the placement of the bus macros. The budgeting phase can be done manually. The process, however, is
laborious and instead many of the steps have been automated with a tool called PlanAhead. Indeed, from the ngc
file, created by the pervious step, the planAhead tool allows building modules any where in side the device.
After this step a user constraints file, UCF file, is automatically generated. The later is very useful for place and
route tools. The figure 4 shows two reconfigurable modules Mr1 and Mr2 in the free space.

Netlist of system
resource placed and

routed in side the
device

Free space may be
used to build
reconfigurable
modules

Module Mr1 and
module Mr2 build
inside the device

Figure 4: Reconfigurable module inside FPGA device

4) Building communication means:

After buliding modules in side the device, now user should achieve communication means between them. Bus
Macros may be used to maintain correct connections between the modules by spanning the boundaries of these
rectangular regions. Of course, the location of a macro buses should be closed to the modules location. Further,
some modules may communicate with the environment by using the device pins. So, user should use the data
sheet of the target architecture to find appropriate pins.

5) Building netlist, mapping, place and route of functions

The ngdbuild tool uses the ngc file and the ucf file, generated from pervious steps, to generate a netlist file for
each function and then to map it to each appropriate reconfigurable module. The figure 5 shows a successful
mapping as well as a successful place and route of dynamic function in side the reconfigurable modules (Mr1) of
figure 4. The red zone in the picture represents the macro bus and the green zone represents the signals.

Mohamed Nidhal Krifa et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1716

Figure 5: Place and route

6) Bit stream generation

The BitGen tool takes the file of each function completely placed and rooted and produces a series of bits needed
to configure the FPGA. The most important, that this file carries the necessary and sufficient information that
allows each function to be loaded in its appropriate zone (module) inside the FPGA.

D. Assembly phase

The last phase of the flow is the assembly of the static and reconfigurable parts. The final bitstreams are
generated as full bitstreams of the system resource and one reconfigurable module. After loading the full
bitstreams it is now possible to reconfigure part of the device with a partial bitstream by the Internal
Configuration Access Port (ICAP).

V. EXPERIMENT

Hardware architecture, XUP Virtex-II, on which the design flow is to be mapped, is presented in figure 6. The
XUP Virtex-II Pro FPGA development system can be used at any virtually level of the engineering curricula,
from introductory courses through advanced research projects.

Figure 6: Target architecture

Mohamed Nidhal Krifa et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1717

We develop the design flow steps on audio treatment application composed of 3 various filters, band pass, high
pass and low pass, shown in figure 7. Let us consider, Fr1 be the low pass filter, Fr2 be the band pass filter and
Fr3 be the high pass filter. Let us consider two reconfigurable modules (Mr1 and Mr2) built inside the FPGA
device. Let us consider {Fr1, Fr2, Fr3} {Mr1 or Mr2}, signify that bitstream files of {Fr1, Fr2, Fr3} may be
loaded, one after the one, from the compact flash to the reconfigurable modules Mr1 or Mr2 through the ICAP.
The choice of the module reconfigurable {Mr1 or Mr2} as well as the function to be loaded is achieved from the
keyboard. We click on “1” to load the low pass filter, “2” to load the band pass filter, “3” to load the high pass
filter, “L” to choose Mr1 and “R” to choose Mr2. For example, to load the band pass filter inside the
reconfigurable module Mr1 we should click on “2” then he clicks on “L”.

Reconfigurable
Module

Mr 1

Power
PC

Block
RAM

PLB/OPB
Bridge

P
L

B

ICAP

ICAP
Controller

O
L

B

UART

Static Module
FPGA : Virtex II

PRO

Communication by
HyperTerminal: RS 232

Bitstreams for
configuration

BM

BM

BM

BM

BM

Reconfigurable
Module

Mr 2

BM

BM

BM

BM

BM

Audio Right OutputAudio LeftOutput

Audio Input

Figure 7: Target application

We started our experience by loading the device by bitstream files of the system resource and the low pass filter.
Next, the loading of functions and the choice of module on witch a selected function will be mapped is achieved
through the keyboard. For example, when clicking on “2” then on “R” the bitstream file of the band pass filter is
automatically loaded, from the compact flash to reconfigurable module Mr2. by the same way; we can load the
bitstream file of other function on reconfigurable modules (Mr1 or Mr2). During the reconfiguration of the
bitstream of filters, the system resources part is still running. Here, we meet the partial reconfiguration
definition; indeed the partial reconfiguration is the process of configuring a portion of a FPGA while the other
part is still running. In table 1, experience shows quantitatively comparison the reconfiguration times of two
reconfiguration interfaces: ICAP and JTAG. The results show that the ICAP interface is highly suitable when
reconfiguration latency needs to be minimized. The whole latency needed to reconfigure our application through
the JTAG port is 37, 46 ms however only 0,248 ms are needed to meet the same aim with the ICAP interface.
So, experiment shows that the reconfiguration speed of the ICAP interface is almost 152 times faster than the
speed of the JTAG interface.

This result shows the magnitude of benefit possible using self reconfiguration. Today’s large and complex
designs are now commonly implemented in FPGAs, however designer suffers principally from the time needed
to reconfigure, which is still relatively high, in same case it consumes over than 70% of the whole design
latency. A high reconfiguration time may lead to not practical design mainly when designer focuses on the
overall latency minimization of the application. This problem may be easily faced when using self configuration;
in fact, there is always much gain in reconfiguration latency versus JTAG interface [1].

Mohamed Nidhal Krifa et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1718

TABLE 1: DESIGN RESULTS

Partial reconfiguration through ICAP

 First configuration Second configuration Third configuration
Functions to be

loaded
System resources
and low pass filter

Only band pass filter Only high pass filter

Reconfiguration
time (ms)

0.17 0.039 0.039

Whole
Reconfiguration

time (ms)

0,248

Partial reconfiguration through JTAG
 First configuration Second configuration Third configuration

Functions to be
loaded

System resources
and low pass filter

Only band pass filter Only high pass filter

Reconfiguration
time (ms)

26 5.73 5.73

Whole
Reconfiguration

time (ms)

37,46

Gain in latency (ms) 25,83 5,69 5,69 37,212

The table 2 shows that system resources consume 13 % of the whole FPGA area. Also, this table shows the area
occupation of the reconfigurable modules Mr1 and Mr2, each one consumes 12, 5% of whole FPGA area. As a
result we used only 38 % of the available area inside the FPGA to build the system resources and the
reconfigurable modules. Further, we calculated the used area (%) of each dynamic function. For example the low
pass filter consumes 90% of the available area inside reconfigurable module, the band pass filter consumes 86%
and the high pass filter consumes 91%. We have good values; in fact the area occupation of function should be
closed to the area of reconfigurable module where it will be mapped. To meet this aim, user should calculate the
area occupation of each dynamic function, and then he can build the reconfigurable modules correctly.

TABLE 2: DESIGN RESULTS

System resource

Reconfigurable

Module Mr1

Reconfigurable

Module Mr2

Dynamic function
Low pass

filter
Fr1

Band pass
filter
Fr2

High pass
filter
Fr3

Area (Slice)

1814

1700

1700

1544

1472

1547
Used area

%

13

12.5

12.5

90

86

91

Average
used area %

38

89

Generally, the self configuration suffers from the drawback that it fairly considers the geometrical properties of
the tasks to be mapped into the FPGA. This leads to a non efficient use of the regularity structure of the FPGAs
and resources, which allows fairly flexibility in the placement of the reconfigurable modules. There is always
some loss in design performance in term of used resource when using self configuration. In fact, in same case the
ICAP design consumes more than 3 times upper logic resources than JTAG interface [1]. Though, with the high
capacity, in term resources, of current FPGA, ICAP interface may easily satisfy the resource constraint, as
shown in table 2.

VI. CONCLUSION

FPGA designer is faced with many design challenges created from the increased time to market demands and
complexities of the design. Therefore, designer should develop new design methodologies of configuration and
synthesis, such as self configuration. In fact, self configuration offers the needed flexibility for many complex
FPGA designs. In this paper, we present a typical self configuration design flow. This paper shows that self

Mohamed Nidhal Krifa et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1719

configuration flow may be used to reduce the overall time that the designer spends to configure the design while
not degrading the performance of the final design.

REFERENCES

[1] Heng Tan, Ronald F. DeMara, Abdel Ejnioui Jason, D. Sattler, “Complexity and Performance Evaluation of Two Partial
Reconfiguration Interfaces on FPGAs: A Case Study”, Reconfigurable Architectures Workshop (RAW), Greek, 2006.

[2] OPH HWICAP Product specification datasheet - DS 280 (v1.3), March 2004.
[3] Patrick Lysaght, Brandon Blodget, Jeff Manson, Jay Young, Brendan Bridgford, “Invited Paper: Enhanced Architectures, Design

Methodologies and CAD tools for dynamic reconfiguration of Xilinx FPGAs”, Xilinx University Program, 2006.
[4] Xilinx.Inc, “Two flows for partial reconfiguration: Module Based or Difference Based” Xilinx Application Note XAPP290,Septembe

2004.
[5] C. Bobda, “Introduction to Reconfigurable Computing Architectures, Algorithms, and Applications, Springer Publishers (2007).
[6] Ali Ahmadinia, Christophe Bobda, Jurgen Teich, “ Online placement for dynamically reconfigurable devices”, International Journal of

Embedded Systems - Vol. 1, No.3/4 pp. 165 - 178. Inderscience Publishers, 2005.
[7] Katarina Paulsson, Michael Hübner, Jürgen Becker, “Dynamic power optimization by exploiting self-reconfiguration in Xilinx Spartan

3-based systems”, Microprocessors and Microsystems, pages 46 - 52, Elsevier Publishers, 2009.
[8] Jan C. van der Veen, Sandor P. Fekete, Mateusz Majer, Ali Ahmadinia, Christophe Bobda, Frank Hannig, and Jürgen Teich,

“Defragmenting the Module Layout of a Partially Reconfigurable Device”, Hardware Architecture (cs.AR); Data Structures and
Algorithms (cs.DS), May 2005.

[9] S.P.Fekete, J.C.van der Veen, A.Ahmadinia, D.Gohringer, M.Majer, J.Teich, “Offline and Online Aspects of Defragmenting the
Module Layout of a Partially Reconfigurable Device”, in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume
16, Page(s):1210 - 1219, Sept. 2008.

[10] Ali Ahmadinia, Jürgen Teich, “Speeding up Online Placement for Xilinx FPGAs by Reducing Configuration Overhead”, proceeding of
12th VLSI SOC, December 2003

[11] Grégory Mermoud, “A Module-Based Dynamic Partial Reconfiguration tutorial”, available in
http://ic2.epfl.ch/~gmermoud/DPRtutorial.zip

[12] A.K. Raghavan, and P. Sutton, “JPG - A Partial Bitstream Generation Tool to Support Partial Reconfiguration in Virtex FPGAs”, in
Proceedings of International Parallel and Distributed Processing Symposium, (IPDPS’02), Fort Lauderdale, Florida, USA, April 15-19,
2002.

[13] M. Hübner, J. Becker, "Exploiting dynamic and partial reconfiguration for FPGAs: toolflow, architecture and system integration",
Proceedings of the 19th annual symposium on Integrated circuits and systems design, tutorial session, 2006.

Mohamed Nidhal Krifa et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1720

