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Abstract The sequential pattern mining generates the sequential patterns. It can be used as the input of 

another program for retrieving the information from the large collection of data. It requires a large 
amount of memory as well as numerous I/O operations. Multistage operations reduce the efficiency of the 
algorithm. The given GACP is based on graph representation and avoids recursively reconstructing 
intermediate trees during the mining process. The algorithm also eliminates the need of repeatedly 
scanning the database. A graph used in GACP is a data structure accessed starting at its first node called 
root and each node of a graph is either a leaf or an interior node. An interior node has one or more child 
nodes, thus from the root to any node in the graph defines a sequence. After construction of the graph the 
pruning technique called clustering is used to retrieve the records from the graph. The algorithm can be 
used to mine the database using compact memory based data structures and cleaver pruning methods. 

 
Index Terms-GACP, data mining, sequential data mining, clustering 
 

I. I. INTRODUCTION 

Data mining is a relatively new research area that extracts knowledge which is hidden in the database and 
hence very useful in information retrieval. Frequent pattern mining from sequential data is one of the most 
important tasks. Frequent patterns are required in satellite images, customer databases, telecommunication 
systems, frequent buying patterns etc. Agrawal R. and Shrikant R. have first found out some algorithms for 
mining frequent pattern from a large collection of data sequences [1]. They have used support for analyzing the 
percentage of data sequences containing the pattern. Later Agrawal R. and Shrikant R. have used some 
constraints like minimum and maximum gap between adjacent elements of a pattern [2]. Gradually in the field 
of computing storage and processing devices are become boundless and have allowed the users to store and 
process huge collection of data.  

 
Example of such collection includes web site usage analysis, medical reports, science and engineering 

databases etc. They have drawn the attention of a number of researchers in the field of data mining. Mainly the 
collected data is in sequential form, hence arises the scope for different techniques for exploring sequential 
patterns.  

 
The goal is to find trends across large number of transactions that can be used to understand and exploit 

sequential patterns. Given a Sequence Database, the problem to find frequently occurring Sequential patterns on 
the basis of minimum support provided. Here a brief study of Generalized Sequential Pattern and Web access 
pattern mine is done which is much more efficient than the candidate generation based algorithms. But it 
required much space to store the intermediate trees which are generated during the process. So a new algorithm 
GACP is proposed to make the mining more efficient in terms of storage and time. GACP uses the concept of 
graph traversal by constructing the graph in one database scan only. The constructed graph then can be used by 
the algorithm to find the sequential patterns or order list of events from the database. The algorithm uses 
clustering techniques to prune the paths of the graph.  

 
II.  BACKGROUND 

 
The sequential pattern mining problem was first introduced by Agrawal and Srikant[1]. Given a set of 

sequences, where each sequence consists of a list of elements and each element consists of a set of items, and 
given a user-specified min support threshold, sequential pattern mining is to find all of the frequent 
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subsequences, i.e., the subsequences whose occurrence frequency in the set of sequences is no less than min 
support. A typical Apriori-like sequential pattern mining method, such as GSP, adopts a multiple-pass, 
candidate generation-and-test approach. The first scan finds all of the frequent items which form the set of 
single item frequent sequences. Each subsequent pass starts with a seed set of sequential patterns, which is the 
set of sequential patterns found in the previous pass. This seed set is used to generate new potential patterns, 
called candidate sequences. Each candidate sequence contains one more item than a seed sequential pattern, 
where each element in the pattern may contain one item or multiple items. The number of items in a sequence is 
called the length of the sequence. So, all the candidate sequences in a pass will have the same length. The scan 
of the database in one pass finds the support for each candidate sequence.  

Table 1. Sequence database 

 
Candidate-3 

sequences 
Candidate -4 sequences 
After join After pruning 

< (1,2) (3) > < (1,2) (3,4) > < (1,2) (3,4) > 
< (1,2) (4) > < (1,2) (3) (5) >  
< (1) (3,4) >   
< (1,3) (5) >   
< (2) (3,4) >   
< (2) (3) (5) >   

 
All the candidates whose support in the database is no less than min support from the set of the newly found 

sequential patterns. This set then becomes the seed set for the next pass. The algorithm terminates when no new 
sequential pattern is found in a pass, or when no candidate sequence can be generated.  

 
Refer a sequence with k items as a k-sequence. (If an item occurs multiple times in different elements of a 

sequence, each occurrence contributes to the value of k). Let Lk denote the set of all frequent k-sequences, and 
Ck the set of candidate k-sequences. Given Lk-1, the set of all frequent (k-1)-sequences, we want to generate a 
superset of the set of all frequent k-sequences. Let first define the notion of a contiguous subsequence.  

 
Definition: Given a sequence s = < s1,s2,.....sn > and a subsequence c, c is a contiguous subsequence of s if 

any of the following conditions hold: 
1. c is derived from s by dropping an item from either s1 or sn. 
2. c is derived from s by dropping an item from an element si which has at least 2 items. 
3. c is a contiguous subsequence of c’, and c’ is a contiguous subsequence of s. 
     For example, consider the sequence s = < (1, 2) (3, 4) (5) (6) >. The sequences   < (2) (3, 4) (5) >, < (1, 2) 

(3) (5) (6) > and < (3) (5) > are some of the contiguous subsequences of s. (see figure 1) However, <(1, 2) (3, 4) 
(6)> and < (1) (5) (6) > are not. Likewise the operation is carried out and one can find sequential pattern from 
the database. 

 
Another algorithm is of WAP-tree[3], which stands for web access pattern tree. The main steps involved in 

this technique are summarized next. The WAP-tree stores the web log data in a prefix tree format similar to the 
frequent pattern tree (FP-tree) for non-sequential data.  

 
Table 2. Sequence database for WAP-tree 

TID Web access 
sequence 

Frequent 
Subsequence 

100 pqspr pqpr 
200 tptqrp pqrp 
300 opqupt qpqp  
400 puqprur pqprr 

 
The algorithm first scans the web log once to find all frequent individual events which is shown in table 2. 

Second, it scans the web log again to construct a WAP-tree over the set of frequent individual events of each 
transaction. Third, it finds the conditional suffix patterns. In the fourth step, it constructs the intermediate 
conditional WAP-tree using the pattern found in previous step. Finally, it goes back to repeat the previous steps 
until the constructed conditional WAP-tree has only one branch or is empty.  

 
Thus, with the WAP-tree algorithm, finding all frequent events in the web log entails constructing the WAP-

tree and mining the access patterns from the WAP tree. The web log access sequence database in Table 2 is used 
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to show how to construct the WAP-tree and do WAP-tree mining. Suppose the minimum support threshold is 
set at 75%, which means an access sequence, s should have a count of 3 out of 4 records in our example, to be 
considered frequent. Constructing WAP-tree, entails first scanning database once, to obtain events that are 
frequent. When constructing the WAP-tree, the non-frequent part of every sequence is discarded. Only the 
frequent sub-sequences are used as input. For example, in Table 2, the list of all events is p, q, r, s, t, u and the 
support of p is 4, q is 4, r is 3, s is 1, t is 2, and u is 2.With the minimum support of 3, only p, q, r are frequent 
events. Thus, all non-frequent events (like s, t, u ) are deleted from each transaction sequence to obtain the 
frequent subsequence.     With the frequent sequence in each transaction, the WAP-tree algorithm first stores the 
frequent items as header nodes so that these header nodes will be used to link all nodes of their type in the 
WAP-tree in the order the nodes are inserted. When constructing the WAP tree, a virtual root (Root) is first 
inserted. Then, each frequent sequence in the transaction is used to construct a branch from the root to a leaf 
node of the tree. The complete tree for given database is shown in fig. 1. 

 
figure:1 Tree constructed by WAP 

 
After this algorithm first computes prefix sequence of the base r or the conditional sequence base of c as: 

pqp:2; pq:1; pqpr:1; pqp:-1. The conditional sequence list of a suffix event is obtained by following the header 
link of the event and reading the path from the root to each node (excluding the node). 

The conditional search of r is now finished. The search for frequent patterns that have the suffix of other 
header frequent events (starting with suffix base |q and then |p) are also mined the same way the mining for 
patterns with suffix r is done which is shown in fig. 2. 

 
figure:2 Conditional Sequence tree for r and pqr 

      
After mining the whole tree, discovered frequent pattern set is: {r,  qpr, pqpr, pr, pqr, qr, qb,  pq, p, pp, qp, 

pqp}. 
 
III.  RELATED WORK 
 
Since its introduction, sequential pattern mining [1] has become an important data mining task, and it has 

been used in a broad range of applications, including the analyses of customer purchase behavior, disease 
treatments, Web access patterns, DNA sequences, and many more. The problem is to find all sequential patterns 
with higher or equal support to a predefined minimum support threshold in a data sequence database. The 
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support of a sequential pattern is the number, or percentage, of data sequences in the database that contain that 
pattern. Different techniques and algorithms have been proposed to improve the efficiency of this task [1, 2, 5, 
6, 10]. 

      
The sequential patterns generated by the sequential pattern mining program can be used as the input of 

another program to do a specific data mining task, for example frequent patterns can be used to generate 
association rules. It has been recognized that by decreasing the minimum support, the number of frequent 
sequential patterns can grow rapidly. This large number of frequent sequential patterns can reduce the 
efficiency, and effectiveness of the mining task. The efficiency is reduced, because of the large number of 
patterns generated in the first stage needed to be processed in the later stages of the mining task. The 
effectiveness is also reduced, because users have to go through a large number of elements in the result set to 
find useful information. 

In recent years business and scientific research has seen an explosion in the amount of data collected [4]. 
Supermarket chains routinely collect terabytes of data on purchases their customers make. Several scientific 
fields like astronomy or particle physics now have to deal with databases in the range of petabytes. This data is 
useless unless it can be analyzed which, due to its huge size, is a very difficult task. It has been noted [7] that as 
processor speed doubles every 18 month (according to Moore’s law), the amount of data stored by companies 
doubles every year, so increase in computing power will not provide a solution and a new methodology is 
required. This resulted in the creation of the data mining field. Early efforts in data mining concentrated on 
modifying Machine Learning algorithms to scale up better with the size of the datasets. The first major 
algorithm developed specifically for large datasets came with the introduction in 1993 by Rakesh Agrawal et al. 
[1] of the association rule mining problem. In [1] the Apriori algorithm has been presented which is capable of 
finding all association rules satisfying certain criteria even in very large datasets. The paper has been followed 
by hundreds of publications further improving the algorithm, and applying it in other areas such as clustering. 

      
Today sequential pattern mining has proved to be a very promising. The application of sequential pattern 

mining are in areas like Medical treatment, science & engineering processes, telephone calling patterns, 
bioscience. Sequential pattern mining Web usage mining for automatic discovery of user access patterns from 
web servers. It is used by an e-commerce company, this means detecting future customers likely to make a large 
number of purchases, or predicting which online visitors will click on what commercials or banners based on 
observation of prior visitors who have behaved both positively and negatively to the advertisement banners. So 
it very necessary that the algorithm used to find the sequential patterns should efficient in terms of space and 
time complexity. There are many algorithms proposed before such as Apriori, AprioriAll, AprioriSome [9] by 
R. Agrawal and R. Srikant. The GSP (Generalized Sequential Patterns) [2] algorithm is 20 times faster than the 
Apriori algorithm. The Graph Traversal mining [8], uses a simple unweighted graph to store web sequences and 
a graph traversal algorithm similar to Apriori algorithm to traverse the graph in order to compute the k-candidate 
set from the (k-1)-candidate sequences without performing the Apriori-gen join. The FP-tree structure [12] 
constructs a tree to store the frequent items and uses this tree to mine the frequent patterns. FreeSpan [13] and 
PrefixSpan [11] are other pattern growth methods which deal with the pattern mining. 

 
IV. THE GACP ALGORITHM AND CLUSTERING OF PATTERNS 

 
The new approach is based on graph representation, and avoids recursively re-constructing intermediate 

WAP-trees during mining of the WAP tree for frequent patterns. The GACP algorithm is not using the candidate 
generate and test methodology so it avoids the need of repeatedly scanning the intermediate results like GSP. A 
graph is a data structure accessed starting at its first node and each node of a tree is either a leaf or an interior 
node. A leaf is an item with no child. An interior node has one or more child nodes and is called the parent of its 
child nodes. All children of the same node are siblings. Like WAP-tree mining, every frequent sequence in the 
database can be represented on a branch of a graph. Thus, from the root to any node in the graph defines a 
frequent sequence. For any node labeled ei in the graph, all nodes in the path from root of the graph to this node 
(itself excluded) form a prefix sequence of ei . The count of this node ei is called the count of the prefix 
sequence. Any node in the prefix sequence of ei is an ancestor of ei. On the other hand, the nodes from ei (itself 
excluded) to leaves form the suffix sequences of ei. Any node in the suffix sequence is a descendant of ei . The 
suffix sequence of ei is not unique. Normally, there are several children of ei in the tree, and each branch from a 
child to a leaf node will represent a suffix sequence and these suffix branches of ei are called the suffix trees of 
ei . 

 
1. The GACP data structure, similar to WAP-tree, is used to store access sequences in the database, and the 

corresponding counts of frequent events compactly, so that the tedious support counting is avoided during 
mining. 
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2. Starting with the first node, each transaction will create a branch for a specific pattern. 
3. Every time if the branch starting with the same item is available, the GACP algorithm follows the same 

path and increments the count associated with each node, as shown in the above figure.  
4. An efficient recursive algorithm is proposed to enumerate sequential patterns from the graph. The 

philosophy of this mining algorithm is prefix sequence search rather than suffix search done by WAP-tree 
algorithm. Instead of searching common suffix pattern (that is, obtain the frequent pattern starting with the last 
event in the sequence and keep extending the suffix subsequence until the entire sequence is found) as WAP tree 
mining does, the GACP searches common prefix pattern in the graph (by finding the first event in the sequence 
and extending this prefix subsequence until the entire sequence is found). 

 
Table:3 Sample access sequence database 

 
TID Access 

sequence 
Frequent 

Subsequence 
100 abdac abac 
200 eaebcac abcac 
300 babfaec babac 
400 afbacfc abacc 

 

 
figure:3 Graph for transaction abcac 

 

Start with $ and total number of unique items a,b and c, the first Transaction is abac and the corresponding 
sequential patterns are abac, bac, ac and c. So first branch is created with a:1, ab:1, aba:1, abac:1 as shown in the 
fig. 3. 

      
The second Transaction is abcac and the corresponding sequential patterns are abcac, bcac, cac, ac and c. 

With the increment of each node count we will get Figure shown below. Every Time node count for each second 
referenced node is incremented. For example node count for node ac is now 2. 

 
After inserting babac and abacc we have the complete graph. From this graph we can easily find out the 

required frequent sequences. Here each node has a counter which shows us the frequency associated with that 
pattern, e.g. abac:3. The procedure for retrieving the desired frequency again start with graph traversal, starting 
with the initial node $, and following the subsequent paths as shown in the fig. 4. 
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figure:4 Graph for example database 

 
A simplest approach is to cluster the patterns is to group them by their end states. An automaton 

representation for each cluster can be found from the automaton representations by reversing the edges of the 
underlying graph and computing which nodes are reachable from the corresponding final state. This can be done 
in time linear in the number of transitions. There are several possibilities how the clustering can be visualized by 
the automata. For example, the nodes can be colored based on which clusters they belong. If a state belongs to 
several clusters, its color can be a mixture of the colors of the clusters. 

 
Now suppose we want to retrieve the entire frequent item with minimum support=3 we will get the result 

shown in fig.5. The entries with support greater than 3 will be there in the set of clustered item. The GACP 
algorithm eliminates the need to store numerous intermediate trees during mining. GACP also eliminates the 
need to store and scan intermediate conditional pattern bases for re-constructing intermediate trees. In a Tree 
based approach we have to store the header table, this is not required in GACP. In candidate generation and test 
method, large numbers of candidates are generated during mining process. This is also note required in the given 
algorithm.  

 

 
figure:5 Clustering of the graph for retrieving the desired frequency (Support = 3) 

 

Since only the graph is stored, it drastically cuts off huge memory access costs, which may include disk I/O 
cost in a virtual memory environment, especially when mining very long sequences with millions of records. 
This algorithm also eliminates the need to store and scan intermediate conditional pattern bases for re-
constructing intermediate Web access pattern trees. This algorithm uses clustering of nodes to store all events in 
the same suffix path closely together in the linkage, making the search process more efficient. 

 

A.  The Algorithm - GACP 

Input: Access database D and minimum support δ  
          (0< δ<=1) 
Output: Sequential patterns in D 
Begin: 
1. Scan D to find frequent subsequences in  
    each transaction with respect to δ 
2. With the first scan also find out total number  
    of unique items in D. 
3. Initialize Count associated with each node  
    of the graph with 0 
4. Create a first node Φ of the graph G 
5. for each frequent sequence RK in D 
6. { 
7.    Create a stack for RK 
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8.    Check Item IN Є RK 
9.       If (IN is a new node) then  
10.            Create a new branch BI from Φ 
11.     Else if (IN Є BI) then 
12.          Insert IN in BILast 
13.          Increment Count from i=1 to i=Last-1 
14.     Else 
15.          Create a new branch BI from Φ 
16. } 
17. Check (Stack) 
18. If (Stack != Empty ()) 
19. { 
20.    Stack.pop(); 
21.    Go to step 7 
22. } 
23. Else  
24.   Go to step 6 
25. Scan last node of each branch 
26. Cluster the nodes with same frequency FC 
27. Assign a new node CI for each FC 
28. Directly retrieve frequency FMAX with         
      1 <=I <= FMAX  
29. End    
 
The algorithm scans the access sequence database first time to obtain the support of all events in the item set. 

All items that have a support greater than or equal to the minimum support are frequent. Each node in a graph 
has two fields: node label and node count. The root of the graph is a special virtual node with an empty label and 
count 0. Every other node is labeled by an item in the item set. Then it scans the database a second time to 
obtain the frequent sequences in each transaction. The non-frequent events in each sequence are deleted from 
the sequence. The algorithm starts building the graph starting from the root node. From the frequent sequence 
itemsets, it will check the items one by one. Now for each frequent sequence it creates a stack (which is used to 
store the entire sequence) for the sequence. Then the first item is compared with the root, if it is a new node, 
new branch is created and the node count stores the value. Second, if the item of the sequence is not a new node 
then create a new node and store that item as well as the count field. This process is repeated for each item of 
the stack. If the stack is empty, algorithm will check the new sequence from the database. This way complete 
graph is created. After construction of the graph, the algorithm searches the graph for finding out the frequency 
of each node which is there with its node count. Clustering technique can be applied then to store each and every 
frequency from the graph. Extra nodes are created for this frequency. The backward pointers of the frequency 
nodes will give the path for traversing the graph for required frequency.  

 
B. Complexity 

 
GACP creates one node in its graph for each frequent itemset. At the first glance, this seems to be highly 

compact since tree based algorithms does not ensure that each frequent node will be mapped to only one node in 
the tree. However, each branch of the tree may store many “hidden” frequent patterns due to the potential 
generation of many combinations using its prefix paths. Notice that the total number of frequent k-itemsets can 
be very large in a large database or when the database has quite long frequent itemsets. In the worst case, the 
sequences in the batch have the same length: m. The GACP algorithm has a time complexity of O(m2). In the 
worst case, the clustering algorithm has a time complexity of O(m2:n2) with n the number of sequences. 
Actually, in the worst case, GACP is called once for the first sequence, twice for the second, and so on. The 
complexity is thus O( n(n+1) / 2 )m2 = O(m2n2) It is well suited for sequential patterns and the results obtained 
datasets show its effectiveness. The complexity of the graph construction algorithm for a bath of sequence is 
O(nm2). 

 
V. EXPERIMENTAL RESULTS 

 
This experiment uses fixed size database and different minimum support .The datasets and algorithms are 

tested with minimum supports between 0.8% and 10% against the 60 thousand (60 K) database. From Table 4 
and Figure 6, it can be seen that the execution time of every algorithm decreases as the minimum support 
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increases. This is because when the minimum support increases, the number of candidate sequence decreases. 
Thus, the algorithms need less time to find the frequent sequences. 

Table:4 Execution time for dataset at different minimum supports. 
 

 Runtime in Seconds at different supports 
Algo. 2 3 4 5 10 
GSP 1200 1075 810 550 325 
WAP 750 510 330 280 150 
GACP 230 160 110 95 48 

      
The GSP algorithm always uses less runtime than the WAP and GSP algorithms. GSP has the highest storage 

cost because it uses the candidate-generate and test methodology. It scans the database several times before 
getting the results. WAP tree mining incurs higher storage cost (memory or I/O). Even in memory only systems, 
the cost of storing intermediated trees adds appreciably to the overall execution time of the program.  

 

 
 

figure:6 Execution time trend for different minimum support 

It is however, more realistic to assume that such techniques are run in regular systems available in many 
environments, which are not memory only, but could be multiple processor systems sharing memories and 
CPU’s with virtual memory support. 

 
As the minimum support threshold decreases, the number of events that meet minimum support increases. 

This means that WAP-tree becomes larger and longer, and the algorithm needs much more I/O work during 
mining of WAP tree.  

Table:5 Execution times trend with different data sizes. 

 

 
Runtime in Seconds at different 

supports 
Algo. 40k 60k 80k 100k 
GSP 83 142 190 226 
WAP 55 93 125 159 
GACP 27 43 60 89 

 
As minimum support decreases, the execution time difference between GSP, WAP-tree and GACP increases. 

In this experiment, databases with different sizes from 20 K to 100 K with the fixed minimum support of 7% 
were used which is shown in table 5 and fig.7. 

 

 
figure:7 Execution time trend for different data sizes. 
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VI. CONCLUSION 
 

In this paper, the problem of sequential pattern mining is analyzed. Here after discussing the three approaches 
it is clear that the GACP approach is more efficient than GSP and WAP Tree approach. This presents a 
discussion of the advantages and disadvantages of all the three approaches conducted by comparing the 
performance with help of graph. The GACP algorithm eliminates the need to store numerous intermediate Web 
access pattern trees during mining. Since only the graph is stored, it drastically cuts off huge memory access 
costs, which may include disk I/O cost in a virtual memory environment, especially when mining very long 
sequences with millions of records. This algorithm also eliminates the need to store and scan intermediate 
conditional pattern bases for re-constructing intermediate Web access pattern trees. This algorithm uses 
clustering of nodes to store all events in the same suffix path closely together in the linkage, making the search 
process more efficient. 
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