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Abstract—Study of fuzzy time series has increasingly attracted much attention due to its salient capabilities of 
tackling vague and incomplete data. A variety of forecasting models have devoted to improve forecasting 
accuracy. Recently, Fuzzy time-series based on Fibonacci sequence has been proposed as a new fuzzy time 
series model which incorporates the concept of the Fibonacci sequence, the framework of basic fuzzy time 
series model and the weighted method. However, the issue on lengths of intervals has not been investigated by 
the highly acclaimed model despite already affirmed that length of intervals could affects forecasting results.  
Therefore the purpose of this paper is to propose two methods of defining interval lengths into fuzzy time-series 
based on Fibonacci sequence model and compare their performances. Frequency density-based partitioning and 
randomly chosen lengths of interval partitioning were tested into fuzzy time-series based on Fibonacci sequence 
model using stock index data and compared their performances. A two-year weekly period of Kuala Lumpur 
Composite Index stock index data was employed as experimental data sets. The results show that the frequency 
density based partitioning outperforms the randomly chosen length of interval. This result reaffirms the 
importance of defining the appropriate interval lengths in fuzzy time series forecasting performances.  

Keywords-forecasting;  fuzzy sets; time series; composite index 

I.  INTRODUCTION  
In the midst of market volatility and risk, it is imperative to minimize losses by embarking in stock price 

forecasting. Realizing the importance of stock price forecasting, researchers have explored number of methods 
in the hope to search for one which could give the most accurate prediction. For many decades, researchers have 
formed various new approaches and methods to increase the accuracy of stock price forecasting. The most 
common and widely used method is time series. The most popular method in stock price forecasting is Box-
Jenkins model which was introduced by Box and Jenkins [1]. In econometrics, the Box–Jenkins methodology, 
applies autoregressive moving average model to find the best fit of a time series to make forecasts. However the 
classical time series methods fail to deal with forecasting problems which the values of time series are linguistic 
terms [2]. With new emergence of fuzzy theory and also challenges to face the uncertainty in stock price 
forecasting, new efforts have been geared up to incorporate the fuzziness in stock price and time series. Time-
series models have successfully utilized the fuzzy theory to solve various domains of forecasting problems, such 
as university enrolment forecasting [3]-[6] and temperature forecasting [9]. However, most of the researches 
concentrated on fuzzy time series models in the domain of stock price forecasting. To name a few, stock prices 
forecasting using fuzzy time series was extensively researched by [10]-[12].  
 

The development of fuzzy theory in stock prices forecasting was further developed.   Recently, reference 
[13] developed a new forecasting model which the intention to improve forecasting results. They proposed 
fuzzy time-series with Fibonacci sequence forecasting and asserted that their method has surpassed the three 
conventional fuzzy time-series models of Chen  [5], Yu [14] and Huarng [15]. They have implied the Elliott 
wave principle into the general fuzzy time-series. This principle has been played an important role in stock 
analysis for more than six decades. According to reference [17], the theory is closely related to stock price time 
series because it applies the Fibonacci sequence to predict the timing of stock price fluctuations. Despite the 
success of Chen et al. [13] in surpassing the three fuzzy time series models, the choice of partitioning intervals 
in the first step of their algorithm warrants further attentions. Reasonably define the universe of discourse and 
decide into how many intervals the universe will be partitioned in the first step is an arbitrary matter. Therefore 
interval length in fuzzy time series is widely open for a new exploratory. Apart from that, it was noticed that 

Lazim Abdullah et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1749



length of intervals somehow affects the performance of fuzzy time series. Reference [15] has asserted that 
different lengths of intervals lead to different forecasting results and forecasting errors. Reference [15] also 
added that there will be no fluctuations in the fuzzy time series when an effective length of intervals is too large. 
On the other hand, when the length is too small, the meaning of fuzzy time series will be diminished. Therefore, 
he suggested that a key point in choosing effective lengths of intervals is that they should not be too large or 
small. It shows that the length of interval is a loosely defined despite their important role in fuzzy time series.  
 

The size of intervals was first coined by Song and Chissom [3] and nothing has been critically examined the 
appropriate length of interval in the first step of the algorithm. Reference [13] acknowledged two common flaws 
exist in fuzzy time series models and one of them was partitioning the universe of discourse subjectively. 
Therefore, it is imperative that we need to decide the length of each interval for the partitioning based on recent 
development in portioning methods. In the studies of Song and Chissom [3] for enrolment forecasting, they 
chose 1000 as the length of intervals without specifying any reasons. Since then, 1000 has been used as the 
length of intervals in their studies. This is what normally referred as the randomly chosen length intervals 
(RCLI). Then some years later, Huarng [15] found that different length of intervals used offer different 
forecasting results. In his studies, he has proposed heuristic time-invariant fuzzy time series forecasting models 
to cope this issue. Recently, reference [16] proposed a new partitioning method to improve the forecasting 
accuracy of conventional fuzzy time series. The frequency density-based partitioning (FDBP) was proposed as 
part of efforts to improve forecasting accuracy. This method involved further partitioning of the intervals which 
have been initially partitioned by using the randomly chosen length. The method employed sub-partitioning the 
equal length intervals based on frequency density within each existing interval to get the new number of 
intervals. There are four sub-partitions of the interval having the highest frequency density, three partitions for 
the interval with second highest frequency density and two partitions for third highest frequency density. They 
have concluded that this proposed FDBP can improve forecasting accuracy.  

Based on these premises, we utilized the model of [13] by incorporating the effect of interval in composite 
index forecasting. We take the RCLI and FDBP as the interval lengths determination methods for a comparison. 
Also, we utilize linguistic definition of sixteen and twenty two for each partitioning methods as part of 
elucidating the effect of interval lengths to forecasting performances. There are no specific reasons for choosing 
this sixteen and twenty two as number of interval. It is merely to show the effect of larger number of interval to 
forecasting accuracy. In empirical analysis, we employ an experimental datasets of Kuala Lumpur Composite 
Index (KLCI) to test the two interval length methods into the model.  

The rest of the paper is organized as follows. Section II introduces the related definitions on fuzzy time series 
and the portioning methods. Section III proposes a computational framework which incorporates two methods 
of finding interval length. Section IV evaluates the performance of KLCI under two methods of interval lengths. 
The paper ends with a short conclusion in Section V. 

II. PRELIMINARIES 
The concept of fuzzy set theory was introduced to cope with the ambiguity and uncertainly of most of real-

world problems. The basic concepts of fuzzy set theory and fuzzy time series are given in books of Song and 
Chissom [3]. Some of the essentials are being reproduced to make this paper self-contained. The basic concepts 
of fuzzy time series are defined by four definitions (Definition 1 to 4). The definitions of the two partitioning 
methods are given in Definition 5 and Definition 6. Fibonacci sequence that made up the key improvement of 
[13] model is given in Definition 7.  
 
Definition 1. Let )2,1,0,t)(t(Y = , be the universe of discourse and R)t(Y ⊆ . Assume that 

 ,2,1,0,i),t(fi =  is defined in the universe of discourse )t(Y  and )t(F  is a collection of 
),2,1,0,i(),t(fi = , then )t(F  is called a fuzzy time series of )t(Y ,  ,2,1i = Using fuzzy relation, we 

define )1,t,t(R)1t(F)t(F −−=  where )1,t,t(R −  is a fuzzy relation and “  ” is the max–min composition 
operator, then )t(F is caused by )1t(F −  where )t(F and )1t(F −  are fuzzy sets. 
 
Definition 2. Let )t(F be a fuzzy time series and let )1,t,t(R −  be a first-order model of )t(F . If 

)2t,1t(R)1t,t(R −−=− for any time t , then )t(F  is called a time-invariant fuzzy time series. If )1,t,t(R − is 
dependent on time t , that is, )1,t,t(R −  may be different from )2t,1t(R −− for any t , then )t(F is called a 
time-variant fuzzy time series. 
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Definition 3. Let )t(F  be a fuzzy time series. If )t(F  is caused by )nt(F,),2t(F),1t(F −−−  , then the n th-
order fuzzy logical relationship is represented by 

)t(F)nt(F,),2t(F),1t(F →−−−   
 

where )nt(F,),2t(F),1t(F −−−  and )t(F are all fuzzy sets, where )nt(F,),2t(F),1t(F −−−  is called the 
antecedent and )t(F  is called the consequent of the n th-order fuzzy logical relationship. When 
 

iA)1t(F =− and jL)t(F = ; 
 

the relationship between )1t(F −  and )t(F (called a fuzzy logical relationship) is denoted by ji LL → . 
 

Definition 4. Fuzzy logical relationships with the same fuzzy set on the left-hand side can be further grouped 
into a fuzzy logical relationship group. Suppose there are fuzzy logical 
relationships such that 



,LL

,LL

2ji

1ji

→

→

 

 
They can be grouped into a fuzzy logical relationship group 
 

,L,LL 2j1ji →  
 

Following Chen [5] model, the same fuzzy sets can only show up once on the right-hand side of the fuzzy 
logical relationship group. 
 
Definition 5. Randomly Chosen Length of Intervals (RCLI) 
 
The randomly chosen length of intervals method has been commonly practiced by [3],  where they randomly 
choose an interval length for partitioning. Here, the length must not be larger than the length of the universe of 
discourse, U . The universe of discourse is then divided equally by the length chosen into n number of intervals.  
 
For example, if the minimum and maximum KLCI stock price in the training dataset from 2007/01/01 to 
2008/12/29 is 20 and 50, respectively, the universe of discourse to be defined as [ ]50,20U = . By randomly 
choosing an interval length of 10, we have three intervals )30,20[u1 = , )40,30[u 2 = and )50,40[3 =u . On 
the other hand, if we chose 6 as the interval length, then the universe of discourse will have five intervals of 

)26,20[u1 = , )32,26[u 2 = , )38,32[u3 = , )44,38[u 4 = , )50,44[u5 = .  
 
Definition 6. Frequency-Density-Based Partitioning (FDBP)  
 
The universe of discourse, [ ]2max1min UU,UUU +−=  is first partitioned into equal length intervals 

n21 u,,u,u  , by using the RCLI. Number of observations falling within each interval is counted. Using this 
method, sub-partition the equal length intervals based on frequency density within each interval can be obtained.  
 
By doing this, a new number of intervals '

n
'
2

'
1 u,,u,u   and new fuzzy sets k21 L,,L,L  of U  where 

 

'
nkn

'
212k

'
11kk

'
nn2

'
222

'
1212

'
nn1

'
212

'
1111

u/au/au/aL

u/au/au/aL

u/au/au/aL

+++=

+++=

+++=









    

is obtained.  
 
Definition 7. Fibonacci sequence Model 
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In mathematics, the Fibonacci numbers are the sequence of numbers which is defined by 

                                             








+
=

−− 2n1n

n

FF
1
0

F     
if
if
if

 

∞

=








>
=
=

1n1n
1n
0n

     

The Fibonacci sequence also can be expressed by the general second-order linear recurrence equation (where A 
and B are constants with arbitrary  1x and 2x ), which is defined as  

                                              2n1nn BxAxx −− +=      
The application of the Fibonacci sequence, 2n1nn FFF −− += , is extended to the forecasting process. 

III. COMPUTATIONAL FRAMEWORK 
The fuzzy timeseries model based on the Fibonacci sequence employs eight-step algorithm which is not to be 

presented in this paper. Details of the algorithms can be retrieved from [13] .  The paper aims to verify the 
algorithm with two different partitioning methods with KLCI stock index. In the first step, universe of discourse 
is defined as [ ]2max1min UU,UUU +−=  ,where minU  and maxU are the minimum and maximum values in U  
and 1U , 2U  are two real positive numbers. Numbers of intervals are determined by randomly chosen interval 
(Definition 5) or frequency density based partitioning (Definition 6). The next steps account the establishment 
of linguistic values and its fuzzy logical relations. The following steps engage with assigning weights and 
linguistics spread centre matrix.  The step generates the initial forecasting prior to using Fibonacci sequence to 
yield forecasted indexes. Summarily, the computational framework can be seen in Fig I.  

 
 

FIG I COMPUTATIONAL FRAMEWORK OF THE MODEL 
 

 
 
This computational framework is tested to the KLCI.  

IV. MODEL VERIFICATION AND COMPARISON 
The weekly datasets of 105 KLCI from the period of 2007/01/01 to 2008/12/29 were tested to the model. The 

data were set to verify the model in term of forecasting accuracy for two partitioning methods that lead to the 
number of intervals.   
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A. Forecasting with RCLI 
In this section, we demonstrate how the algorithm of the proposed model with randomly chosen interval be 

used to produce forecast for our KLCI training datasets.  
 
From the KLCI datasets, the minimum and maximum stock price is 838.28 and 1507.04 respectively, the 

universe of discourse is hence to be defined as [ ]1600,800U = . By using the fuzzy method, the low bound can 
be expanded by 38.28 smaller than 838.28, making Low 800, and up bound can be expanded by 92.96 larger 
than 1507.04, making Up 1600. As a result, the defined universe of discourse of [ ]1600,800U =  can cover every 
occurring stock price in the KLCI dataset.  

The fuzzy sets, 1621 L,,L,L   for the universe of discourse are defined. Part of the fuzzy sets for the 
training datasets are described as follows: 

10983211 u/0u/0u/0....u/0u5.0u/1L ++++++=  

1615 u/0u/0... ++  

10983212 u/0u/0u/0...u/5.0u1u/5.0L ++++++=  

1615 u/0u/0... ++  

10983213 u/0u/0u/0...u/1u5.0u/0L ++++++=  

1615 u/0u/0... ++  

…  
 

019832116 u/0u/0u/0...u/0u0u/0L ++++++=  

1615 u/1u/5.0... ++  

 
Each observation in the KLCI datasets can be classified by the sixteen partitioned intervals For each KLCI 

indices, its values are assigned to its belonging linguistic value based on the linguistic intervals. For example at 
time 1t = , the KLCI index value is assigned to 6L . This is because its value, 1096.24 falls under the interval 
range of [ )1100,1050 . Next, we randomly chose the length of intervals to be 50. Hence, there are sixteen 
intervals for this universe of discourse where, [ )850,800u1 = , [ )900,850u 2 = , [ )950,900u3 = , 

[ )1000,950u 4 = , [ )1050,1000u5 = , [ )1100,1050u6 = , [ )1150,1100u7 = , [ )1200,1150u8 = , [ )1250,1200u9 = , 
[ )1300,1250u10 = , [ )1350,1300u11 = , [ )1400,1350u12 = , [ )1450,1400u13 = , [ )1500,1450u14 = , 
[ )1550,150015 =u , [ ]1600,1550u16 =

 
 
The fuzzy logical relationships (FLRs) are formed. Part of the FLRs for the KLCI index datasets are 

established as 

)8t(L)7t(L
)7t(L)6t(L
)6t(L)5t(L
)5t(L)4t(L
)4t(L)3t(L
)3t(L)2t(L
)2t(L)1t(L

109

99

98

87

77

77

76

=→=
=→=
=→=
=→=
=→=
=→=
=→=

 

  
 

The FLRs formed are then used to establish FLR groups. According to Definition 4 of fuzzy time series, the 
FLRs with the same left hand side (LHS) linguistic value can be grouped into one FLR group. Suppose there are 
fuzzy logical relationships such that 
 

32

22

12

LL
,LL
,LL

→
→
→
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they can be grouped into a fuzzy logical relationship group such as  
 

3212 L,L,LL →  
By applying Chen’s theory[5], all the FLRs produces FLR groups as below: 

 
21 LL →   10989 L,L,LL →  

3212 L,L,LL →   11109810 L,L,L,LL →  

323 L,LL →   121110911 L,L,L,LL →  

535 L,LL →   13121112 L,L,LL →  

7656 L,L,LL →  14131213 L,L,LL →  

8767 L,L,LL →  141314 L,LL →  

109878 L,L,L,LL →  
 

All FLR groups will construct a fluctuation-type matrix and fluctuation-weighted matrix. Standardized weights 
for the fuzzy sets, 1621 L,,L,L   are computed and gives as  

 
[ ]0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0)t(W1 =  





= 0,0,0,0,0,0,0,0,0,0,0,0,0,

17
1,

17
15,

17
1)t(W2  

...       

...         

...        
  

[ ]0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)t(W16 =  
 

By using the linguistic spread-centre matrix, and the standardized weight matrix, we generated the initial 
forecasts. Lastly, we apply the Fibonacci forecasting equation into the initial forecasted results to produce final 
forecasting results.  
 
B. Forecasting with FDBP 
 
The second forecasting indexes employ refined FDBP into the model.  

For this reason, we now employ the universe of discourse, [ ]1600,800U = and its 22 intervals established by 
the refined FDBP (Definition 6) into the algorithm of the proposed model. The new intervals are 

[ )850,800u '
1 = , [ )900,850u '

2 = , [ )950,900u '
3 = , [ )1000,950u '

4 = , [ )1050,1000u '
5 = , [ )1100,1050u '

6 = , 
[ )1150,1100u '

7 = , [ )1200,1150u '
8 = , [ )1250,1200u '

9 = , [ )1267,1250u '
10 = , [ )1283,1267u '

11 = , 
[ )1300,1283u '

12 = , [ )1325,1300u '
13 = , [ )1350,1325u '

14 = , [ )1363,1350u '
15 = , [ )1375,1363u '

16 = , 
[ )1388,1375u '

17 = , [ )1400,1388u '
18 = , [ )1450,1400u '

19 = , [ )1500,1450u '
20 = , [ )1550,1500u '

21 =  and 

[ ]1600,1550u '
22 =  . 

 
With about the similar fashion as Section IV.A, we could generate the forecasting results.  

 
The two forecasted indexes are further investigated. The trends of RLCI partitioning method forecasting 

indexes (Forecasted 1), FDBP forecasting indexes (Forecasted 2) and actual indexes can be seen in Fig. II.  

Lazim Abdullah et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1754



 
FIG II TRENDS OF ACTUAL INDEXES VERSUS TWO FORECASTED INDEXES. 

 
It can be seen that the trends of two forecasted indexes and observed indexes are very close to each other. 

Therefore it is anticipated that the model is worked well to the tested data. Furthermore, the trends also 
conjectured that the two partitioning methods are marginally differed toward the model. Performances of the 
two portioning methods are further discussed in the following sub section.    

C. Forecasting Performance 

The performance of the two interval methods is further explored. The two methods of partitioning are compared 
to investigate forecasting efficacy.  
 
We examine the performance of the model using two methods of length intervals.  We compare the difference in 
error term of mean square error (MSE). The equation for MSE  is defined as 

 

n

n
1t

2|)t(forecast)t(actual|
MSE

 = −
=     

 
If the actual and forecasted values are closer to each other the calculated MSE would be smaller. Logically, 

smaller distance between the actual and forecasted value implicates the forecasted value are more accurate.  
Root of mean square error (RMSE) is another error term which denotes the square root of MSE. We also use 
percentage of average forecasting error rate (AFER) to check the performance of forecasting results. The 
average errors is defined as  
 

%100)
n

actual/|)t(forecast)t(actual|
(AFER

−
=   . 

By using sixteen and twenty two linguistic intervals for each partitioning method respectively, we produced 
performance indicators as shown in Table I.  

TABLE I MODEL’S PERFORMANCE  
 

Error term Forecasted 1 Forecasted 2 
MSE 44.21 42.55 

RMSE 6.65 6.52 
AFER (%) 0.396 0.389 
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From the Table I,  it is obvious that the model of fuzzy time series based on Fibonacci sequence with FDBP 
(Forecasted 2) has surpasses the fuzzy time series based on Fibonacci sequence with RCLI (Forecasted 1) with 
very small margin. Although it is a small difference but it is undeniably that the employment of FDBP does 
improve the forecasting accuracy.  

V.  CONCLUSION 
In this paper we chose fuzzy time series model proposed by Chen et al [13] as a testing platform for two 

partitioning methods. The randomly chosen length interval and frequency density-based partitioning methods 
are applied to the model in forecasting the performance of KLCI stock index. Experimental results on the KLCI 
stock index demonstrate that the partitioning methods are not differ substantially in term of forecasting 
performances but it is suffice to verify the efficacy of the forecasting model.  It can also be concluded that the 
proposed model of fuzzy time series based on Fibonacci sequence with the employment of frequency density-
based partitioning is an improved model to forecast the performance of KLCI stock index.  Higher number of 
intervals defined in the frequency density-based partitioning may contribute to better forecasting accuracy but it 
sometimes creates computational complexities.  This issue probably stimulates a new venture into unraveling 
the computational risk in fuzzy time series especially in the event of higher number of interval.   
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