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Abstract - E-Learning is the learning process created by interaction with digitally delivered content, 
services and support. Learner’s profile plays a crucial role in the evaluation process and to improve the e-
learning process. The customization of content is necessary to provide better services.  Mapreduce is 
distributed programming model which is developed by Google. The aim of this paper is to increase the 
speed and to decrease the processing time by using K-MR algorithm instead of K-Means clustering 
algorithm. K-Means algorithm can be applied to the MapReduce model and can efficiently process large 
datasets called K-MR algorithm. This system customizes the contents based on learner’s performance 
and effective for both learner and instructor. 
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I. INTRODUCTION 

 
Rapid innovation in information and communications technology is transforming the way we work, the way we 
interact, the way we learn, and the way we live. In the education sector, e-learning increases access to education 
by making it possible for students to fit their education into family and work schedules and by providing a 
greater programmatic choice of quality courses. E-learning allows multiple students to simultaneously enroll in 
more than one school in order to achieve their particular learning goals in a timelier manner. At the same time, 
each school can maintain a different set of general education, prerequisites, academic specialties, and other 
institutional requirements. 
 
MapReduce is an important technology of Google. It is a kind of programming models, which comes from the 
traditional functional programming ideas to deal with mass data. The name of MapReduce comes from two core 
operation in the model: Map and Reduce. Map, written by the user, takes an input pair and produces a set of 
intermediate key/value pairs. The Reduce function, also written by the user, accepts an intermediate key I and a 
set of values for that key. It merges together these values to form a possibly smaller set of values. 
 
Zhao, Ma in “Parallel K-Means Clustering Based on MapReduce”, [12] demonstrated that the K-Means 
algorithm can be successfully applied to the MapReduce model and can efficiently process large datasets. 
  
The remaining of this paper is organized as follows. Section 2 describes related works. Section 3 contains 
explanation of mapreduce and K-means algorithm. Section 4 describes proposed system and about k-MR 
algorithm. Section 5 contains the Experimental result and Section 6 concludes the paper. 

II. RELATED WORKS 

 
In this section we briefly present some of the work related to E-learning.  Anane et al, [1] concerned with 
learning content provision mediated by a learning management system (LMS), which complies with 
instructional management system (IMS) standards. The requirements for the LMS, as a tool for course 
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management, are specified through different perspectives. Issues related to content creation and delivery are 
identified and addressed from the perspectives of the instructor, the learner, as well as the requirements of 
specific learning content. 
 
Wenhua Wang et al, [2] adapted affinity propagation in MapReduce framework to make semantic retrieval 
applicable to large-scale data, and with this parallel affinity propagation they proposed an approach to retrieve e-
learning materials efficiently, which could retrieve semantically relevant materials utilizing conceptual topics 
produced in advance. 
 
Anna Katrina Dominguez et al, [3] presented a tool where both past and current student data is used live to 
generate hints for students who are completing programming exercises during a national programming online 
tutorial and competition. These hints can be links to notes that are relevant to the problem detected and can 
include pre-emptive hints to prevent future mistakes. 
 
Samia Azough et al, [4] described an adaptive system conceived in order to generate pedagogical paths which 
are adapted to the learner profile and to the current formation pedagogical objective. 
 
Mofreh A. Hog et al, [5] classified the learners into specific categories based on the learner’s profiles; the 
learners’ classes named as regular, workers, casual, bad, and absent. The work extracted the statistical usage 
patterns that give a clear map describing the data and helping in constructing the e-learning system. The work 
tries to find the answers of the question how to return the bad students who are away back to be regular ones and 
find a method to evaluate the e-learners as well as to adapt the content and structure of the e-learning system. 
The work introduces the application of different fuzzy clustering techniques (FCM and KFCM) to find the 
learners profiles. 
 

III. TECHNOLOGY OVERVIEW 

 
In this section, we firstly give the details about kmeans algorithm then introduce the concept of mapreduce. 

A. Kmeans Clustering Algorithm 

K-means algorithm [7] is a widely used partition method in clustering. K-Means [18] is one of the algorithms 
that solve the well known clustering problem. The algorithm classifies objects to a pre-defined number of 
clusters, which is given by the user (assume k clusters). The idea is to choose random cluster centers, one for 
each cluster. These centers are preferred to be as far as possible from each other. Starting points affect the 
clustering process and results. After that, each point will be taken into consideration to calculate similarity with 
all cluster centers through a distance measure, and it will be assigned to the most similar cluster, the nearest 
cluster center. When this assignment process is over, a new center will be calculated for each cluster using the 
points in it. For each cluster, the mean value will be calculated for the coordinates of all the points in that cluster 
and set as the coordinates of the new center. Once we have these k new centroids or center points, the 
assignment process must start over. As a result of this loop we may notice that the k centroids change their 
locations step by step until no more changes are made. When the centroids do not move any more or no more 
errors exist in the clusters, we call the clustering has reached a minima. Finally, this algorithm aims at 
minimizing an objective function, which is in this case a squared error function. The algorithm is expressed in 
Fig. 1. One drawback of KM is that it is sensitive to the initially selected points, and so it does not always 
produce the same output. Furthermore, this algorithm does not guarantee to find the global optimum, although it 
will always terminate. To reduce the effect of randomness, the user can run the algorithm many times before 
taking an average values for all runs, or at least take the median value. 
 
1. Start with k cluster centers (chosen randomly or according to some specific procedure). 
2. Assign each record in the data to its nearest cluster center. 
3. Re-calculate the cluster centers as the "average" of the records in step 2 
4. Repeat, until the cluster centers no longer change. 
 

Figure 1.  Pseudo-code for K-Means algorithm 

 
 
One popular way to start KM is to randomly choose k points from data. Initial starting points are important in 
the clustering process; however, the results mainly depend on the initial means. The standard solution is to try a 
number of different starting points. Moreover, the results also depend on the metric used to measure distance 
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which is not always easy to implement especially in the high-dimensional space. Additionally, the results 
depend on the value of k, which in the real world are not always known or determined in advance [20]. 
Unfortunately, there is no general theoretical solution to find the optimal number of clusters for any given data 
set. A simple approach is to compare the results of multiple runs with different k clusters and choose the best 
one according to a given criterion. However, we need to be careful as increasing k results in smaller error-
function values by definition, due to the few number of data points each center will represent, and thus it will 
lose its generalization ability, as well as increasing the risk of over fitting. In other words centroids do not move 
any more.    
 

B. Mapreduce 

 
MapReduce is a software framework produced by Google to support parallel computations over large (multi-
petabyte) datasets on clusters of commodity nodes. Google MapReduce combines two classes of functions: map 
and reduce. [6] These functions are defined with respect to data structured in (key, value) pairs. Map takes a pair 
of data with a type and returns a list of key-value pairs: [6] 
 
map(k1, v1) -> list(k2, v2). 
 
The map function is applied in parallel to every item in the input dataset. This produces a list of (k2, v2) pairs 
for each call. The framework collects all pairs with the same key from all lists and groups them together, 
creating one group for each key k2. 
The reduce function is then applied in parallel to each group, which in turn produces a collection of values: 
 
reduce(k2, Union_List(k2,v2)) ->List (v3). 

The returns of all reduce functions are collected as the desired result set. A simple example of MapReduce is a 
program that counts the appearances of each unique word in a set of unstructured documents. In this program, 
the map function will emit <word, countInDocument> pairs for each word that occurs in each document. The 
reduce function for each word will receive partial counts from each document, sum up the partial counts, and 
emit the final result. 

 
 
map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 
EmitIntermediate(w, "1"); 
 
reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 
result += ParseInt(v); 
Emit(AsString(result)); 
 
The map function emits each word plus an associated count of occurrences (just `1' in this simple example).The 
reduce function sums together all counts emitted for a particular word. 
 
Parallelism  
 
         Map() functions run in parallel, creating different intermediate values from different input data sets.  
reduce() functions also run in parallel, each working on a different output key, all values are processed 
independently.  Bottleneck: reduce phase can’t start until map phase is completely finished.   
 
Fault Tolerance 
 
 Master detects worker failures. Re-executes completed & in-progress map() tasks. Re-executes in-progress 
reduce() tasks. Master notices particular input key/values cause crashes in map(), and skips those values on re-
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execution. There are many implementations of mapreduce available. The first java open source implementation 
of mapreduce is Hadoop. 
 

IV.  PROPOSED SYSTEM 

 
Our proposed system is based on the customization of the E-Learning application. Learners performance is 
evaluated using parallel kmeans clustering based on mapreduce algorithm.  
 

                             Learners                      Customized content 

 

 
 
 
 
      
     
 
 
 
 
 
 
 
 
   

Figure 2. Proposed System 

   
 The sample data we have taken to prove that the parallel kmeans clustering algorithm produce the 
desired clusters with time consuming because of parallel processing using mapreduce. 

A. K-MR algorithm 

As the dataset's scale increases rapidly, it is difficult to use k-means to deal with massive amount of data. A 
parallel strategy is incorporated into clustering method and a parallel k-means algorithm is proposed. K-MR 
algorithm partition records among multiple processors [8]. Each processor can read the previous iteration's 
cluster centers and assign the records on the processor to clusters. Each processor then calculates new centers 
for its share of records. Each actual cluster center (for the records across all processors) is then the weighted 
average of the centers on each processor. We need to handle the cluster center information. We create a shared 
file that has the centroids as calculated for each processor. This file contains the iteration number, cluster id, 
cluster coordinates, number of records assigned to the cluster. This is the centroid file. An iteration through the 
algorithm is going to add another set of records to this file. This information is the only information that needs 
to be communicated globally. 

 
1. To simplify the work, K points (K is the number of the clusters we wish to get out of the input dataset) are 
randomly selected from the input data file as initial cluster centers. 
2. Input data set (through a data file) is partitioned into N parts (controlled by the run-time system, not your 
program). Each part is sent to a mapper. 
3. In the map function, the distance between each point and each cluster center is calculated, and each point is 
labeled with the center index to which the distance is the smallest. Mapper outputs the key-value pairs of label 
assigned to each point, and the coordinates of the point. 
4. All data points of the same current cluster (based on the current cluster centers) are sent to a single reducer. In 
the reduce function, new cluster center coordinates are easily computed. The output of the reducer is 
consequently the cluster index and its new coordinates. 
5. The new cluster coordinates are compared to the original ones. If the difference is within a preset threshold, 
then program terminates, and we have found the clusters. If not, use the newly generated cluster centers and 
repeat step 3 to 5. 

 
Figure 3. Pseudo-code for K-MR algorithm 

 

Register 

Learning

Exam Evaluate

Apply K-MR algorithm 
to cluster data 

Database 
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Figure 4. K-MR algorithm 

 
 

K points are randomly selected from the input data file as initial cluster centers.  We create a file which contains 
the information as described in previous slide. This file contains the cluster centers for each iteration. This file is 
shared among all processors. The Map function reads this file to get the centers from the last finished iteration. 
It then reads the input records (the data) and calculates the distance (Euclidean Distance) to each center. For 
each record, it produces an output pair with: Key -- cluster id, Value -- coordinates of records.  

Euclidean Distance is the most common use of distance. In most cases when people said about distance, they 
will refer to Euclidean distance. Euclidean distance or simply 'distance' examines the root of square differences 
between coordinates of a pair of objects.    

Formula  

 
In the Combine step the 'map' step produces a lot of data. So we use a Combine function to reduce the size 
before sending it to Reduce. The Combine function calculates the average of the coordinates for each cluster id, 
along with the number of records. This is simple, and it produces one record of output for each cluster: – Key is 
cluster and the Value is number of records and average values of the coordinates. The amount of data now is the 
number of clusters times the number of processors times the size of the information needed to define each 
cluster. This is small relative to the data size. The Reduce function calculates the weighted average of its input. 
Its output is written to the cluster file, and contains: The iteration number; the cluster id; the cluster center 
coordinates; the size of the cluster. The iteration process can then continue. 

V. EXPERIMENTAL RESULT 

 
The data is clustered using 8 processors and the number of cluster is k = 3. We can measure performance of the 
K-MR algorithm against the performance of the K-Means algorithm by using speedup S(K), where K is the 
number of processors. 

 
K - Means map() map() 

reduce() 

User program Compute the error and decide 
whether to continue iteration 

Compute the new 
cluster centers

Compute the distance to each 
data point from each 
cluster center and assign 
points to the cluster centers 

Data split – 2D data 
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S(K) = Execution time of single processor / Execution time of K processors = O(K/2). The experiment confirms 
that when N is sufficiently large, speedup gain is O(K/2) as predicted. Let T be the efficiency defined as  
T = (speedup gain/maximum speedup)100% 
Thus, efficiency of parallel K-MR algorithm T = (K/2)/K x 100% = 50%.  
 
  

 
 

Figure 5. Execution time of K-Means and K-MR algorithm 

 
When the data size is low there is no need of parallelisation whereas when the data is large the parallel 
processing is necessary such K-MR algorithm to improve the speed and to decrease the execution time. In the 
above experimental analysis the execution time of k-means is low when the data size is low such 10K, 20K, 30K 
but the execution time of K-MR is low when the data size is increase such 40K, and so on.  
 

VI. CONCLUSION 

In this paper, we have presented the concept of mapreduce and Kmeans algorithm. We have also proposed K-
MR algorithm to customize the E-Learning application in such a way that to increase speed and to decrease 
computation time and to provide customized content to Learners. Since this proposed algorithm uses the parallel 
processing approach using mapreduce we obtain time efficient and also our experimental result shows the 
proposed system is efficient comparing to ordinary Kmeans algorithm when the data set is very large. We can 
conclude that our K-MR algorithm achieves 50% efficiency of time complexity. 
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