
Comparison of Parsing Techniques For
Formal Languages

Sunanda Mulik, Sheetal Shinde, Smita Kapase

Bharati Vidyapeeth Pune

Abstract: A parser is one of the components in an interpreter or compiler, which checks for correct
syntax and builds a data structure (often some kind of parse tree, abstract syntax tree or other
hierarchical structure) implicit in the input tokens. Parsers may be programmed by hand or may be
(semi-)automatically generated by a parser generating tool. Various techniques are available for parsing
formal languages. The objective of this paper is to compare these techniques. The paper is organized in
two sections. The first section does discuss about the parsing problem and process. In the second section
we study and compare three parsing techniques theoretically .Finally the paper concludes with the
suggestion of a new parsing technique.

Keywords: Parsing, classical, fuzzy, NLP technique, generic, machine learning

1. Introduction

1.1 Definition: In computer science and linguistics, parsing, or, more formally, syntactic analysis, is the process
of analyzing a text, made of a sequence of tokens to determine its grammatical structure with respect to a given
(more or less) formal grammar. Programming languages tend to be specified in terms of a context-free grammar
so that fast and efficient parsers can be written for them. Parsers are written by hand or generated by parser
generators. To extract information from the programs, they first parse the program code and produce an abstract
syntax tree (AST) for further analysis and abstraction.

The process is divided into three phases

The first stage is the token generation, or lexical analysis, by
which the input character stream is split into meaningful symbols
defined by a grammar of regular expressions. The lexer would
contain rules for that.

The next stage is parsing or syntactic analysis, which is checking
that the tokens form an allowable expression. This is usually done
with reference to a context-free grammar which recursively
defines components that can make up an expression and the order
in which they must appear. The rules for type validity and proper
declaration of identifiers can be formally expressed with attribute
grammars.

The final phase is semantic parsing or analysis, which is working
out the implications of the expression just validated and taking
the appropriate action. In the case of a calculator or interpreter,
the action is to evaluate the expression or program; a compiler,
on the other hand, would generate some kind of code. Attribute
grammars can also be used to define these actions.

Sunanda Mulik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1611

1.2 Overview of process

2. Parsing Techniques
2.1 Classical parsing

Classical parsers for formal languages have been known for many years. They conventionally accept a
context-free language defined by a context free grammar. For each program, the parser does produce a phrase
structure referred to as an abstract syntax tree (AST) .Parsers including error stabilization and AST-constructors
can be generated from context-free grammars for parsers (Kastens et al., 2007). But a parser for a new language
still requires the development of a complex specification. Moreover, error stabilization often throws away large
parts of the source . These parsers are robust but do not care about maximizing accuracy. In this technique
context is not taken into account. There are many cases where we want to work with the context of a detected
element. But it never cares about the context of structures of interest. Also it does not provide error recovery. If
the parsing of a system fails these approaches do not help the user to recover from the error. Mostly we do not
even get feedback why and where there were problems. In addition it has a space for ambiguity.

Classical parsing techniques may be applied as long as the program conforms to the syntax of a
programming language. This, however, cannot be assumed in general, as the programs to analyze can be
incomplete, erroneous, or conform to a dialect or version of the language. Despite error stabilization, classical
parsers then lose a lot of information or break down.

2.2 Fuzzy Parsing

Fuzzy Parsing (Koppler, 1997) was designed to efficiently develop parsers by performing the analysis on
selected parts of the source instead of the whole input. It is specified by a set of fuzzy context free sub grammars
each with their own axioms. Unlike conventional parsing, it does not require strict adherence to a language
grammar. It scans for instances of the axioms and then parses according to the grammar. It makes parsing more
robust since it ignores source fragments including missing parts, errors and deviations therein – that subsequent
analyses abstract from anyway.

Island grammars (Moonen, 2001) generalize on Fuzzy Parsing in which parsing is controlled by two
grammar levels, island and sea, where the sea-level is used when no island-level production applies. The island-
level corresponds to the sub-grammars of fuzzy parsing. Island grammars have been applied in reverse-
engineering, specifically, to bank software (Moonen, 2002). Like conventional parsers in this technique context
is not taken into account: It does not care about the context of structures of interest. Also it does not provide
error recovery: If the parsing of a system fails these approaches do not help the user to recover from the error.
Mostly we do not even get feedback why and where there were problems. Also there is a space for ambiguity.

 The following case studies show the limitations of fuzzy parsers

1. DelphiXPG utilises a Context/Fuzzy parsing technology for building a cross-reference of identifiers
and has following limitations due to fuzzy parsing

 Binary DFMs are not currently processed by the parser
 if identifiers are referenced via a CPU register then the parser cannot identify these items
 The parser will fail to identify an overloaded method if it is not uniquely identifiable though

the number of parameters or by the data types of the arguments being passed to the method.

2. OPARI is a source-to-source translation tool which automatically adds all necessary calls to
the pomp runtime measurement library which allows to collect runtime performance data of Fortran, C,
or C++ OpenMP applications and has following limitations due to fuzzy parsing

 Fortran 77/90:

1. The !$OMP END DO and !$OMP END PARALLEL DO directives are required (and not
optional as described in the OpenMP specification)

2. The atomic expression controlled by a !$OMP ATOMIC directive has to be on a line all
by itself.

3. If the measurement environment does not support the automatic recording of user
function entries and exits, the OPARI runtime measurement library has to be initialized
by a !$OMP INST INIT directive prior to any other OpenMP directive.

Sunanda Mulik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1612

 C/C++:

1. structured blocks describing the extend of an OpenMP pragma need to be either
compound statements {....}, while loops, or simple statements. In addition, for loops are
supported after omp for and omp parallel for pragmas. Complex statements like if-then-
else or do-while need to be enclosed in a block ({....}).

2. If the measurement environment does not support the automatic recording of user
function entries and exits, the OPARI runtime measurement library has to be initialized
by a omp inst init pragma prior to any other OpenMP pragma.

2.3 Using Natural Language Processing(NLP)

The natural language processing techniques can be applied to formal languages. Dependency structure
is one way of representing the syntax of natural languages. The same can be applied to formal languages also.
The idea was introduced by Nilsson et al., 2009. The general approach is divided into two phases, training and
production.

In the training phase, we need to train and adapt the generic parsing approach to a specific
programming language. It consist of
1) Generate training data automatically by producing syntax trees and then dependency
trees for correct programs
2) Train the generic parser with the training data.
This automated training phase needs to be done for every new programming language we adapt to.

 In the production phase, we extract the information from programs which need not be correct and
complete. It consist of
3) Parse the new source code into dependency trees.
4) Convert the dependency trees into syntax trees

This technique automatically generates the language specific information extractor using machine
learning and training of a generic parsing, instead of explicitly specifying the information extractor using
grammar and transformation rules. Also the training data can be generated automatically. It does increase the
development efficiency of parsers, since only examples has to be provided. Unlike conventional and fuzzy
parsers , they produce exactly one syntactic structure for every input, even if the input does not conform to a
grammar and thus eliminates ambiguity.

The summary of various techniques is shown in following table

Sunanda Mulik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1613

 Compiler
 Technique

Characteristics

Conventional Fuzzy NLP

Uses CFG CFG Classifier

Advantages

Robust More Robust More Robust
Error stabilization Parses only selected parts

of source
Accuracy approximately
100%

 Error stabilization Automatic parser
generation

 Needs no language
specification

 Parser can be easily adapted
for new languages

 Provide error recovery and
feedback

 No Ambiguity
 Language independent generic

parser

Limitations

Parses whole source-
time consuming

 Classifier is bound to commit
errors even if the input is
acceptable according to a
grammar.

Needs complete
language specification

Needs language
specification

Training phase must be
repeated for every new
language

Parser development for
new language is
complex

Parser development for
new language is complex

does not care about
maximizing accuracy

does not care about
maximizing accuracy

Does not care about the
context of structures of
interest

Does not care about the
context of structures of
interest

No error recovery and
feedback

No error recovery and
feedback

Ambiguity Ambiguity
Language specific
parser

Language specific parser

Conclusion: From the table above it can be easily seen that parsers using NLP techniques have major
advantages over classical and fuzzy parsing. Due to machine learning and automatic parser generation, it
eliminates overhead of generating parser for every new language or version of the same and also does not need
language specification. In addition, it provides approximately 100% accuracy. Fuzzy parsers allow for the
fuzziness but they need language specification. If the two techniques can be combined together then we will be
able to have a language independent generic parser which does provide fuzziness. Here we suggest to develop a
new parsing technique based on the combination of above two techniques and our future work will be in that
direction.

Acknowledgement: We kindly extend our gratitude towards the researchers and authors whose work help us a
lot while writing this paper. Also we are grateful to Dr. Om Prakash Gupta as he has been a constant source of
inspiration and motivation for us. Finally we can not forget to thank our family members and colleagues for the
support they provided.

Sunanda Mulik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1614

References:

[1] http://en.wikipedia.org/wiki/Parsing
[2] Jens Nilsson, Proceedings of the 11th International Conference on Parsing Technologies (IWPT), Paris, October 2009 c Association

for Computational Linguistics
[3] delphixpg.com/docs/contextparsing.htm
[4] http://www.fz-juelich.de/jsc/kojak/opari/
[5] A. Aho, J.ulhman, Principles of compiler construction

Sunanda Mulik et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1615

