
Structured System Test Suite Generation
Process for Multi-Agent System

Zina Houhamdi

Software Engineering Department
Al-Zaytoonah University

Amman, Jordan

Belkacem Athamena

Software Engineering Department
Al-Zaytoonah University

Amman, Jordan

Abstract— In recent years, Agent-Oriented Software Engineering (AOSE) methodologies are proposed to
develop complex distributed systems based upon the agent paradigm. The implementation for such
systems has usually the form of Multi-Agent Systems (MAS). MAS’ testing is a challenging task because
these systems are often programmed to be autonomous and deliberative, and they operate in an open
world, which requires context awareness. In this paper, we introduce a novel approach for goal-oriented
software system testing. It specifies a testing process that complements the goal oriented methodology
Tropos and reinforces the mutual relationship between goal analysis and testing. Furthermore, it defines
a structured and comprehensive system test suite derivation process for engineering software agents by
providing a systematic way of deriving test cases from goal analysis.

Keywords— MAS Testing; Goal-Oriented Testing Methodology; System Testing; Test Case Generation

I. INTRODUCTION

MAS are increasingly taking over operations and controls in enterprise management, automated vehicles,
and financing systems, assurances that these complex systems operate properly need to be given to their owners
and their users [10]. This calls for an investigation of suitable software engineering frameworks, including
requirements engineering, architecture, and testing techniques, to provide adequate software development
processes and supporting tools.

There are several reasons for the increase of the difficulty degree of testing and debugging multi-agent
systems:
 Increased complexity, since there are several distributed processes that run autonomously and concurrently;
 Amount of data, since systems can be made up by thousands of agents, each owning its own data;
 Irreproducibility effect, which means that it is not ensured that two executions of the systems will lead to

the same state, even if the same input is used. As a consequence, looking for a particular error can be
difficult if it is not possible to reproduce it each time [8].
As a result, testing software agents and MAS seeks for new testing techniques dealing with their peculiar

nature. The techniques need to be effective and adequate to evaluate agent's autonomous behaviors and build
confidence in them. It is quite hard to verify that agents or MAS satisfy user requirements, behave correctly and
are not malicious.

Testing a single agent is different from testing a community of agents. When testing a single agent a
developer is more interested in the functionality of one agent and whether the agent operates for a set of
messages, contextual inputs and error conditions. But, when testing a community of agents, the tester is
interested in whether the agents operate together, are coordinated, and if message passing between the agents is
correct [5].

Several AOSE methodologies have been proposed [7]. In terms of testing and verification, while some
consider specification-based formal verification [2,4,12], other borrow Object-Oriented (OO) testing techniques,
taking advantage of a mapping of agent-oriented abstractions into OO constructs [1,11]. However, a structured
testing process for AOSE methodologies is still absent.

At the system level of MAS testing, we must test the intended emergent and macroscopic characteristics
and/or the intended qualities of the system as a whole. Some initial effort has been consecrating to the validation
of macroscopic MAS behaviors. Sudeikat and Renz proposed to use the system dynamics modeling notions for

Zina Houhamdi et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1681

the MAS testing. These make possible describing of the expected, macroscopic observable behaviors that create
from cyclic causalities structure. System simulations are then used to compute system state values in order to
examine whether causalities are observable [14].

To the best of our knowledge, there is no work dealing explicitly with testing MAS at the system level,
currently. In this paper, we propose a structured testing process that exploits the link between requirements and
test cases following the V Model. We describe the proposed approach with reference to the Tropos software
development methodology [9] and consider MAS as the target implementation technology.

The remainder of the paper is structured as follows. Section 2 recalls basic elements of the Tropos
methodology and introduces related works. Section 3 discusses the proposed approach, a system testing process
and test suite derivation. An example that illustrates how to derive test suites is presented in Section 4. Finally,
Section 5 gives conclusion and describes our future work.

II. BACKGROUND AND RELATED WORKS

A. Tropos
Tropos is an AOSE methodology that covers the whole software development process. Tropos is based on

two key ideas. First, the notion of agent and all related mentalistic notions (for instance goals and plans) are
used in all phases of software development, from early analysis down to the actual implementation. Second,
Tropos covers also the very early phases of requirements analysis, thus allowing for a deeper understanding of
the environment where the software must operate, and of the kind of interactions that should occur between
software and human agents. Tropos methodology spans five phases [2,9]:
a) Early requirements, concerned with the problem understanding by studying an organizational setting where

the intended system will operate. The output of this phase is an organizational model which includes relevant
actors (representing stakeholders) their respective goals (stakeholder’s objectives) and their
interdependencies.

b) Late requirements, where the intended system is described within its operational environment, along with
relevant functions (hardgoals) and qualities (softgoals). The intended system is introduced as a new actor. It
appears with new dependencies with existing actors that indicate the obligations of the system towards its
context as well as what the system expects from existing actors in its environment.

c) Architectural design, where the system’s global architecture is defined in terms of subsystems,
interconnected through data, control and other dependencies. More system actors are introduced. They are
assigned to subgoals or goals and tasks (those assigned to the system as a whole).

d) Detailed design, where behavior of each architectural component is defined in more detail including
specification of communication and coordination protocols. Agents' goals, beliefs and capabilities are
specified in detail using existing modeling languages like UML or AUML, along with the interaction
between them should occur between software and human agents.

e) Implementation, during this phase, the Tropos specification, produced during detailed design, is transformed
into a skeleton for the implementation. This is done through a mapping from the Tropos constructs to those
of a target agent programming platform, such as JADE [15]. Recent work on mapping Tropos goal model to
JADEX programming platform is described in [13].

B. Goal types versus test types
This section presents different goal types and testing types. The relationships between goal types and testing

levels are presented with reference to the process.

Test type: There are four types of testing: Agent testing, Integration testing, System testing and Acceptance
testing [10]. The objectives and scope of each type is described as follows:
 Agent testing: The smallest unit of testing in agent-oriented programming is an agent. Testing a single agent

consists of testing its inner functionality and agent’s capabilities to fulfill its goals and to sense and effect
the environment.

 Integration testing: An agent has been unit-tested; we have to test its integration with existing agents. In
some circumstances, we have to test also the integration of that agent with the agents that will be developed
and integrated subsequently. Integration testing make sure that a group of agents and environmental
resources work correctly together which involves checking an agent works properly with the agents that
have been integrated before it and with the “future” agents that are in the course of Agent testing or that are
not ready to be integrated. This often leads to developing mock agents or stubs that simulate the behaviors
of the “future” agents.

 System testing: Agents may operate correctly when they run alone but incorrectly when they are put
together. System testing involves making sure all agents in the system work together as intended.
Specifically, one must test the interactions among agents (protocol, incompatible content or convention,
etc.) and other concerns like security, deadlock.

Zina Houhamdi et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1682

 Acceptance testing: Test the MAS in the customer execution environment and verify that it meets the
stakeholder goals, with the participation of stakeholders.

Goal type: Different perspectives give different goal classifications. For instance, classify agent goals in agent
programming into three categories, namely perform, achieve, and maintain, according to the agent's attitude
toward them [3]. We use a general perspective on goals, but not from a specific subject, to classify them based
on the Tropos software engineering process.

Goals are classified into the following types according to the different phases of the process:
 Stakeholder goals: Represent stakeholder objectives and requirements towards the intended system. This

type of goal is mainly identified at the early requirements phase of Tropos.
 System goals: Represent system-level objectives or qualities that the intended system has to reach or

provide. This type of goal is mainly specified at the late requirements phase of Tropos
 Collaborative goals: Require the agents to cooperate or share tasks, or goals that are related to emergent

properties resulting from interactions. This type of goal can be called also as group goal, and they often
appear at the architectural design phase of Tropos.

 Agent goals: Belong to or are assigned to particular agents. This type of goal appears when designing
agents.

C. Goal-oriented testing
The V-Model is a representation of the system development process, which extends the traditional water-

fall model. The left branch of the V represents the specification stream, and the right branch of the V represents
the testing stream where the systems are being tested (against the specifications defined on the left-branch). One
of the advantages of the V-model is that it describes not only construction stream but also testing stream (unit
test, integration test, acceptance test) and the mutual relationships between them.

Tropos guides the software engineers in building a conceptual model, which is incrementally refined and
extended, from an early requirements model to system design artifacts and then to code, according to the upper
branch of the V depicted in Figure 1. Tropos integrates testing by proposing the lower branch of the V and a
systematic way to derive test cases from Tropos modeling results [10].

Figure 1. V-model of goal-oriented testing

Two levels of testing are distinguished in the model. At the first level of the model (external test executed
after release), stakeholders (in collaboration with the analysts), during requirement acquisition time produce the
specification of acceptance test suites. These test suites are one of the premises to judge whether the system
fulfills stakeholders’ goals. At the second level (internal test executed before release), developers refer to: goals
that are assigned to the intended system, high-level architecture, detailed design of interactions and capabilities
of single agents, and implement these agents.

In this work, we are interested by the first internal testing level exactly system testing. In next section, we
present in details a testing process model and we discuss how to derive systematically test cases from goal
models.

III. SYSTEM TEST SUITE DERIVATION
The System testing builds on the previous levels of testing namely agent testing and Integration Testing. It

focuses on testing the system as a whole. System Testing is a crucial step in Quality Management Process. In the
Software Development Life cycle, System Testing is the first level where the System is tested as a whole. The
System is tested to verify if it meets the functional and technical requirements. The System is tested in a context
that closely resembles the production environment where the application will be finally deployed. The System
Testing enables us to test, verify and validate both the Business requirements as well as the Application
Architecture [6].

Zina Houhamdi et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1683

Figure 2. System tests suite derivation flowchart

System tests suite derivation occur in parallel with Late Requirement and Architectural Design. According
to V model, the transition from Late Requirements to Architectural Design phase is a process which contains
three steps:
 Identifying agents that realize the specified system actors,
 Allotting system actors' goals (called system goals) to agents’ goals, and,
 Mapping system actors' dependencies to agents’ dependencies and interactions.

At this stage, there are agents, their goals, roles, collaborative goals, agents' dependencies for goals and
resources, the dependencies between agents and the context, regulations, constraints, and so on. System test
suites should consider and take these artifacts in account.

Similar to acceptance test suite derivation where we take stakeholder actors' goals as foundation concepts,
we use system actors' goals as foundations to create system test suites as they provide the system level
objectives and requirements. When the system as a whole is built so that the system actors' goals (including
functional hardgoals and quality softgoals) are fulfilled, it is ready to be passed to the customer for acceptance
test.

TS ← null

Identify system actors

Goal analysis of AL

Identify leaf goals

Identify which agent realize LG

Identify fulfillment criteria

testCase ← (Scenario, C)

INSERT (testCase, TS)

Next LA

Next ALLG ≠ null

End False

False

True

True

AL = Actors List

LG = Leaf Goals list

C = Criteria

LA ≠ null
False

True

Analyze AL goal model to identify
goals related to the LG

Identify context factors,
preconditions, inputs that facilitate or

Agent goals list

Next LG

Decomposition tree

LA = List of Agents

Scenario

Start

AL ≠ null

Zina Houhamdi et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1684

System test suite derivation consists of the following steps (Figure 2): for each system actor, the goal model
of the actor is analyzed to obtain its decomposition tree and then we filter the leaf goals. For each leaf goal g of
a system actor, we must create a test suite to test the goal g accomplishment.

Test suite creation consists of five steps:
 Identifying which agent(s) realize(s) the goal g,
 Analyzing the goal model of each agent to identify goals related to the achievement of g,
 Identifying contextual factors, pre-conditions, inputs that facilitate or trigger g,
 Identifying fulfillment criteria for g,
 Creating a test suite having a set of test cases for the goal g that take inputs and criteria identified from

previous steps.
In general, system actors can have more goals than those assigned to the system by stakeholder. So, the

number of system test suites is usually higher than the number of acceptance test suites. Moreover, at this stage
the system is designed, so more detailed information is available. As a consequence, we can reuse information
from acceptance test suites, but much more details can be added, such as fulfillment criteria for goals and
expected behaviors of involved agents.

The basic requirement for the system testing (i.e. all the derived test suites are passed) entails that all the
goals of all the system actors are achieved or satisfied.

IV. CASE STUDY

To illustrate our approach, we introduce a multi-agent system that is composed of several cleaner agents
working at a public garden. This software could be deployed on a physical platform composed of a set of
moving Robots. Robots are in charge of keeping the garden clean and agents in the system have to collaborate to
optimize their work and be nice with the visitors.

Following the guidelines of Tropos, we do the later requirement (Figure 3). There are two top softgoals that
the stakeholder wants to achieve: SG1: minimize cleaning expense and SG2: please visitors. To reach these
softgoals, three other sub-goals need to be fulfilled: G1: keep the garden clean, G2: Team work and G3: be
polite. There could be more goals that the stakeholder wants to achieve, but we consider only these goals to keep
the example simple and understandable.

Figure 3 shows the late requirements analysis for the cleaning Robot. The stakeholder delegates three goals
SG1, SG2, and G1 to the multi-agent system under construction. At a high-level view, the system adds two
hardgoals: G2: team work and G3: be polite in order to reach SG1, SG2, as required. Robots must achieve all
the three hardgoals.

Figure 3. Late requirements for cleaning Robot

After the late requirements analysis, system actors become visible in the MAS architectural design. In this
example, system actors are the cleaner agents. Goals of the system G1, G2, G3 are delegated to the agents.
Figure 4 depicts the architecture system as a whole, showing set of cleaner agents. Notice that at the deployment
time the number of agents will be determined by the number of available Robots. The mutual goal dependency
G2 represents the fact that the group of agents will coordinate to better achieve the system goal SG1 and will
reflect into individual agent goals.

Figure 4. MAS architecture

The internal architectural design of the cleaner agent is described in Figure 5 which shows the architectural
design of the cleaner agent. A number of goals and plans (tasks) are assigned to the agent. At the highest level

….. Cleaner
agent

Cleaner
agent

Cleaner
agent

G2: Team work

SG1: Minimize
Expense

Cleaning Robot

SG2: Please
Visitors

Contribution

Softgoal

Hardgoal

Dependence link

G3: Be polite G2: Team work

Actor

G1: Keep
garden clean

Zina Houhamdi et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1685

there are four root goals: G1: keep the garden clean, G2: team work, G3: be polite and G4: maintain battery. G1,
G2, G3 are delegated from the system, while G4 is the agent own goal to keep the agent alive. These goals are,
then, decomposed into sub-goals. For instance, G4: maintain battery is AND-decomposed into two sub-goals
G4.1: search charging station, and G: move to location. AND decomposition requires all sub-goals to be
accomplished to obtain the satisfaction of their root goal. Finally, we add Plans to the cleaner agent design in
order to achieve hardgoals. Besides the agents share resources, namely recharging-stations, bins, garbage and
obstacles, and knowledge about them.

Figure 5. Cleaner agent architecture

To create system test suites, we start analyzing the late requirements for cleaning Robot (Figure 3) and
understand that we need to test three goals: G1, G2, and G3. Next, based on the MAS architectural design and
the cleaner agent architecture, we identify which agent goals to test and which resources of the context to
configure. This identification can be straightforward based on goal identifiers, like in the case of the goal G2,
G3, but it may need further analysis, when the transition from system actors' goals to agents' goals is implicit,
like the goal G1. In this case, external information about problem domain described in analysis documents must
be used. TABLE I, describes system test suites that we derived for Cleaning Robot. It shows the goal realization
mapping between system actor and the cleaner agent.

TABLE I. TEST SUITES DERIVED FOR CLEANING ROBOT

Test
suite

System goal Agent Agent goal

TS1
G1: Keep the garden
clean

Cleaner
Agent

G1: Keep the garden clean
G4: Maintain battery
G2: Teamwork

TS2 G2: Teamwork
Cleaner
Agent

G2: Teamwork

TS3 G3: Be polite
Cleaner
Agent

G3: Be polite

TABLE II describes some test cases that are created for each system actor's goal, G1, G2 and G3,

accordingly. As apparent in TABLE II, the test case TC1.3 has an undefined test criteria (G*) with respect to the
cleaner agent, because in the cleaner agent architectural design, there is no goal or plan that aims at adapting the
behavior of the agent according to the amount of garbage and time. This is a clear indication that we have to
further improve the design of the cleaner agent. For example, we can add a goal, G5: changing workload to the
cleaner agent design, decompose it, and so forth. However, this example demonstrates that we can detect
problems, such as incomplete specifications or implicit specifications, completely early. In fact, system test

G2.3: broadcast
position info

G2.2: calibrate
local plan

G2.1: update
team info

G2: team work

G1.2: Clean up G1.1: Looking
for garbage

G1: Keep
garden clean

G4.1: Search
charging station

G: Move to
location

Stop/change
direction

Bins

Garbage

Charging station

Obstacles

Resource
AND Decomposition

Means-end

Legend

G3: be polite

Detect
human

Say hello

G3.1: identify
human

G3.2: give
a salute

Stop working
/moving

Update
society info Calibrate Broadcast

Patrol
Pick up
garbage

Look for
bins

Search
location

G4: Maintain
battery

Drop
garbage

Identify
object Move

Move
forward

Identify
obstacle

Avoid
obstacle

PlanGoal

Zina Houhamdi et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1686

suites are used first to refine the system design and detect design problems early; and later, to perform system
test.

TABLE II. TEST SUITE DERIVED FOR GOAL G1 (KEEP THE GARDEN CLEAN)

Test
case

Scenario Criteria

TC1.1

Given an actual area of the garden (A
for short), garbage are placed at
specified positions (p1; …; pn), the
amount of garbage is (a1; a2; …; an),
respectively. The Robot must clean this
area.

The cleaner agent must fulfill
two agent goals G1, G2 and
maintain G4 with respect to the
required time t.

TC1.2
Area A has garbage that is repeatedly
thrown into in a random manner.

The cleaner agent must fulfill
the agent goals G1, G2 in a
periodical manner.
It has to maintain the goal G4.

TC1.3

Depending on the time at the garden,
area A can be more or less dirty: the
amount of garbage is a function of time
and position.

The cleaner agent must achieve
the agent goals G1, G2, G4, so
as to adapt its cleaning interval
depending on the amount of
garbage. This adaptation can be
associated to a goal G*.

TABLE III. TEST SUITE DERIVED FOR GOAL G2 (TEAM WORK)

Test
case

Scenario Criteria

TC 2.1
The cleaner agents
work together in
area A.

The cleaner agents do not
overlap their cleaning
areas.

TC2.2
There is two
recharging stations
(X1;X2) in A.

There is no conflict with
regard to the recharging
station.

TABLE IV. TEST SUITE DERIVED FOR GOAL G3 (BE POLITE)

Test
case

Scenario Criteria

TC3.1

While the cleaning agents are
moving or cleaning in area A, there
are N humans moving in the area
along different directions.

The cleaner agents stop
moving/ working and nod
their heads to say hello
when they meet a human.

CONCLUSION
MAS system testing aims to test the system running in the target operational environment. As with the other

testing levels, system test suites are purposed at two distinctive points.
 To test the expected emergent and macroscopic characteristics of the system as whole.
 To test the quality properties that the expected system must achieve such as performance, openness and

fault tolerance.
This paper introduced a suite test derivation approach for system testing that takes goal-oriented

requirements analysis artifact as the core elements for test case derivation. The proposed process has been
illustrated with respect to the Tropos development process. It provides systematic guidance to generate test
suites from modeling artifacts produced along with the development process. We have discussed how to derive
test suites for system test from late requirement and architectural design. These test suites, on the one hand, can
be used to refine goal analysis and to detect problems early in the development process. On the other hand, they
are executed afterwards to test the achievement of the goals from which they were derived.

 Specifically, the proposed methodology contributes to the existing AOSE methodologies by providing:
 A testing process model, which complements the development methodology by drawing a connection

between goals and test cases, and,
 A systematic way for deriving test cases from goal analysis.

Zina Houhamdi et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1687

In this paper, we have presented a structured process for system test case generation with reference to the
Tropos methodology. In the future work, we will investigate other testing type like integration testing and agents
testing.

REFERENCES
[1] M. Cossentino, “From requirements to code with the PASSI methodology,” In Agent Oriented Methodologies, Hershey, PA, USA: Idea

Group Publishing, Chapter IV, pp. 79-106, 2005.
[2] A. Dardenne, A. Lamsweerde, and S. Fickas, “Goal-directed requirements acquisition,” Science of Computer Programming, vol. 20, 1-

2, pp. 3-50, 1993.
[3] M. Dastani, M. Riemsdijk, and J. Meyer, “Goal types in agent programming,” Proceeding 17th European Conference on Artificial

Intelligence, pp. 220-224, 2006.
[4] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso, “Specifying and analyzing early requirements in Tropos,”

Requirements Engineering, vol. 2, pp. 132-150, 2004.
[5] M. Gatti, and A. Staa, “Testing & debugging multi-agent systems: A state of the art report,” http://www.dbd.puc-

rio.br/depto_informatica/06_04_gatti.pdf, 2006.
[6] Exforsys Inc, “System testing: Why? What? & How?” http://www.exforsys.com/tutorials/testing/system-testing-whywhathow.html,

2006.
[7] B. Henderson-Sellers, and P. Giorgini, “Agent-oriented methodologies,” Hershey, PA, USA: Idea Group Publishing, 2005.
[8] M. Huget, and Y. Demazeau, “Evaluating multi-agent systems: a record/replay approach,” Proceedings of IEEE/WIC/ACM

International Conference, Intelligent Agent Technology (IAT 2004), pp. 536 – 539, 2004.
[9] J. Mylopoulos, J. Castro, “Tropos: A framework for requirements-driven software development,” Information Systems Engineering:

State of the Art and Research Themes, Lecture Notes in Computer Science, Springer-Verlag, June 2000.
[10] C. Nguyen, A. Perini, and P. Tonella, “Goal-oriented testing for MAS,” International Journal of Agent-Oriented Software Engineering,

LNCS 4951, pp. 58–72, 2008.
[11] J. Pavon, C. Sansores, and J. Gomez-Sanz, “Modelling and simulation of social systems with INGENIAS, International Journal of

Agent-Oriented Software Engineering, vol. 2, 2, pp. 196-221, 2008.
[12] A. Perini, M. Pistore, M. Roveri, and A. Susi, “Agent-oriented modeling by interleaving formal and informal specification,” Agent-

Oriented Software Engineering IV, 4th International Workshop, Melbourne, Australia, pp. 36-52, 2003.
[13] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos, “From capability specifications to code for multi-agent software,” In 21st

IEEE/ACM International Conference on Automated Software Engineering, pp. 253-256, 2006.
[14] J. Sudeikat, and W. Renz, “A systemic approach to the validation of self-organizing dynamics within MAS,” Proceeding of the 9th

International Workshop on Agent-Oriented Software Engineering, pp. 237-248, 2008.
[15] TILAB, “Java agent development framework,” http://jade.tilab.com/.

AUTHORS PROFILE

Dr. Zina Houhamdi received the M.Sc. and PhD. degrees in Software Engineering from Annaba University in
1996 and 2004, respectively. She is currently an Associate Professor at the department of Software Engineering,
Al-Zaytoonah University of Jordan. Her research interest includes Agent Oriented Software Engineering,
Software Reuse, Software Testing, Goal Oriented Methodology, Software Modeling and Analysis, Formal
Methods.

Dr. Belkacem Athamena was born in Algeria. He received the M.Sc. and PhD. degrees in Computer
Engineering and System/Software Modeling and Analysis from Annaba University in collaboration with UCL
University, Belgium, in 1994 and 2004, respectively. He is currently an Associate Professor at the department of
Software Engineering, Al-Zaytoonah University of Jordan. His research interests include System/Software
Modeling and Analysis, Multi-Agent, Fuzzy Logic, Neural Networks, Petri Nets, UML, VVT, Formal Methods,
Fault Diagnosis. He has published over 40 papers, chapter in books, and conferences.

Zina Houhamdi et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 4 Apr 2011 1688

