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ABSTRACT 
 
Real-time computations require exact bounded response times. For relatively simple models of computation, it 
is possible to determine conditions under which it is theoretically possible to guarantee that an invocation of a 
task will complete its execution. But it is very much complicated to guarantee a response time for the periodic 
tasks that execute in a distributed system application. In a distributed system, the applications are aligned as a 
set of dependent tasks. Here, the time required for a message to pass from one task to the other is a function of 
the individual timelines. Each task further constitutes of subtasks related by data dependencies. Also, tight 
bounds are essential for the tasks because of the dynamic nature of the distributed systems. As the distributed 
systems have the hard real time deadlines, the task executions have to be completed before the specified 
deadline. Hence the estimation of the worst case latency for a task link is essential. And, as the task structure 
and the application system model are well known in advance, for the synthesis and verification of application-
specific distributed systems this estimation is quite important. This paper proposes an approach to estimate the 
worst case latency of periodic tasks in a real time distributed system.  
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1. INTRODUCTION  
 

A real time distributed system environment basically consists of multiple computing processors. These 
processors interact with each other for computation and control of the system. Thus, the real time application 
consists of a set of periodic tasks. Wherein, each of these tasks has to get executed before the stipulated 
deadline. Any Real-time Distributed system has high dependability, where a system failure during execution 
because of either software or hardware faults can cause huge damages. As it is practically difficult to guarantee 
for all the tasks to be executed within the stipulated deadline, many application systems impose a small extra 
portion of the time limit for them to get executed. But, because of the complexity and the volatile nature of the 
distributed systems, it is a challenging task for the programmer to see to that the time limit is not compromised. 
Though unexpected issues like the resource sharing, paralleling computing, buffer overflow, communication 
medium etc may result in the increase in the task latency, it is a highly desirable character for a real time 
distributed system to be stable and thus avoids violations of the latency constraints. 
 

These systems are expected to function with high availability. Unlike in normal operating systems, the 
task characteristics are predefined in a real time system. It reduces the system overhead. The worst case latency 
of a periodic task can be estimated to observe whether the task meets its deadline or not. Thus the worst case 
latency estimation is very important in a real time environment for the schedulability of the periodic tasks.  
 

The worst case latency is defined as the difference between the times at which input data is first made 
available to an application task and the time at which an application task performs an output operation based on 
the input data. The latency estimation can be carried out by either simulation or by analytical methods. The 
simulation method depends on the various test inputs given, while the analytical method is application system 
independent. The worst-case latency is a conservative abstraction of all the possible situations but it could be too 
pessimistic in many applications, since all the mentioned worst cases do not occur at the same time.  
 

In this paper, a model based analysis is proposed which is a combination of both simulation and 
analytical methods. This approach is exhaustive as it is obtained directly from the system design but not from 
the inputs.  
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The paper is organized as follows:  
Section 2 briefly reviews some previous work done in the area of real time distributed systems. The 

proposed methodology is described in Section 3. Section 4 gives experimental results using our design.  Section 
5 concludes the described work.  
 
2. RELATED WORK 

[2] formulated methodologies for scheduling of real time distributed system. It is based on the fact that 
individual application is schedulable or not. While the proposed approach is less pessimistic as it is more system 
based. Though [3] approached the simulation method, the speed enhancement was observed at the cost of 
increased number of test vectors. Certain schedulability analysis approaches such as Rate monotonic analysis 
and Earliest Deadline First provide sufficient conditions for schedulability [4] in predictable periodic realtime 
systems. but fail to address the dynamics of events, race conditions, and the non deterministic execution order of 
tasks. 

 
[5] Showed a new methodology using the lack conditions but it depends on the concurrent code. [6] [7] showed 
the performance analysis of the distributed systems using the upper bound of the task model. Concept of shared 
memory resource in distributed systems was presented in [8].  

  
Time-triggered approaches [9] are becoming common in mission-critical applications.. For distributed 

system architecture based on time triggered architecture [10], the performance analysis is easy. But for the event 
triggered architectures it is very much complicated. The proposed approach not only supports the event 
triggered architecture but also the periodic task transactions. 
 
3. APPROACH 
 

In a real time distributed environment, tasks play a major role because all the computational and 
interaction part are being carried out by them. A task is enabled by the release of the events that may be received 
by other tasks. Each task can be in different states depending upon the instance.  
 

Consider a distributed system with a set of tasks being executed on multiple processors. These tasks are 
said to be periodic as they are raised continuously for communication and control. The initial offset, time period 
and the deadline are predefined. The system functionality F is defined as: 

F = (T, R, D) -------- Eq (1) 
 
Where: T = set of tasks in the system 

R = relation between the tasks in the system. Ie R ∈ T XT  
 D = deadline 
 

Each of ti ∈T, wherein ti one of the tasks of the system. The ti functionality is defined as: 
 ti = (Ii, Pi, Eimin, Eimax)  ------ Eq (2) 
where: Ii = Initial offset 
 Pi = Time period 
 Eimin = Shortest execution time 

Eimax =  Longest execution time (Worst case execution time) 
 
The edge factor E is defined as the flow output of ti as input to tj.  

E = (ti, tj) ------- Eq (3) 
 
The task link (task chain) L is defined as the sequence of sub tasks; 
L = (ti1, ti2, ti3, ti4 ………….) ------ Eq (4) 
 

When initially tasks are created, all possible relations among the tasks are established automatically by 
the operating system. When a message is sent from ti to tj, the deadline D is calculated with the help of ti 

invocation time. This is because, both these tasks are scheduled. When tj receives a message from any other 
process, then tj deadline is calculated on the basis of the arrival time of the message. Thus, the worst case 
latency in a periodic task model is dependant on the individual deadlines rather than the task structure. A task is 
said to be periodic if it is executed only once in every period and is characterized by its time period. A periodic 
task model can have N number of periodic tasks.  In real time distributed systems it is necessary and important 
to determine an upper bound of time in that the program block is executed. Also, it is necessary to implement 
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the application code as transactions that incorporate processing elements on more number of processors and 
communicates across more networks.  
 
We assume non-overwrite, FIFO semantics for buffers. Hence a message may have to wait for more than one 
invocation of the next task, depending on the number of earlier messages in the buffer. As the system has a 
limited number of task links, the worst case latency of the system is the maximum of the worst-case latencies of 
the individual task link. Because of this observation, we henceforth focus on analyzing the worst-case latency of 
a single task links. The worst case latency is defined as the difference between the times at which input data is 
first made available to an application task and the time at which an application task performs an output 
operation based on the input data. For a system F, with set of tasks T the worst case latency WCL up to the nth 
task in a task chain consisting of tasks from 1 to n, is given by: 
 
 WCL =  tin

k - ti1
k + Ei ------- Eq (5) 

Where: tin  = nth task of the task link ti 

 ti1 = 1
st task of the task link ti 

 k = kth  incocation 
 tin

k 
 = absolute time of the 1st task of the task link ti 

 Ei = some value between Eimin and Eimax 
 

Once the WCL is calculated for a single task link, other WCLs can be calculated and the system level 
WCL is the maximum of the WCLs of the individual task links. For an ideal distributed system, the WCL 
should be zero. But practically WCL will be equal to or less than the deadline D.  
 

Consider an example of a transition of a message from task ti to tj.  This being a distributed system, 
assume that these two tasks run on two different processors. Also, it establishes a communication network from 
N, from ti to tj. Task ti inputs data from the environment, does some initial processing and then passes its ‘result’ 
to the link. Task tj takes this result, undertakes further processing and produces an output for the environment. 
The following is the algorithm for the message transmission.  
 

Step 1: StartTime is the clock rate 
Step 2: Write StartTime to the communication network 
Step 3: Next release would be at a time equal to StartTime 
Step 4: Take input from environment 
Step 5: Process the input 
Step 6: Write result to the communication network (tj) 
Step 7: next release would be at a time equal to start time  + Time period of ti 
Step 8: delay until next release 
Step 9: go to step 4 untill the ti links is completed. Ie. ti1 to tin.  

 
Using equation 5, the worst case latency can be calculated.  
 
The following is the algorithm for the message reception by tj 
 

Step 1: read Start Time from communication network 
Step 2: next release  would be at Start Time + WCL 
Step 3: delay until next release 
Step 4: read from communication network (from ti to tj) 
Step 5: undertake processing 
Step 6: write result to the environment 
Step 7: next release would be at a time equal to next release + Time period of tj 
Step 8; go to step 3 untill the tj links is completed 

 
The advantage of the above algorithm is that the task tj executes at the right period and is guaranteed) to 

have data available on the link within the bounds of the analysis, when it executes the read operation. The 
arrival of the message at tj sets up the period for the task tj. Initially, if the data arrives early in the cycle, the 
read operation will subsequently block and the effective ‘period’ of the task will be greater than ti. But once the 
maximum latency for the data has been experienced tj will behave as a purely periodic task. Hence, the arrival of 
the message at tj sets up the period for tj. From the above algorithms and the equations, the following tabular 
column is constructed:  
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Assume that the start time is 0 and the transaction period is 20:  
 

 
*Because already a delay of 81 has been observed, which is greater than 80,the read operation at time 81 now 
does not block and the task loops with a fixed period of 20 at times 101, 121 etc. (ie. an offset of 21). Time units 
in msec.  
 

Once the worst case latency is observed, the loop becomes purely periodical and after that all the 
operations will be non blocking. From the above table it can be observed that the period was characterized by 
the periods of 37, 23, 21, and 20 before this 20 value became fixed. 
 

The worst case latency of a message entering into the model is stored in a clock variable V. its value is 
continuously checked for the deadline comparison when the corresponding output comes out.  The number of 
messages being transmitted are stored in a buffer variable. Randomly, the worst case latency of any message 
transmission can be calculated. The index of the selected message is assigned as I. I is verified to be non zero to 
ensure that this is the only input message for which V is being modified. Again when the task ti finishes the 
message transmission I value is decremented. In the execution period, we check the value of V against the 
specified deadline D. The worst case latency can be verified using the following equation:  
 
 WCL = (Clock rate = En && V > D && I >=1) 
 
4. RESULTS 
 

To validate the above algorithms and the equations, simulation experiments were performed. The 
UPPAAL tool was employed for the verification and thus obtained are the latencies for various combinations of 
the time period and the transaction time.  
 

  
* Time units in msec 
 

In the simulations once the worst-case is reached the simulations continue the latency. If the real upper 
bounds are below the worst-case values used in the static analysis, the periodic model will stabilize at a value 
below the theoretical worst-case. It shows only the worst-case situations experienced by the system. 
 
5. CONCLUSIONS 
 

This paper proposed an approach for the periodic tasks whose transactions are dynamically set by its 
own characteristics. We have observed that the task with maximum latency for its input profile will execute as 
regular periodic tasks with a fixed period. The worst case latency of the periodic task model is quite important to 
design because it needs the exact boundaries for the validation of correctness with respect to the functionality of 
the real time distributed system. The worst case latency thus estimated is further used to check whether the 
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predefined deadline is being met by the system or not. Also this methodology aims at estimation of the latency 
with minimum transactions and thus not requiring setting much offset for the later transactions 
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