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Abstract—This paper solves the exponential observer design problem for Lotka-Volterra systems. 
Explicitly, Sundarapandian’s theorem (2002) for observer design for exponential observer design is used 
to solve the nonlinear observer design problem for 2-species, 3-species and 4-species Lotka-Volterra 
systems. Numerical examples are provided to illustrate the effectiveness of the proposed exponential 
observer design for the Lotka-Volterra systems.  
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I.  INTRODUCTION   

The nonlinear observer problem is one of the central problems in the control systems literature. In the control 
systems design, it is often necessary to construct estimates of state variables, which are not available for direct 
measurement. In such cases, the state vector of the control system can be approximately reconstructed by building 
an observer which is driven by the available outputs and inputs of the original control system. Local observer 
design for nonlinear control systems is one of the central problems in the control systems literature. 

The problem of designing observers for linear control systems was first introduced by Luenberger ([1], 1966) 
and that for nonlinear control systems was proposed by Thau ([2], 1973). Over the past three decades, significant 
attention has been paid in the control systems literature to the construction of observers for nonlinear control 
systems. 

A necessary condition for the existence of an exponential observer for nonlinear control systems was obtained 
by Xia and Gao ([3], 1988). Explicitly, in [3], Xia and Gao showed that an exponential observer exists for a 
nonlinear system only if the linearization of the nonlinear system is detectable.  

On the other hand, sufficient conditions for nonlinear observers have been obtained in the control systems 
literature from an impressive variety of points of view. Kou, Elliott and Tarn ([4], 1975) obtained conditions for 
the existence of exponential observers using Lyapunov-like method. In [5-10], suitable coordinate 
transformations were found under which a nonlinear control system is transferred into a canonical form, where 
the observer design is carried out. In [11], Kazantzis and Kravaris obtained results on nonlinear observer design 
using Lyapunov auxiliary theorem. In [12-13], Tsinias derived sufficient Lyapunov-like conditions for the 
existence of asymptotic observers for nonlinear systems. A harmonic analysis approach was proposed by Celle et. 
al. [14] for the synthesis of nonlinear observers. 

Necessary and sufficient conditions for the existence of local exponential observers for nonlinear control 
systems were obtained using geometric techniques by Sundarapandian ([15], 2002). Krener and Kang ([16], 
2003) introduced a new method for the design of observers for nonlinear systems using backstepping.  

An important interactive model of nonlinear systems is the two species model discovered independently by 
the Italian mathematician Vito Volterra ([17], 1926) and the American biophysicist ([18], 1925). This important 
model of simultaneous differential equations paved the way to multispecies population models and a formal study 
of food chains and ecosystems ([19], 2002).  

Recently, there has been significant interest in the applications of mathematical systems theory to population 
biology systems [20-23]. A survey paper by Varga ([20], 2008) reviews the research done in this area. Scarelli 
and Varga ([21], 2002) obtained results for the controllability of selection-mutation models. Lopez, Gamez and 
Varga ([22], 2005) obtained results on the observability and controllability in selection-mutation models. Lopez, 
Gamez and Molnar ([23], 2007) obtained results on the observability and observers in a food web. 

This paper is organized as follows. In Section II, we review the definition of nonlinear observers and 
observability and the results of observers and observability for nonlinear systems. In Section III, we derive new 
results on the design of exponential observers for two species Lotka-Volterra systems. In Section IV, we derive 
new results on the design of exponential observers for three species Lotka-Volterra systems. In Section V, we 
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derive new results on the design of exponential observers for four species Lotka-Volterra systems. Finally, 
Section VI provides the conclusions of this paper. 

II. REVIEW OF OBSERVABILITY AND OBSERVERS FOR NONLINEAR SYSTEMS 

By the concept of a state observer, it is meant that from the observation of certain states of the system 
considered as outputs or indicators, it is desired to estimate the state of the whole system as a function of time.  

Consider the nonlinear system described by 

             ( )x f x                                                                                                                                        (1a) 

             ( )y h x                                                                                                                                        (1b) 

Where nx R is the state and py R the output. It is assumed that : ,n nf R R : n ph R R are 
1C mappings and for some ,nx R  the following hold: 

                  ( ) 0,   ( ) 0.f x h x    

Note that the solutions x of the equation ( ) 0f x  are called equilibrium points of the dynamics (1a).  

Definition 1. The nonlinear system (1) is called locally observable at the equilibrium x over a given time 
interval [0, ],T if there exists 0  such that for any two different solutions x and  of the system (1a) with  

                 ( )x t x     and  ( )t x    for  0, ,t T  

the observed functions h x and h  are different, i.e. there exists at least one value  0,T  such that 

                   ( ) ( ).h x h         

For the formulation of a sufficient condition for local observability of the nonlinear system (1), consider the 

linearization of (1) at the equilibrium x x given by 

            x Ax                                                                                                                                            (2a) 

            y Cx                                                                                                                                            (2b) 

where  

                  
x x

f
A

x 

    
  and  .

x x

h
C

x 

    
 

Theorem 1 (Lee and Markus, 1971) 

If the observability matrix for the linear system (2) given by 

                  

1

( , )

n

C

CA
C A

CA 

 
 
 
 
 
 


O  

has rank ,n then the nonlinear system (1) is locally observable at .x x    

Definition 3 (Sundarapandian, 2002) 

A 1C dynamical system described by 

               ( , ),      nz g z y z R                                                                                                                  (3) 

Is called a local asymptotic (respectively, exponential) observer for the nonlinear system (1) if the composite 
system (1) and (3) satisfies the following two requirements: 
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(O1) If (0) (0),z x then ( ) ( )z t x t for all 0.t   

(O2) There exists a neighbourhood V of the equilibrium x x of nR such that for all  (0), (0) ,z x V  

the estimation error ( ) ( ) ( )e t z t x t  decays asymptotically (respectively, exponentially) to zero.  

Theorem 2 (Sundarapandian, 2002) 

Suppose that the nonlinear system (1) is Lyapunov stable at the equilibrium x x and that there exists a matrix 
K such that A KC is Hurwitz. Then the nonlinear system defined by 

             ( ) [ ( )]z f z K y h z                                                                                                                     (4) 

is a local exponential observer for the nonlinear system (1).   

Remark 1.  If the estimation error is defined as ,e z x  then the estimation error is governed by the dynamics 

              ( ) ( ) ( ) ( )e f x e f x K h x e h x                                                                                      (5) 

Linearizing the error dynamics (5) at x x yields the system 

             ,e Ee  where .E A KC                                                                                                            (6)                                      

If ( , )C A is observable, i.e. if the observability matrix ( , )C AO has full rank, then the eigenvalues of 

E A KC   can be arbitrarily assigned in the complex plane. Since the linearization of the error dynamics (5) 
is governed by the system matrix ,E it follows that when ( , )C A is observable, then a local exponential observer 
of the form (4) can be always found so that the transient response of the error decays quickly with any desired 
speed of convergence.    

III. EXPONENTIAL OBSERVERS FOR TWO SPECIES LOTKA-VOLTERRA SYSTEMS 

In the 1920s, the Italian mathematician, Vito Volterra ([17], 1926) proposed a differential equation model to 
describe the population dynamics of two interacting species, a predator and its prey. With this model, Volterra 
hoped to explain the observed increase in predator fish and corresponding decrease in the prey fish in the Adriatic 
Sea during the World War I. Such mathematical models have long proven useful in describing how populations 
of various species evolve over time.  

Independently, the American biophysicist, Alfred Lotka ([18], 1925) discovered the very same differential 
equation model to describe a hypothetical chemical reaction in which the chemical concentrations oscillate. 
Collectively, the interacting two species population dynamics model is referred to as Lotka-Volterra system. 

The two species Lotka-Volterra system consists of the following system of differential equations 

           
1 1 1 2

2 2 1 2

x ax bx x

x cx dx x

 
  




                                                                                                                         (7) 

where 2 ( )x t and 1( )x t represent, respectively, the predator population and the prey population as functions of 

time. In the model (7), the parameters , , , 0a b c d  have the following interpretation:  

(i) a represents the natural growth rate of the prey in the absence of predators. 

(ii) b represents the effect of predation on the prey. 

(iii) c represents the natural death rate of the predator in the absence of prey. 

(iv) d represents the efficiency and propagation rate of the predator in the presence of prey. 

The equilibrium points of the Lotka-Volterra system (7) are obtained by setting 1 0x  and 2 0,x  and 

solving the resulting nonlinear equations for 1x and 2 :x  

                 
1 2

2 1

( )  0

( ) 0

x a bx

x c dx

 
  

                                                                                                                     (8)              
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By solving the system (8), we obtain the equilibrium points, 
0

0

 
  
 

0 and 
/

.
/

c d
x

a b
  
  
 

 

The linearization matrix of the nonlinear system (7) at the origin is given by 

                     
0

(0)
0

af
A

cx

 
     

 

which has a positive eigenvalue 1 a  and a negative eigenvalue 2 .c   This shows that the equilibrium   

x  0  of the Lotka-Volterra system (7) is a saddle point, which is unstable.  

On the other hand, the linearization matrix of the nonlinear system (7) at the equilibrium x x is given by 

                   
0 /

( )
/ 0

bc df
A x

ad bx
  

     
                                                                                           (9) 

which has purely imaginary eigenvalues .j ac   This is called a critical case in stability analysis. 

More insight into the stability nature of the equilibrium x is obtained by eliminating t between the two 
differential equations in the Lotka-Volterra system (7) and integrating the resulting separable ODE:  

                        2 2 2 1

1 1 1 2

( )

( )

dx x x c dx

dx x x a bx

 
 





                                                                                                        (10) 

Integration of (10) yields the family of state orbits 

                 2 2 1 1ln ln ,a x bx c x dx k                                                                                                 (11) 

where k is the constant of integration.  

 
Figure 1. State Orbits of the Two Species Lotka-Volterra System 

Fig. 1 depicts the state orbits of the two species Lotka-Volterra system (7) . Thus, it is clear that the 

equilibrium * /

/

c d
x

a b

 
  
 

is stable. 

Next, we suppose that the prey population is given as the output function of the system (7), i.e. 

        1 1y x x                                                                                                                                        (12) 
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The linearization of the output function (12) at the equilibrium x x is 

          1 0
h

C x
x


 


                                                                                                                (13) 

From (9) and (13), the observability matrix for the Lotka-Volterra system (7) with output (12) is obtained as 

        
1 0

( , )
0 /

C
C A

CA bc d

   
       

O  

which has full rank. Thus, by Theorem 1, we obtain the following result for the Lotka-Volterra system (7). 

Theorem 3. The two species Lotka-Volterra system (7) with the output function (12) is locally observable at the 

equilibrium .x x     

Also, we have shown that the equilibrium x x of the Lotka-Volterra system (7) is Lyapunov stable. Thus, 
by Sundarapandian’s Theorem (Theorem 2), we obtain the following result. 

Theorem 4. The two species Lotka-Volterra system (7) with output function (12) has a local exponential observer 
of the form 

               ( ) ( ) ,z f z K y h z                                                                                                              (14) 

where K is a gain matrix such that A KC is Hurwitz. Since ( , )C A is observable, a gain matrix K can be 

found so that the error matrix E A KC  has arbitrarily assigned eigenvalues with negative real parts.     

Example 1. Consider a predator-prey model given by 

           
1 1 2

2 2 1

(6 1.5 )

( 3 0.5 )

x x x

x x x

 
  




                                                                                                                         (15) 

which has the positive equilibrium  6, 4 .
T

x                                                                                                      

Suppose that the prey population is available for measurement. Thus, we can take as the output function 

            1 1 1 6.y x x x                                                                                                                          (16) 

The linearization pair of the system (15)-(16) about the equilibrium x x is: 

      
0 9

2 0
A

 
  
 

   and    1 0 .C   

We have already shown that the system linearization pair ( , )C A is observable. Thus, the eigenvalues of 

A KC can be arbitrarily placed. Using Ackermann’s formula [28], we can choose K so that A KC has the 

eigenvalues  2, 2 .  A simple calculation using MATLAB yields 
2

.
7

K
 

   
 

By Theorem 4, a local exponential observer for the given system (15)-(16) around x x is given by 

        1 1 2
1

2 2 1

(6 1.5 ) 4
6

( 3 0.5 ) 14 / 9

z z z
y z

z z z

     
              




                                                                    (17) 

Fig. 2 depicts the convergence of the observer states 1z and 2z of the system (17) to the plant states 1x and 

2x of the Lotka-Volterra system (15). For simulation, we have taken the initial conditions as 

                 
4

(0)
1

x
 

  
 

   and   
8

(0) .
5

z
 

  
 
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Figure 2. Local Exponential Observer for the Two Species Lotka-Volterra System (15)-(16) 

IV. EXPONENTIAL OBSERVERS FOR THREE SPECIES LOTKA-VOLTERRA SYSTEMS 

In this section, we solve the problem of nonlinear observer design for three-species Lotka-Volterra systems, 

where the lowest level prey 1x is preyed upon by a mid-level species 2x which is, in turn, preyed upon by a top-

level species 3.x Typical examples of such three-species Lotka-Volterra ecosystems are mouse-snake-owl, 

vegetation-hare-lynx and worn-robin-falcon ecosystems. 

The three species Lotka-Volterra system is given by 

          

1 1 1 2

2 2 1 2 2 3

3 3 2 3

   

   

  

x a x b x x

x c x d x x e x x

x f x g x x

 
   
  





                                                                                                    (18) 

where  , , , , , , 0.a b c d e f g       

The Lotka-Volterra system (18) has two equilibria, viz. 

           

0

0

0

 
   
  

0    and   

/

/ .

0

c d

x a b

 
   
  

 

The equilibrium at the origin is unstable and the equilibrium x x is stable under the assumption that 

.ga fb  In this section, we shall study the nonlinear observer design problem around .x x  

We assume that the lowest level prey population 1x is available for measurement. Thus, we take the output 

function of the system as                                                       

            1 1 .y x x                                                                                                                                       (19) 

The linearization matrix of the plant dynamics (18) at x x is given by 

              
0 / 0

/ 0 /

0 0 ( / )

bc d
f

A x ad b ae b
x

f ga b



 
     

   
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The linearization of the output function (19) at x x is given by 

                1 0 0 .
h

C x
x


 


 

The observability matrix of the given system at x x is obtained as 

            
2

1 0 0

( , ) 0 / 0

0 /

C

C A CA bc d

CA ac ace d

   
        
      

O  

which has the determinant 
2

0.
abc e

d
   Thus, the observability matrix ( , )C AO has full rank. 

Hence, by Theorem 1, we have proved the following result. 

Theorem 5. The three-species Lotka-Volterra system (18) with the output function (19) is locally observable at 

.x x   

If we suppose that 0
ga

f
b

    or equivalently that ,ga fb then by Lyapunov stability theory, it can be 

easily established that the equilibrium x x is Lyapunov stable. Thus, we can apply Sundarapandian’s theorem 
(Theorem 2) to the three-species Lotka-Volterra system (18)-(19) and arrive at the following result. 

Theorem 6. Let .ga fb Then the Lotka-Volterra system (18)-(19) has a local exponential observer of the form 

               ( ) ( ) ,z f z K y h z                                                                                                              (20) 

where K is a gain matrix such that A KC is Hurwitz. Since ( , )C A is observable, a gain matrix K can be 

found so that the error matrix E A KC  has arbitrarily assigned eigenvalues with negative real parts.     

Example 2. Consider a three-species Lotka-Volterra population model given by 

          

1 1 1 2

2 2 1 2 2 3

3 3 2 3

2 0.5

2 0.6

3 0.4

x x x x

x x x x x x

x x x x

 
   
  





                                                                                                           (21) 

which has the non-trivial equilibrium  2, 4, 0 .
T

x   

Here, the condition ga fb is satisfied because 2, 0.5, 3a b f   and 0.4.g   

Thus, the equilibrium x x of the system (21) is Lyapunov stable as depicted in Fig. 3.  

We assume that the lowest level prey population 1x is available for measurement. Thus, we take the output 

function of the system as                                                       

            1 1 1 2.y x x x                                                                                                                    (22) 

T he linearization pair of the three-species Lotka-Volterra system (21)-(22) at x is obtained as 

             

0 1 0

4 0 2.4

0 0 1.4

A

 
   
  

    and    1 0 0 .C   
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Figure 3. State Orbits of the Three-Species Lotka-Volterra System (21) 

As already shown earlier, the system pair ( , )C A is observable. Thus, we can find an observer gain matrix 

K such that the eigenvalues of the error matrix E A KC   can be arbitrarily assigned in the stable region of 
the complex plane. In particular, using Ackermann’s formula, we can find a gain matrix K so that E A KC   

has the eigenvalues  2, 2, 2 .    A simple calculation yields  4.6, 1.56, 0.09 .
T

K    

Thus, by Theorem 6, a local exponential observer for the Lotka-Volterra system (21)-(22) near x is  

            
1 1 1 2

2 2 1 2 2 3 1

3 3 2 3

2 0.5  4.6

2 0.6 1.56 2

3 0.4 0.09

z z z z

z z z z z z y z

z z z z

     
                 
           





                                                  (23) 

Fig. 4 depicts the convergence of the observer states 1 2,z z and 3z of the observer system (23) to the plant 

states 1 2,x x and 3x of the three-species Lotka-Volterra system (21).  

For simulation, we have taken the initial conditions as  (0) 4, 6, 2
T

x  and  (0) 8, 2, 5 .
T

z   

 
Figure 4. Local Exponential Observer for the Three Species Lotka-Volterra System (21)-(22) 
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V. EXPONENTIAL OBSERVERS FOR FOUR SPECIES LOTKA-VOLTERRA SYSTEMS 

In this section, we solve the problem of nonlinear observer design for four-species Lotka-Volterra systems, 

where the lowest level prey 1x is preyed upon by a mid-level species 2x which is, in turn, preyed upon by a mid-

level species 3x and which is, in turn, preyed upon by a top-level species 4.x Typical examples of such four-

species Lotka-Volterra ecosystems are vegetation-mouse-snake-owl,  worm-frog-snake-falcon, etc. 

The four species Lotka-Volterra system is given by 

          

1 1 1 2

2 2 1 2 2 3

3 3 2 3 3 4

4 4 3 4

   

   

   

  

x a x b x x

x c x d x x e x x

x f x g x x h x x

x x x x 

 
   
   
  






                                                                                                    (24) 

where  , , , , , , , , , 0.a b c d e f g h         

The system (24) has two equilibria, viz.  0, 0, 0, 0
T0 and  / , / , 0, 0 .

T
x c d a b   

The equilibrium at the origin is unstable and the equilibrium x x is stable under the assumption that 

.ga fb   In this section, we shall study the nonlinear observer design problem around .x x  

We assume that the lowest level prey population 1x is available for measurement. Thus, we take the output 

function of the system as                                                       

            1 1 .y x x                                                                                                                                      (25) 

The linearization matrix of the plant dynamics (24) at x x is given by 

              
0 / 0 0

/ 0 / 0

0 0 ( / ) 0

0 0 0

bc d

ad b ae bf
A x

f ag bx





 
    
  
  

 

The linearization of the output function (25) at x x is given by 

                1 0 0 0 .
h

C x
x


 


 

It is easy to show that the observability matrix ( , )C AO has rank three, i.e. the system (24)-(25) is not 

observable.  However, since the unobservable mode    is stable, it is easy to show that the system (24)-
(25) is detectable, i.e. there exists a matrix K such that A KC is Hurwitz. Hence, we can apply 
Sundarapandian’s theorem (Theorem 2) to the four-species Lotka-Volterra system (24)-(25) and arrive at the 
following result. 

Theorem 7. Let .ga fb Then the Lotka-Volterra system (24)-(25) has a local exponential observer of the form  

               ( ) ( ) ,z f z K y h z                                                                                                              (26) 

where K is a gain matrix such that A KC is Hurwitz.    
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Example 3. Consider a four-species Lotka-Volterra population model given by 

          

1 1 1 2

2 2 1 2 2 3

3 3 2 3 3 4

4 4 3 4

3 0.5

4 2 0.5

4 0.2 0.5

2

x x x x

x x x x x x

x x x x x x

x x x x

 
   
   
  






                                                                                                           (27) 

which has the non-trivial equilibrium  2, 6, 0, 0 .
T

x   

Here, the condition ga fb is satisfied because 3,  0.5,  4a b f   and 0.2.g   

Thus, the equilibrium x x of the system (27) is Lyapunov stable as depicted in Fig. 5.  

 
Fig. 5. State Orbits of the Four-Species Lotka-Volterra System (27) 

We assume that the lowest level prey population 1x is available for measurement. Thus, we take the output 

function of the system as                                                       

            1 1 1 2.y x x x                                                                                                                     (28) 

T he linearization pair of the four-species Lotka-Volterra system (27)-(28) at x is obtained as 

             

0 1 0 0

12 0 3 0

0 0 2.8 0

0 0 0 2

A

 
  
 
  

    and    1 0 0 0 .C   

If we take  3.2, 8.96, 0.1707, 2 ,
T

K    then it is easy to check that E A KC  is Hurwitz 

with the eigenvalues  2, 2, 2, 2 .     
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Thus, by Theorem 7, a local exponential observer for the Lotka-Volterra system (27)-(28) near x is  

            

1 1 1 2

2 2 1 2 2 3
1

3 3 2 3 3 4

4 3 44

3 0.5 3.2

4 2 0.5 8.96
2 .

4 0.2 0.5 0.1707

2 2

z z z z

z z z z z z
y z

z z z z z z

z z zz

     
               
        
          






                                              (29) 

Fig. 6 depicts the convergence of the observer states 1 2 3, ,z z z and 4z of the observer system (29) to the plant 

states 1 2,x x and 3x of the four-species Lotka-Volterra system (27).  

For simulation, we have taken the initial conditions as 

    

3

8
(0)

5

4

x

 
 
 
 
 
 

     and   

1

4
(0) .

7

6

z

 
 
 
 
 
 

 

 

 
Figure 6. Local Exponential Observer for the Four-Species Lotka-Volterra System (27)-(28) 

VI. CONCLUSIONS 

For many real-world problems of population and conservation ecology, an efficient monitoring system is of 
great importance. In this paper, the methodology based on Sundarapandian’s theorem (2002) has been suggested 
for the monitoring of multi-species Lotka-Volterra systems, viz. two-species, three-species and four-species 
systems. Theorems have been derived in detail for each of the multi-species Lotka-Volterra systems studied in 
this paper and numerical examples have been provided to illustrate the effectiveness of the proposed exponential 
observer design for the multi-species Lotka-Volterra population biology systems. 
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