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Abstract -  This paper proposes Sextic Curve Cryptography, which is used to increase the safety 
measures.  The methods to find the critical points in the SCC based on Atriphtaloid symmetric curve 
using point addition and point doubling also explored here.  The operations in finite fields makes the data 
more secure, which is expressed by several field operations.  The experimental result shows the safety 
measures and harder security of data.  The overall objective is to develop harder security measures using 
Sextic Curve Cryptography. 
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I. INTRODUCTION 

One of the fundamental tools used in information security is the signature. It is a building block for many 
other services such as non-repudiation, data origin authentication, identification, and witnessing. At contract age 
the signature evolves to take on a very integral part of the person’s identity.  

RSA and ECC[1][4] are very efficient algorithms used in signature.  The code to implement ECC is no more 
complex than one that efficiently does modular arithmetic with big integers[5][9][12].  It is faster, at least for 
private key operations, since until someone comes up with a sub exponential algorithm for breaking ECC, the key 
can be smaller[7][8][10].  For public key operations, such as signature verification, RSA is likely to be faster, 
even with larger keys, because it can use a small public exponent[13].  The main advantage ECC has over RSA is 
that the basic operation in ECC is point addition, which is known to be computationally very expensive.  To 
achieve reasonable security, a 1024-bit modulus would have to be used in a RSA system, while 160-bit modulus 
should be sufficient for ECC[14].  Most attacks on ECC are based on attacks on similar discrete algorithm 
problems[3][6], but these work out to be much slower due to the added complexity of point addition[2][11].  

In order to rectify the problems faced in RSA and ECC, the author proposed the new approach in the 
symmetric curves, which is called Sextic Curve Cryptography (SCC).  This proposed method will provide the 
harder safety measures. 

The second section expresses the origin and characteristics of the SCC.  The third and fourth sections produce 
the point calculation by point addition and point doubling.  The methods to increase the harder security using 
finite fields, may available in the section five.  The section six shows the key pair generation method.  The 
experimental results and the discussion about the results are elaborated in the section seven.  This paper 
concluded with the concluding remarks. 

 

II. SEXTIC CURVE CRYPTOGRAPHY 

The proposed SCC is defined from the Sextic Curves.  As in the case of ECC the security of the derived curves 
grow exponentially in its parameters.  In view of the smaller key sizes the new algorithms also can be 
implemented in smart cards without mathematical co-processors.  It may also become important for wireless 
sensor networks. 
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A.  Sextic Curves 

Though there is a family of curves under this the most suitable one is Atriphtaloid, which is also called 
atriphtothlassic curve.  The general form of the equation of the curve is 

0)()( 22224  baxyxx
, where a, b are the parameters. 

The curve can be reduces to 

322222 2 xbabxxayx 
  ..…………….(1) 

This equation is taken as the standard form throughout this paper.  This equation involves additions and 
multiplications over objects that are represented by x, y, a and b with x always positive.  The characteristic of this 
equation is zero.  The forms of the curve for various parameters are presented in Figure 1. 

The discriminant of the polynomial (1) is 0b and 02 3 ba .  Now for the curves to be non-degenerate, 
the above property should be satisfied.  When the discriminant is zero, the curve will have cusps which should not 
be included in the analysis any further. 

 

a=3 b=1

- 4

- 3

- 2

- 1

0

1

2

3

4

-4 -3.6 -3.2 -2.8 -2 .4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1 .6 2 2.4

X  v a lu e

a=0 b=5

-4

-3

-2

-1

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

X  v a l u e Ser i es2

Ser i es1

a=0 b=6

-6

-4

-2

0

2

4

6

1 3 5 7 9 11 13 15 17 19 2 1

X  v a l u e Ser i es2

Ser i es1

a=3 b=2

- 15

- 10

- 5

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

X  v a lu e

a=1 b=4

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 2 1

X  v a l u e Ser i es2

Ser i es1

a=1 b=5

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 2 1

X  v a l u e

Ser i es2

Ser i es1

 
 

Figure 1. Forms of the curve for various parameters 

 

Equation (1) shows that the SCC is symmetric with respect to x-axis.  The non-zero value of the discriminant 
assures the existence of three distinct points on the curve which is used for addition and multiplication. 

The points on SCC can be shown to constitute a group.  Let P and Q be two points on the SCC.  Now join P 
and Q by means of a straight line, the third point of intersection of the straight line with the curve, if such an 
intersection exist it is denoted by R.  The mirror image of this point with respect to the x coordinate is the point 
P+Q.  If the third point does not exist it is called a point at infinity.  We denote this point at infinity by the symbol 
O, and this is used as the additive identity in the group operation. 

We say that P+O = P for all P in the curve.  The additive inverse of P is its mirror reflection with respect to 
the x axis.  If Q denotes this point then Q = -P.  We also say that, the mirror reflection of the point at infinity is 
same as the point at infinity.  If we have a point at which the tangent is parallel to the y-axis, for this point the 
mirror image is itself.  Here P + P = O. 

We shall now define the addition of P with itself.  If P and Q are distinct then there is no problem.  The 
addition of P with itself is making the Q tends to P.  In this case as Q tends to P, which implies that it will become 
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a tangent at P.  Thus to find P+P, we draw a tangent at P find the cutting point of this tangent with the curve and 
take its mirror image.  In case the tangent at P cuts the curve at infinity then P+P = O. 

B.  Characteristics and Singularities of Sextic Curves 

A point on the curve is singular if 
dx

dy is not well defined.  This is a point at which both numerator and 

denominator are zero.  Thus the S(a, b) will be singular only if it contains a point (x, y) such that 

022 32  xbabx  and 0y and the point (x, y) satisfying these two equations lies on the curve.  Since 0y , 

all the three points must be on the x-axis.   

When the underlying field is of characteristic 2, thus the curve is not singular.  When characteristics is two 
then it is not possible to crack.  For the characteristic is 3, the curve becomes singular if  

)12(

2
2

2




b

ab
x

 

Thus when using the S(a, b) we avoid the field with characteristic 3 since it needs a constraint on the 
parameters in order for the curve to not become singular. 

III. POINT ADDITION IN SCC 

Let P and Q be two points on the curve S(a,b), we can draw a line through P and Q.  Find the point at which 
this line again intersects S(a, b) if R denote this point then P+Q is the mirror reflection of R about the x-axis. 

The equation of the straight line that runs through the points P and Q is normally of the form   xy , 

where  is the slope and 


is the intercept on the y axis.  For any point    (x, y) to lie at the intersection of the 

straight line and the curve S(a, b), the equation 
322222 2)( xbabxxaxx    must be true.  Since it is a 4th 

degree equation, there are four points of intersection.  The third point is the intersection on the y axis say S and 

the 4th root is the xR, the x co-ordinate of R.  At S the x coordinate is zero, which implies that 02 b .   

We have, 2/)21(  QPQP xxx  and 
PRPQP yxxy  )( , where y coordinate of the reflection –

R is negative of the y coordinate of the point R on the intersecting straight line.  The illustrations for point 
addition are given in Figure 2. 

IV. POINT DOUBLING IN SCC 

To Compute 2P on S(a, b), we draw a tangent at P and find the intersection of this tangent on the curve again 
leaving the point of intersection on the y-axis.  Since drawing a tangent at P is the limiting case of drawing a line 
through P and Q, as Q approaches P, two of the three roots of the equation 222 2)( xabxaxx   must 

coalesce into the point xP and the third root is xR. 

 
  

 

 

 

 

 

 

 

 

Figure 2. Point addition 

a=2 b=1

-5

-4

-3

-2

-1

0

1

2

3

4

5

1 3 5 7 9 11

X  v a l u e

R(xR,yR) 

Q(xQ,yQ) 

P(xP,yP) 

P+Q 

22224 )12()(  xyxx

a = 3  b = 2

-15

-10

-5

0

5

10

15

1 2 3 4 5 6 7 8 9 1 11

R(xR,yR)

P(xP,yP

Q(xQ,yQ

P+Q

22224 )23()(  xyxx

W. R. Sam Emmanuel et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 2 Feb 2011 802



The point R is the intersection of the tangent with the Atriphtaloid curve.  Thus if we draw a tangent at point P 
to the Atriptaloid it will intersect the curve at R. 

Since the value of 2P is the reflection of the point R about the x axis, the value of 2P is obtained by taking the 
negative of the y-coordinate. 
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The illustrations for point doubling are given in Figure 3. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Point doubling 

V. SEXTIC CURVES IN FINITE FIELDS 

The Sextic Curve operations defined in the sections 3 and 4 are on real numbers. Operations over the real 
numbers are slow and inaccurate due to round-off error. Cryptographic operations need to be faster and accurate. 
To make operations on Sextic Curve accurate and more efficient, the curve cryptography is defined over Prime 
field pF . 

The field is chosen with finitely large number of points suited for cryptographic operations. 

C.  SC on Prime Field pF  

The equation of the Sextic Curve on a prime field pF
 is 

pxxaabxbpyx mod2mod 322222  ………………(2) 

 where 0mod pb and 0mod2 3  pba . Here the elements of the finite field are integers between 0 and p– 

1. All the operations such as addition, substation, division, multiplication involves integers between 0 and p – 1.  
The prime number p is chosen such that there is finitely large number of points on the Sextic Curve to make the 
cryptosystem secure. The graph for this Sextic Curve equation is not a smooth curve. Hence the geometrical 
explanation of point addition and doubling as in real numbers will not work here.  However, the algebraic rules 
for point addition and point doubling can be adapted for Sextic Curve over 

pF . 
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D.  Point Addition 

Consider two distinct points P and Q such that ),( PP yxP   and ),( QQ yxQ  .  Let R = P + Q where 

),( RR yxR  , then pxxx QPR mod/)21( 2  and pyxxy PRPR mod)(  , where 

p
xx

yy

PQ

PQ mod





,the slope of the line through P and Q.  

If Q = -P i.e. pyxQ PP mod),(   then P + Q = O, where O is the point at infinity.  If Q = P then P + Q 

= 2P then point doubling equations are used. 

E.  Point Subtraction 

Consider two distinct points P and Q such that 
),( PP yxP 

 and 
),( QQ yxQ 
.  Then P - Q = P + (-Q) 

where 
pyxQ QQ mod),(

.  

Point subtraction is used in certain implementation of point multiplication such as NAF (Non-Adjacent 
Form). 

F. Point Doubling 

Consider a point P such that ),( PP yxP  , where 0Py  Let R = 2P where ),( RR yxR  , then 

pxx PR mod
21

2
2 



 





 and pyxxy PRPR mod)(  , where p
yx

xab

PP

P mod
2

2
2

2
 , 

pxy PP mod  , a and b are the parameters chosen with the Sextic Curve.  If 0Py  then 2P = O, where 

O is the point at infinity. 

VI. SEXTIC CURVE DOMAIN PARAMETERS 

Apart from the curve parameters a and b, there are other parameters that must be agreed by both parties 
involved in secured and trusted communication using SCC. Generally the protocols implementing the SCC 
specify the domain parameters to be used.  

The operation of each of the public-key cryptographic schemes described in this document involves arithmetic 
operations on a Sextic curve over a finite field determined by some Sextic curve domain parameters. 

A.  Domain Parameters For SC Over Field pF  

The domain parameters for Sextic curve over 
pF  are a sextuple  hnGbapT ,,,,, , where p is the prime 

number defined for finite field pF , a and b are the parameters defining the curve (2), G is the generator point 

),( GG yx , a point on the Sextic curve chosen for cryptographic operations, n is the order of the Sextic curve.  The 
scalar for point multiplication is chosen as a number between 0 and n – 1, h is the cofactor where h = #S(

pF )/n. 

#S( pF ) is the number of points on a Sextic curve. 

B.  SC Domain Parameters Over 
pF Generation Primitive 

The approximate security level in bits required from the Sextic curve domain parameters must be an integer t.  
The output shows the Sextic curve domain parameters over 

pF such that taking logarithms on the associated 

Sextic curve requires approximately 2t operations.  

Select a prime p such that   tp 2log2   if 256t  and such that   521log2 p  if 256t  to determine 

the finite field pF .  Select elements 
pFba ,  to determine the Sextic curve  pFS  defined by the equation (2), a 

base point ),( GG yxG  on  pFS  a prime n which is the order of G, and an integer h which is the cofactor 

h=#S( pF )/n, subject to the constraints: 0mod pb and 0mod2 3  pba , #S( pF ) ≠ p, )(mod1 np B  for 

any 201  B and 4h . 

This primitive allows any of the known curve selection methods to be used. However to foster interoperability 
it is strongly recommended that implementers use one of the Sextic curve domain parameters over 

pF . 
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C.  SC Domain Parameters Over 
pF Validation Primitive 

Sextic curve domain parameters over 
pF  along with an integer t which is the approximate security level in 

bits required from the Sextic curve domain parameters.  The output indicated that whether the Sextic curve 
domain parameters are valid or not.  To validate the Sextic curve domain parameters over 

pF we have to check 

that p is an odd prime such that   tp 2log2   if 256t .  Also we have to check that a, b, xG and yG are 

integers in the interval [0, p-1], 0mod pb and 0mod2 3  pba , 

 pxxaabxbyx GGGG G mod2 322222 
, n is prime, h ≤ 4, and that   



  nph /1

2 ,     nG = O, 

)(mod1 nqB  for any 1 ≤B < 20, and that pnh  .  If any of the checks fail, output ‘invalid’, otherwise output 

‘valid’. 

VII. SEXTIC CURVE KEY PAIRS 

All the public-key cryptographic schemes described in this paper use key pairs known as Sextic curve key pairs.  
A Sextic curve key pair (d,Q) associated with T consists of a Sextic curve secret key d which is an integer in the 
interval [1, n-1], and a Sextic curve public key ),( QQ yxQ  which is the point Q =dG.  

VIII. RESULTS AND DISCUSSIONS 

The proposed method analyzed and verified with different parameters of Sextic Curve.  The Table-1 and Table-2 
shows the list of points, while doing the point addition and point doubling. The Table-1 shows the list of points of 
P+Q of the Sextic Curve 144 2322  xxxyx  when the different set of coordinators of the points P and Q 

lies on the same curve.  The point P+Q of the Table-I is produced by the method of point addition. 
 

TABLE  I. POINT ADDITION USING THE CURVE 144 2322  xxxyx  

P Q P+Q 
(1, 0) (1.7, 0.541368) (-2.3719, 2.607772) 

(1.05, 0.217958) (1.25, 0.43589) (-1.44225, 2.49775) 
(1.1, 0.300138) (1.4, 0.503052) (-3.37332, 2.725528) 

(1.15, 0.357607) (1.6, 0.539096) (-8.3712, 3.482386) 
(1.2, 0.401386) (1.4, 0.503052) (-5.64927, 3.080282) 

 
The Table-II shows the list of points of 2P of the Sextic Curve 144 2322  xxxyx  when the corresponding 

list of point P lies on the same curve.  The list of points, 2P shown in Table-2 is produced by the method of point 
doubling. 

TABLE  II. POINT DOUBLING USING THE CURVE 144 2322  xxxyx  

P 2P 
(1.05, 0.217958) (-0.09982, 6.714228) 
(1.1, 0.300138) (-0.22405, 4.785805) 
(1.15, 0.357607) (-0.37746, 3.966208) 
(1.2, 0.401386) (-0.56641, 3.510402) 
(1.25, 0.43589) (-0.79947, 3.231526) 

 
The Sextic Curve over the prime field defined over F11 is expressed by the curve 81270225 2322  xxxyx , 

by taking p = 11, a = 15 and b = 9.  Here  b ≠ 0 and  2a3-b = 6741 ≡ 9 (mod 11) ≠ 0, so S is indeed a Sextic 
Curve.  The Table III shows the list of points in S(F11). 
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TABLE  III. THE POINTS IN S(F11) 

(1, 5.91608) (1, 5.08392) (2, 10.40433) (2, 0.595674) 
(3, 0.874342) (3, 10.12566) (4, 1.59216) (4, 9.40784) 
(5, 2.009227) (5, 8.990773) (6, 2.275918) (6, 8.724082) 
(7, 2.456658) (7, 8.543342) (8, 2.583653) (8, 8.416347) 
(9, 2.674794) (9, 8.325206) (10, 2.740815) (10, 8.259185) 

 

 

IX. CONCLUSIONS 

The existing models are not sufficient to maintain perfect security.  The proposed SCC gives the valuable safety 
and security mechanisms in the communication field.  The SCC indicates that any symmetric curve, with 
preferably a cubic in x can better be used in the place of elliptic curves.  The curve arithmetic of SCC, expressed 
here will produce the new valuable security for different forms of data in the communication field. 
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