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Abstract —Dynamic spectrum allocation (DSA) solutions such as cognitive radio networks (CRNs) have been 
proposed as a key technology to exploit the frequency segments that are spectrally underutilized. In this paper, the 
performance of cooperative CRNs has been analyzed under two different operational modes, namely, constant 
primary user protection (CPUP) and constant secondary user spectrum usability (CSUSU). The CRN performance 
metrics have been selected to be the overall CRN capacity and the overall interference from CRN to the primary 
users under CPUP and CSUSU scenario, respectively. Computer simulations are invoked to evaluate the CRN 
performance with varying the sensing time as well as the number of cooperating users in the network and the 
observations have been presented. Finally, particle swarm optimization algorithm has been used to jointly optimize 
the sensing time duration and cooperation level of spectrum sensing in CRNs. The simulation results show that the 
CRN performance can be noticeably improved by applying suitable optimization algorithms.    
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I. INTRODUCTION 

The conventional approach of static spectrum allocation is very inflexible in the sense that frequency bands 
are exclusively licensed to radio operators and each technology has to operate within its assigned band. With the 
increasing demand of radio spectrum, it is becoming next to hard to find vacant bands to either deploy new 
technologies or to extend the existing ones. Furthermore, recent spectrum measurements, such as the one done 
by Spectrum Policy Task Force (SPTF) [1], reveal that there is obviously an inefficient use of the already-
licensed spectrum segments. These observations were the trigger to start looking around for possible alternatives 
of dynamic allocation solutions. There was a significant juncture in wireless communications when J. Mitola 
introduced his terrific idea of the cognitive radio (CR) as an upgraded version of the conventional software 
defined radio (SDR) armed with a spectrum sensing capability over three degrees of freedom; time, frequency 
and space [2]. The CR technology is a means of opportunistic dynamic spectrum access to mitigate the spectrum 
underutilization phenomenon. The spectrum sensing is normally considered as a pure detection problem where 
the CR-assisted users have to scan a vast range of frequencies to observe any available ‘white spaces’ or ‘holes’ 
that are temporarily and spatially available for transmission. The CR-assisted users are classified as secondary 
users (SUs) competing with primary users (PUs) who are obviously, Licensees, or alternatively, users of 
existing technologies on unlicensed bands (e.g. IEEE802.11a) [3]. The SUs or CR users are allowed to utilize 
the frequency bands of the PUs when they are not currently being used but they should willingly and quickly 
vacate the band once a PU has been detected. This fast vacation is necessary to avoid causing harmful 
interference to the PUs who should maintain ubiquitous and uninterrupted accessibility. Therefore, the SUs are 
required to periodically monitor the PUs activities using fast and reliable detection/sensing algorithms.  

In fading environments, spectrum sensing is challenged by some sort of uncertainty occurs as a result of 
inability to distinguish between the white spaces whether it is because of PU absence or because of deep fade. 
Thus, many cooperative spectrum sensing techniques have been proposed in the literature to overcome this issue 
and enhance the decision-making process of PU availability. The last decade has witnessed an increasing 
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interest in the opportunistic spectrum access research. Some of which focused on the design of physical (PHY) 
layer where the main function is to reliably identify the white spaces across time, frequency and space. Different 
approaches have been proposed to perform this function such as direct spectrum sensing [4], geo-location and 
centralized database [5], probe method [6], licensed-receiver detection [7], and beacon signal incorporation [8]. 
Among these, the direct spectrum sensing has received more attention due its implementation simplicity and 
compatibility with the existing PU systems.  

A brief overview of the different alternatives for local spectrum sensing, such as matched filter, cyclo-
stationary detector, and energy detector, has been presented in [4]. 

The matched filter requires a prior knowledge of PU waveform which is practically not possible. The CR 
framework is initiated based on the idea of dealing with the PU signals as unknown signals. On the other hand, 
the cyclo-stationary detector can be used if some the PU features are available [9] but it has the disadvantage 
increased complexity and processing time. For cooperative spectrum sensing, there have been many proposals 
on how to combine the local measurements sent by the individual SUs to the central or distributed fusion 
center(s). These schemes can be classified as hard decision fusion (HDF) [10][11][12] or soft decision fusion 
(SDF) [13][14]. In HDF, the local sensors, or SUs, make their own judgments on the presence of a PU and their 
corresponding resultant 1-bit decisions are sent to the BS for fusion. These hard fusion schemes have the 
advantage of reduced traffic overhead as only one single bit needs to be reported to the BS from each SU. In 
contrast, the SDF schemes require the local sensors to report their measurements as raw data to the BS at which, 
this data will be fused to construct a final decision on the presence of PU(s). These soft schemes have shown 
better detection performance than HDF schemes [15] but they own the negative feature of the increased 
overhead due to the huge amount of reported data from the SUs to the BS. Another way to improve the sensing 
performance is to group the SUs into clusters and instruct them to send their 1-bit hard decisions to clusters’ 
headers which will then forward there evaluations to the BS [16][17]. In this paper, the OR- and AND-rule HDF 
schemes are implemented at the common fusion center or BS due to their simplicity as well as to achieve a 
reduced traffic overhead. Overhead reduction is a crucial demand in CRNs whose main concern is achieving an 
efficient use of radio resources. HDF schemes require control channels from the SUs to the common BS with 
less bandwidth. In addition, the individual decisions of SUs are reported to the BS in an orthogonal manner and 
thus, achieving high level of multiplexing.  

II. LOCAL SPECTRUM SENSING 

In local sensing, each SU senses the spectrum within its geographical location and makes a decision on the 
presence of primary user(s) based on its own local sensing measurements.  

A.  Channel Sensing Hypotheses  

Consider a SU in a cognitive radio system sensing a frequency band W and a the received demodulated 
signal is sampled at a sampling rate, fs, then fs ≥ W. Hence, the sampled received signal, X[n] at the SU receiver 
will have two hypotheses as follows 

H0:   X[n] = W[n]                 if the PU is absent              
H1:   X[n] = W[n] + S[n]      if the PU is present       (1)                       

where n = 1, …, K; K is the number of samples. The noise W[n] is assumed to be additive white Gaussian 

(AWGN) with zero mean and variance
2
w . S[n] is the primary user’s signal and is assumed to be a random 

Gaussian process with zero mean and variance
2
s . Pd  and Pf  are defined as the probabilities that the sensing 

SU algorithm detects a PU under H0 and H1, respectively. High detection probability is always required to 
ensure minimum level of interference to PUs whereas low probability of false alarm should be targeted to offer 
more chances for the SUs to use the scanned spectrum. 

B.  Statistical Model for Energy Detector  

The energy detector (ED) is a well-known detector which can be utilized to detect unknown signals as it 
does not require a prior knowledge on the transmitted waveform. The EDs are implemented at the SUs’ 
receivers. The decision statistic of the ED, T, is a random variable described by 

    



K

n

nXT
1

2][          (2)                                           

Under the common Neyman-Pearson (NP) criteria, the ED performance can be characterized by a resulting 
pair of (Pf, Pd) that is estimated as 
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where f0(x) and f1(x) are the probability density functions (PDFs) of Chi-square distributions with K degrees of  
freedom for the real-valued signal and noise under H0 and H1, respectively. Using the central limit theorem 
(CLT) and for large K (e.g. K > 250), the PDF of T under hypothesis H0 can be approximated by a Gaussian 

distribution with mean 2
0 wK  and variance 4

0 2 wK  , and similarly, the PDF of T under 
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where β is a particular detection threshold that tests the decision statistic and  .Q is the complementary 

distribution function of the Gaussian distribution. 

C. Cognitive Radio Transmission Scenarios 

In this paper, the performance of CR network is evaluated under two different operational modes, namely, 
the constant primary user protection (CPUP) and the constant secondary user spectrum usability (CSUSU) 
scenarios. The CPUP transmission mode is viewed from the Pus’ perspective whereas CSUSU is viewed from 
SU’s perspective. In CPUP scenario, the interference from Sus to PUs will be set to a specific level that is low 
enough to ensure ubiquitous and uninterruptable service for the active PUs. This scenario can be realized by 
fixing the probability of detecting PUs, Pd, at a satisfactory level while minimizing Pf as much as possible.  In 
CSUSU scenario, the usability of unoccupied bands by Sus can be kept constant by setting Pf at a certain level 
while maximizing Pd. A summary for realizing CPUP and CSUSU transmission scenarios is formulated in 
TABLE I. 

Now, let’s express the detection and false alarm probabilities in terms of each other by eliminating the 
threshold detection β in (5) and (6) we can get 
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under CSUSU scenario, where dP

 

is the targeted probability of PU detection under CPUP, fP

 

is the targeted 

probability of false alarm under CSUSU and 
22 / wspSNR 

 

is the signal-to-noise ratio of the PU. 

 
TABLE I. A SUMMARY OF COGNITIVE RADIO NETWORK TRANSMISSION SCENARIOS AND PERFORMANCE 

OBJECTIVES 
 

 Metric/procedure 
CPUP 

scenario 
CSUSU 
scenario 

M
et

ri
c 

1 

Interference to PU Constant Minimized 

How? dd PP   Maximizing 
Pd
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M
et

ri
c2

 Capacity of SU 
network 

Maximized Constant 

How? 
Minimizing 

Pf 
ff PP   

 

III. COOPERATIVE SPECTRUM SENSING 

The cooperative spectrum sensing aims to improve detection sensitivity at low signal-to-noise ratio (SNR) 
environments and tackle the so-called hidden terminal problem, where the PUs’ activities might be shadowed 
from the local SU receiver(s) by any existing intermediate obstacles. 

A. Cognitive Radio Network Deployment 

The network deployed in this paper is based on IEEE 802.22 WRAN [18]. The WRAN base BS collects 
information on the PU activities from the SUs within its coverage area. Local SUs keep monitoring the presence 
of a PU, which is a TV broadcast station, and send their detection and false alarm probabilities to the base 
station for combining them into one overall final decision. In this scenario, it is assumed that the TV BS is far 
away from the WRAN BS and therefore, low SNRp values are used where the later is the SNR of PU signal at 
the SU receiver. A simplified depiction of the IEEE 802.22 WRAN system deployment is shown in Fig. 1. 

 
 

Figure 1. IEEE 802.22 WRAN system deployment. 

 

B.  Network Probabilities under CPUP and CSUSU Scenarios 

At the SUs base station, all local sensing information are combined and merged into one final decision using 
Chair-Varshney fusion schemes [19][20]. Two fusion schemes are used in this work, namely, OR- and AND-
rule. The total CRN (SU network) false alarm and detection probability formulas under CPUP and CSUSU 
scenarios can be then written as; 
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C. Formulation of Performance Objectives under CPUP and CSUSU Transmission Modes 

Under CPUP, the CRN normalized capacity is considered as a performance indicator. The capacity of the 
CRN is maximized as much as possible by minimizing the total false alarm probability of the network. Under 
CSUSU, the quantum interference from the SU network to the PU is taken into account. Here, the interference is 
minimized by maximizing the probability of detecting the PU. In WRAN systems, each frame consists of one 
sensing slot (ts) plus one data transmission slot (Tf - ts), where Tf  is the total frame duration. 

1) Normalized capacity under CPUP transmission scenario: There are two cases for which the SUs 
network might operate at the PU’s licensed band: first when the PU is inactive and the SUs successfully declare 
that there is no PU. In this case, the normalized capacity of the WRAN system is represented as [21] 

 f
f

s P
T

t
C 






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
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where P(H0) is the probability that the PU is inactive in the frequency band being sensed. The other case is when 
the PU is active but the SUs fail to detect it. The normalized capacity is then given by  
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where P(H1) is the probability of the PU being active in the frequency band of interest. Obviously, P(H0) + 
P(H1) = 1. The objective of this research is to determine the optimal sensing time for each frame such that the 
SUs network capacity is maximized. Consequently, this objective can be formed as an optimization problem 
described as follows:  

max  f
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subject to: 

 

fs Tt 0  , and 

dd PP  under CPUP or ff PP   under CSUSU. 

Since Pd should be set large enough to protect the PU under CPUP scenario, the second term in (18) can be 
ignored as P(H1) can also be assumed small as we are interested to maximize the throughput of SUs in absence 
of PU. Thus, the normalized capacity (Cnorm) can be written as 
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2) Quantum interference under CSUSU transmission scenario: The interference to PU is caused by the SU 

when it mistakenly declares that there is no PU exists in the vicinity. The SU will then start transmitting for (Tf - 
ts) out of the total frame duration, Tf , causing interference to the miss-detected PU(s). The probability of miss-
detecting the PU is (1 - Pd). The quantum interference (IQ) is a measure defined as the amount of interference 
suffered by PU when it is miss-detected by the sensing SU(s). Thus, the quantum interference (IQ) from SU to 
PU under CSUSU transmission scenario can be expressed as 

)1( d
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IV. SIMULATION RESULTS OF INDIVIDUAL PARAMETERS 

A.  Detection Sensitivity and Processing-Cooperation Analysis 

In this section, the performance of local and cooperative spectrum sensing is evaluated in terms of detection 
sensitivity, processing amount, and cooperation gain. The detection sensitivity of the local energy detector-
based spectrum sensor is analyzed. The detection sensitivity is defined as the minimum SNRp at which a SU 
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should still be able of detecting the PU signal. The detection sensitivity is analyzed versus the required number 
of samples required to achieve certain detection or false alarm probability. High detection sensitivity means that 
the SNRp is low enough to detect weak PU signals. On the other hand, increasing the number of samples leads to 
increase the amount of local processing at the SU sensor and it also increases the sensing time which will cause 
a reduction in the SU transmission time for a given frame duration and sampling frequency. Thus, increasing the 
detection sensitivity and reducing the required number of samples of PU signal to achieve a specific detection of 
false alarm probability are both crucial factors to ensure a satisfactory spectrum sensing performance at the 
stage of SU receiver. As shown in Fig. 2, the detection sensitivity can be improved by increasing the number of 
samples needed to achieve a targeted probability of detection under CPUP scenario. It is also clear that number 
of samples has to be again increased in order to increase the probability of detection, say from 0.6 to 0.9, for 
specific detection sensitivity. Fig. 3 shows similar observations under CSUSU scenario where reducing the 
probability of false alarm, say from 0.4 to 0.1, with particular detection sensitivity requires an increase in the 
number of processing samples. Thus, for the two cases in Fig. 2 and Fig. 3, the number of samples needs to be 
increased in order to improve the detection sensitivity at a specific detection probability and false alarm 
probability, respectively. Let’s now raise a question; how can we reduce the number of samples in Fig. 2 and 
Fig. 3? The answer is that the amount of local processing can be reduced by cooperating more SUs. This answer 
is substantiated in Fig. 4; as shown, the detection sensitivity is improved (minimum manageable SNRp is 
reduced) by increasing the cooperation level between SUs from 1 (no cooperation) to 20 SUs while maintaining 
the detection and false alarm probabilities at arbitrary fixed rates of 0.9 and 0.1, respectively. In addition, it is 
observable that after a certain level of cooperation, there is noticeable improvement in the sensitivity-processing 
relationships as their curves will not differ much (e.g. after 20 cooperated SUs). So, the SUs cooperation is 
highly needed as it offers a quite better improvement in the sensitivity-processing relationship. However, this 
cooperation should not exceed a certain level after which there will be no benefit but instead; it will increase the 
amount of reported decisions from the SUs to the central BS and hence increase the traffic overhead 
unnecessarily. For instance, if the CRN topology of interest contains N users, the optimal performance is not 
achieved by collaborating all the N users but instead, a certain fraction of it, k, where k < N. This explained in 
detail in section 4.4. Fig. 5 depicts the direct relationship of required number of samples versus number of 
cooperative users. Again, we can observe that the number of processing samples can be reduced by increasing 
the number of cooperative users. Also, at a specific number of cooperative users, increasing Pd or decreasing Pf 
requires more samples to be processed. 

 

Figure 2. Detection sensitivity versus number of samples under CPUP scenario 
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Figure 3. Detection sensitivity versus number of samples under CSUSU scenario 

 

Figure 4. Detection sensitivity versus number of samples with different number of samples  
(Pd = 0.9 and Pf = 0.1) 

 

Figure 5. Number of processing samples versus number of cooperative users (SNRp = -10 dB). 

B.  Sensing Time Optimization 

 Indeed, short sensing slots should be always aimed as it results in longer data transmission slot and 
therefore, higher capacity. However, shortening ts might affect the reliability of PU detection and then cause 
interference. Computer simulations have been performed to analyze the performance under CPUP and CSUSU 
scenarios. Let’s first consider the local sensing case; the WRAN frame duration was set to 100 ms and the one-
side bandwidth of PU bandpass signal is assumed to be 3MHz. The SNRp is set to -20 dB. Fig. 6 shows that 
there is an optimal sensing time at which the throughput is maximized under CPUP. This optimal sensing time 
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increases if higher level of PU protection (Pd increases) is targeted. It is also clear that, in general, the capacity 
decreases with increasing Pd. Under CSUSU, Fig. 7 shows that at a targeted low interference level, say IQ = 0.1, 
the higher the Pf the longer the sensing time required to achieve this protection level. Furthermore, the 
interference decreases if the capacity is scarified by increasing Pf. Let’s now consider the cooperative sensing 
where all SUs have the same SNRp at their receivers, Fig. 8 shows that the normalized capacity increases by 
increasing the number of collaborating users under CPUP using either OR- or ANR-rule. However, this will be 
explored more lately. Fig. 9 presents the great wining of cooperating sensing where the optimal sensing time 
required to maximize the network capacity decreases with increasing the number of collaborating SUs. Under 
CSUSU, OR- and ANR-rule show similar results as shown in Fig. 10 and Fig. 11, respectively. At sector A in 
both figures, to achieve a specific low interference level (e.g. IQ = 0.1), cooperating more users reduce the 
sensing time required. This is also observable at sector B where at a specific sensing time (e.g. 15 ms), the 
interference decreases with increasing the number of cooperating users. However, this reduction becomes less 
critical after exceeding a certain number of cooperating users. Therefore, there will be a great saving in 
measurements processing if certain SUs are considered for fusion rather than all. 

 

Figure 6. Normalized capacity versus sensing time for local sensing under CPUP scenario. 

 

 

Figure 7. Normalized capacity versus sensing time for local sensing under CSUSU scenario. 
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Figure 8. Maximum achieved normalized capacity versus number of collaborated users under CPUP scenario. 

 

Figure 9. Optimal sensing time versus number of collaborated users under CPUP scenario. 

 

 

Figure 10. Quantum Interference versus sensing time with different number of users using OR-rule fusion scheme under CSUSU scenario. 
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Figure 11. Quantum Interference versus sensing time with different number of users using AND-rule fusion scheme under CSUSU scenario. 

 

C.  Optimization of Number of Collaborated Secondary Users  

In the previous section, the SNRp was assumed to be fixed for all cooperating users in the network. Here, we 
are testing the network performance when varying the SNRp values for different users. The sensing algorithm is 
implemented by cooperating the SUs with higher SNRp values first and to monitor the performance metrics with 
increasing the cooperation level. Fig. 12 shows that the maximum capacity under CPUP is achieved by 
cooperating a certain number of users (k) rather than cooperating all users in the network for N = 50, 100, 150 
and 200 SUs. Fig. 13 presents this finding clearly where cooperating k out of N SUs provides higher capacity 
than cooperating all the N SUs. Fig. 14 shows a similar finding where under CSUSU, the interference is 
minimized by cooperating a certain number of users rather than cooperating all the users in the network. Fig. 15 
again shows how cooperating k out of N SUs provides lesser interference. 

 

Figure 12. Normalized capacity versus variable fraction (k) of different total number of users (N = 50, 100, 150, or 200) under CPUP 
scenario. 
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Figure 13. Optimum and overall normalized capacity versus variable fraction (k) of different total number of users under CPUP scenario. 

 

Figure 14. Normalized capacity versus variable fraction (k) of different total number of users (N = 50, 100, 150, or 200) under CSUSU 
scenario. 

 

Figure 15. Optimum and overall normalized capacity versus variable fraction (k) of different total number of users under CSUSU scenario. 

V.  JOINT OPTIMIZATION OF SENSING PARAMETERS 

A. Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population-based stochastic optimization technique inspired by 
social behavior of bird flocking or bees. The PSO mechanism is initialized with a population of random 
solutions and searches for optima by updating generations [22][23][24]. In PSO, the potential solutions, called 
particles, fly through the problem space by following the current optimum particles. Each particle keeps track of 
its coordinates in the problem space which are associated with the best solution (best fitness) it has achieved so 
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far. This value is called pbest. Another "best" value tracked by the particle swarm optimizer is the best value 
obtained so far by any particle in the neighbours of the particle. This location is called lbest. The best value ever 
in the whole search space is called as the global best (gbest). The particle swarm optimization concept involves, 
at each time step, changing the velocity (accelerating) of each particle towards its pbest and lbest locations. This 
particle movement is governed by the equation of motion given by  

               )1()()1(

)(2)(1)()1( ).().(.









nnn

nnnn

VXX
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(18)      

where w is the weight inertia, C1 is the self-confident coefficient and C2 is the confident in other coefficients. 
These two parameters together with the swarm size are the PSO’s intrinsic control parameters that can be 
analyzed to achieve better performance for a given problem. Fig. 16 shows the next displacement calculation for 
a particle in the swarm. 

 
Figure 16. The next-displacement scenario for a swarm particle. 

B. Joint Optimization of Sensing Time and Cooperation Level Using PSO-Algorithm 

In this section, the CRN optimization problem is defined and modelled using a PSO-based algorithm. The 
PSO is used to simultaneously search for the optimal sensing time and cooperation level that maximize the CRN 
throughput. Fig. 17 shows 30 swarm particles (not all appear) randomly distributed on the 2-dimensional 
throughput surface that is a function of sensing time and cooperation level. The probability of detection is set to 
0.9 and CRN contains 50 SUs. The CRN frame duration is set to 100 msec. It is clear that maximum capacity 
that is the surface peck value is achieved at a specific sensing time and number of cooperated SUs. The PSO 
algorithm finds the optimal sensing time and cooperation level as 2.795 msec out of 100 msec and 9 cooperated 
SUs out of a total of 50 available SUs. Fig. 18 shows the improvement of average fitness over the number of 
PSO iterations. The optimization process is to be performed every cyclic period of frame duration. It is assumed 
that the channel condition does not change much within two successive frame durations. 
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Figure 17. Normalized capacity as a function of sensing time and number of secondary users. 
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Figure 18. Performance of PSO-based algorithm implemented at the central base station of CRN. 

In fact, this model can be easily used to include several sensing and design parameters such as frame 
duration and local thresholds. Furthermore, this optimizing problem becomes more challenging in fading 
environment as the throughput surface would not appear as smooth as shown in Fig 17. In future, we will be 
working on extending this optimization problem to multi-dimensional optimization problem of several realistic 
sensing and design parameters. 

CONCLUSION 

In this paper, the optimum CRN performance was defined as the maximum CRN capacity and the minimum 
CRN interference to the PU under the CPUP and CSUSU, respectively. The simulation results showed that 
under CPUP, there is an optimal sensing time at which the CRN capacity is maximized. While under CSUSU, 
cooperating all SUs will not significantly improve the network performance. This observation was under the 
assumption of a fixed SNRp for all SUs. When varying SNRp, the simulation results shows that the optimum 
performance of the CRN is achieved by cooperating a certain number of users with the highest SNR values 
rather than cooperating all the available SUs of CRN. Finally, a PSO-based algorithm has been implemented at 
the CRN base station to jointly optimize the sensing time as well as the cooperation level between the SUs so 
that the CRN performance is maximized. The PSO-based algorithm can be further improved to include more 
sensing and design parameters for better system identification. Optimizing the CRN performance is considered 
as a real-time optimization problem which is repeated every cycle of frame duration assuming that the channel 
condition does not change much within this period. 
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