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Abstract— Algebraic Reconstruction Technique (ART) is an iterative algorithm to obtain reconstruction 
from projections in a finite number of iterations. The present paper discuses the convergence achieved in 
small number of iteration even when projection data is available in only four directions. 
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I.  INTRODUCTION 

 
Computed Tomography (CT) is a diagnostic procedure that uses special x-ray equipment to obtain cross-

sectional pictures of the body. The CT computer displays these pictures as detailed images of organs, bones, and 
other tissues. This procedure is also called CT scanning, computerized tomography, or computerized axial 
tomography (CAT) [1]. CT is a two step process of collecting the projection data, then calculating the 
attenuation values that could have generated these projection values (reconstruction). Two modalities that limit 
the radiation from Computed Tomography are then presentation: 3-D cone beam reconstruction, and limited 
view Computed Tomography. 

Computed Tomography has a vital role in medical diagnostics as an imaging method that yields detailed 
information. As an X-ray technology, however, it exposes the patient to ionizing radiation that is known to be 
harmful. A challenge for this technology is to obtain the high quality images that have come to be expected from 
it, while limiting this harmful radiation. CT uses multiple X-ray views of the target for image reconstruction [2]. 
Each view is associated with a dose of radiation, hence limiting the number of views will reduce the radiation. 
Using a true 3-D reconstruction from 2-D views, rather than assembling from 2-D reconstructions of 1-D views, 
should theoretically reduce the number of views required. A second approach is to limit the number of views 
outright. Modifications of the commonly used convolution algorithms allow for some limited reconstruction in 
the third dimension, but these algorithms are not ideal for a full 3-D reconstruction [3]. Limiting the number of 
views outright causes the standard reconstruction algorithms to fail. The Algebraic Reconstruction Technique 
(ART) and similar iterative algorithms yield better quality reconstructions using limited views or a true 3-D 
reconstruction, but these algorithms are much more costly in execution time and memory. We can ameliorate 
this cost in execution time and memory by running the algorithm in parallel. Significant speed benefits are 
obtained compared to the sequential version of the ART algorithm. The iterative algorithms may have a role to 
play in limited view CT reconstruction or in 3-D CT reconstruction, and should not be rejected out of hand 
because of speed or memory limitations. These limitations are overcome significantly by implementing the 
algorithms in parallel, if communication is limited and an appropriate partitioning scheme is used. 

The goal of medical imaging is to determine the internal structure of an organism with sufficient detail to 
yield diagnostic information. Imaging strives to achieve this in the least invasive manner possible, minimizing 
discomfort and harm to the patient. Two dimensional plain film X-ray pictures have been the standard medical 
imaging technique for a century, and remain a common technique today. An X-ray exposure of sufficient 
intensity and duration is used to project shadows of body tissues onto the detecting surface. The X-ray ‘beam’ is 
attenuated by scattering and absorption of the intervening tissue proportional to the distance the beam must 
traverse the tissue, the density of the tissue, and the atomic numbers of the contained elements. X-ray 
projections have at least three limitations: limited projection angles from which the X-ray view can be taken; 
inability to localize the 3-D position of a structure; and, most importantly, a lack of detail due to lack of contrast. 
The limitation of viewing angles is imposed by the target object and the imaging equipment.  
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 There are two major families of reconstruction methods: filtered or Fourier backprojection (FBP), or 
convolution backprojection (CBP) methods, and iterative, or algebraic techniques. An image can be obtained by 
adding the detection value to every contributing voxel in the projection. If the target object has sharply defined 
contrasting regions, this summation method will cause these to be blurred much like a photograph out of focus. 
This summation is termed backprojection because it involves placing the projections back into the image. The 
terms straight backprojection or unfiltered backprojection is refered to the process when no other operations are 
performed on the backprojection image. We use the terms Filtered backprojection (FBP) or convolution 
backprojection (CBP) to refer to the whole group of filtered backprojection methods [4]. Although in principle 
the backprojected image could be deconvoluted using a 2-D filter, an equivalent transformation can be obtained 
by passing a 1D filter over the projection data before the backprojection in the case of parallel projections [5]. 

 
II.  ALGEBRAIC RECONSTRUCTION TECHNIQUE (ART) 

 
The Algebraic Reconstruction Technique (ART) was proposed by Gordon, Bender, and Herman as a 

method for the reconstruction of three-dimensional objects from electron-microscopic scans and X-ray 
photography [6]. There are number of variants which are known by the acronyms ART [7], SIRT (simultaneous 
iterative reconstruction technique) and SART (simultaneous algebraic reconstruction technique). In algebraic 
methods, the reconstruction is done by solving a system of linear equations. More precisely, ART can be written 
as a linear algebra problem, Af = P, where f is the unknown (N2×1) vector storing the values (f1, ..., fN) of all N = 
n2 surface elements or pixels in 2D or N = n3 volume elements or voxels in 3D respectively, in the reconstruction 
grid. So, the image is represented as a single point in a N-dimensional space. P is the (LK×1) vector composed 
of the pi values that represent the ray-sum measured with the ith ray, where L is number of views covering 
whole image suitable dispersed (equispaced on angular view) and K is the number of equispaced lines along 
each view, M is the total number of rays in all acquired projections. Finally, A is the (M×N) weight (coefficient) 
matrix in which an emlement wij represents the contribution of the jth cell to the ith ray integral. The factor wij is 
equal to the fractional area of the jth image cell intercepted by the ith ray for one of the cells. The most of the 
wij’s are zero since only a small number of cells contribute to any given ray-sum. Algebraic Reconstruction 
Techniques (ART) was first published in the biomedical imaging literature in 1970 [7]. ART is a form of Gauss-
Seidel iteration, and can be viewed as a generalization of the method of Kaczmarz in 1937 [8]. Algebraic 
Reconstruction Technique (ART) is a widely-used iterative method for solving sparse systems of linear 
equations. The main advantages of ART are its robustness, its cyclic convergence on inconsistent systems, 
and its relatively good initial convergence. ART is widely used as an iterative solution to the problem of 
image reconstruction from projections in computerized tomography (CT), where its implementation with a 
small relaxation parameter produces excellent results. It is shown that for this particular problem, ART can 
be implemented in parallel on a linear processor array [9].  

The problem of CT reconstruction can be viewed as a system of linear equations. In this model, each pixel 
(voxel) j is assumed to have a homogenous attenuation fj, an unknown value to be solved. The measured 
projection data is a set of attenuation sums Pi. Each Pi is the weighted sum of the attenuations of pixels along a 
given ray, also known as a ray integral or ray sum. Different variations of the model can be used to determine 
the weight wij that each pixel j contributes to the ith weighted attenuation sum Pi. Let us use a model where 
each weight wij is the product of the pixel’s attenuation fj and the length of the ray’s intersection with the pixel 
(expressed in pixel widths). The weights can then be determined geometrically from the angle and position of 
the ray (these are determined from the geometry of the scanner) and the chosen pixel dimensions. As an 
example, we have an image of N = 4 pixels. There are 2 detectors in the detector array, and the array is rotated 
through 2 views (horizontal and vertical) to produce M = 4 ray sums [10]. We therefore have M N = 16 weights. 
The weights for raysum P1 are calculated easily in this case. The ray traverses the width of pixel 1, so the weight 
of contribution of pixel 1 to the raysum is w11 = 1. Likewise, w12 = 1. Pixels 3 and 4 do not intersect ray 1, so w13 
= w14 = 0. Similarly for the other rays in this example, all weights are 0 or 1, and the ray sum equations are as 
follows: 

 
P1 = f1w11  +  f2w12  +  f3w13  +  f4w14  =  f1 + f2 
P2 = f1w21  +  f2w22  +  f3w23  +  f4w24  =  f3 + f4   (1) 
P3 = f1w31  +  f2w32  +  f3w33  +  f4w34  =  f2 + f4 
P4 = f1w41  +  f2w42  +  f3w43  +  f4w44  =  f1 + f3 

 
 
In general, each ray Pi can be represented as: 

  
         (2) 
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where M is the total number of rays(in all the projections) and  is the weighting factor that represents the 
contribution of the jth image cell to the ith ray sum. The subscript i represents the projection index from a total 
of M projections. The subscript j represents the image index among N image cells. Half of the NM weights wij 
are zero. For the case of the 9 pixel Fig. 1 approximately two thirds of the weights are zero.  
 
 
 
 
 
 
            
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 1 The reconstruction problem as a system of linear equation 
 

For the computer implementation of this method, we first make an initial guess at the solution. This guess, 
denoted by  is represented vectorially by (0) in the N-dimensional space. In most cases, we 
simply assign a value of zero to all the fi’s. This initial guess is projected on the hyperplane represented by the 
equation in (2). When we project the (i - 1)th solution onto the ith hyperplane [ ith equation in (2)] the gray level 

of the jth element, whose current value is  , is obtained by correcting its current value by where 

 
Note that while pi is the measured ray-sum along the ith ray, qi may be considered to be the computed ray-sum 
for the same ray based on the (i -1)th solution for the image gray levels. The correction Δfj, to the jth cell is 
obtained by first calculating the difference between the measured ray-sum and the computed ray-sum, 
normalizing this difference by  and then assigning this value to all the image cells in the ith ray, each 
assignment being weighted by the corresponding  In general, for large images, a substantial portion of the 
weights are zero, because many of the pixels make no contribution to a particular raysum. One approach to 
solving large systems of equations, iterative approximations, forms the basis of the iterative or algebraic 
methods. Successive adjustments are made to the attenuation values until a solution is reached that is consistent 
with the projection values by some criterion. Iterative methods compare the computed ray sums of an estimated 
image with the original projection measurements and use the error obtained from this comparison to correct the 
estimated image. Though there is unlikely to be an exact solution because of inconsistencies, this method yields 
an approximate solution to the attenuation values. 
 
 
III. ART  EXAMPLE 
 
ART consists of three steps: 

1. Make an initial guess at the solution 
2. Compute projections based on the guess 
3. Refine the guess on the weighted difference between the actual projections and desired projections: 

 
We have an image of 8 X 8 e.g. N = 64 pixels. There are 3 detectors in the detector array, and the array is 
rotated through 4 views (horizontal, vertical, diagonal and antidiagonal) to produce M = 46 raysums. 

Starting with initial guess  and projections . 
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Table 1. Given Projection Value ( ) 

 
18 16 19 10 08 06 

12 09 15 12 07 23 

18 14 17 05 23 09 

14 17 22 24 28 13 

19 12 10 27 26 24 

12 29 26 15 16 12 

21 24 19 09 12 13 

11 10 23 14 0 0 

 
 
 
 
 

Table 2. Initial Image Data ( ) 

 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

 
 

 
 
 
 
 

Table 3. Reconstructed Image after 55 iterations 

 

9.52 5.12 2.91 3.06 5.06 7.56 7.44 2.18 

8.26 2.38 2.45 2.48 2.57 9.36 6.89 2.89 

4.77 5.37 1.97 7.80 5.38 2.43 4.81 4.17 

4.12 4.63 4.03 1.95 3.71 1.87 1.86 4.11 

2.48 3.71 4.09 6.74 1.79 1.78 1.79 2.25 

2.56 5.01 3.04 4.7 2.01 1.81 1.95 2.32 

1.74 2.38 2.32 7.52 7.09 2.28 2.11 5.34 

4.66 1.58 2.57 3.73 5.19 2.76 8.19 2.57 
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Table 4. Error calculated in Image pixel values in each iteration 

 
 

Iterations |fi+1 - fi| (fi+1 - fi)
2  Iterations |fi+1 - fi| (fi+1 - fi)

2 
iteration 1 260.593750 1196.627930  iteration 51 0.224570 0.001947 
iteration 2 23.196289 13.700123  iteration 52 0.218310 0.001832 
iteration 3 11.863609 3.781413  iteration 53 0.212647 0.001732 
iteration 4 7.293658 1.328680  iteration 54 0.207277 0.001643 
iteration 5 4.558233 0.521878  iteration 55 0.202114 0.001562 
iteration 6 3.167742 0.264142  iteration 56 0.197140 0.001489 
iteration 7 2.423008 0.162381  iteration 57 0.189942 0.001412 
iteration 8 2.041324 0.120152  iteration 58 0.184316 0.001340 
iteration 9 1.793079 0.097458  iteration 59 0.179717 0.001276 
iteration 10 1.660157 0.085381  iteration 60 0.175271 0.001217 
iteration 11 1.581798 0.077365  iteration 61 0.171076 0.001162 
iteration 12 1.523060 0.071226  iteration 62 0.167109 0.001112 
iteration 13 1.475091 0.066224  iteration 63 0.163492 0.001064 
iteration 14 1.392426 0.058907  iteration 64 0.160142 0.001020 
iteration 15 1.280310 0.049823  iteration 65 0.156920 0.000978 
iteration 16 1.194516 0.044186  iteration 66 0.153788 0.000939 
iteration 17 1.149647 0.040100  iteration 67 0.150822 0.000901 
iteration 18 1.113286 0.036847  iteration 68 0.147948 0.000866 
iteration 19 1.080504 0.034161  iteration 69 0.145214 0.000832 
iteration 20 1.031179 0.031026  iteration 70 0.142620 0.000800 
iteration 21 0.921514 0.026042  iteration 71 0.140079 0.000769 
iteration 22 0.870406 0.023270  iteration 72 0.137586 0.000740 
iteration 23 0.828576 0.021274  iteration 73 0.135143 0.000712 
iteration 24 0.793581 0.019673  iteration 74 0.132742 0.000685 
iteration 25 0.763604 0.018317  iteration 75 0.130393 0.000660 
iteration 26 0.730673 0.016935  iteration 76 0.128084 0.000635 
iteration 27 0.667299 0.014663  iteration 77 0.125825 0.000612 
iteration 28 0.625723 0.013222  iteration 78 0.123611 0.000589 
iteration 29 0.595970 0.012142  iteration 79 0.121439 0.000568 
iteration 30 0.570434 0.011251  iteration 80 0.119310 0.000547 
iteration 31 0.547994 0.010501  iteration 81 0.117219 0.000527 
iteration 32 0.526815 0.009855  iteration 82 0.115158 0.000508 
iteration 33 0.507945 0.009292  iteration 83 0.113141 0.000490 
iteration 34 0.490216 0.008796  iteration 84 0.111161 0.000472 
iteration 35 0.473685 0.008356  iteration 85 0.109214 0.000455 
iteration 36 0.458431 0.007963  iteration 86 0.107293 0.000439 
iteration 37 0.445886 0.007611  iteration 87 0.105417 0.000423 
iteration 38 0.405795 0.006125  iteration 88 0.103568 0.000408 
iteration 39 0.383962 0.005421  iteration 89 0.101752 0.000393 
iteration 40 0.364060 0.005004  iteration 90 0.099965 0.000379 
iteration 41 0.349298 0.004716  iteration 91 0.098218 0.000366 
iteration 42 0.337096 0.004498  iteration 92 0.096495 0.000353 
iteration 43 0.326862 0.004320  iteration 93 0.094801 0.000340 
iteration 44 0.312715 0.004116  iteration 94 0.093147 0.000328 
iteration 45 0.303181 0.003968  iteration 95 0.091513 0.000317 
iteration 46 0.282642 0.003183  iteration 96 0.089912 0.000306 
iteration 47 0.260532 0.002731  iteration 97 0.088335 0.000295 
iteration 48 0.247859 0.002447  iteration 98 0.086793 0.000284 
iteration 49 0.239172 0.002243  iteration 99 0.085267 0.000274 
iteration 50 0.231610 0.002081  iteration 100 0.083781 0.000265 
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Table 5. Error calculated in projection values in each iteration 

 
Iteration |pi+1 - pi| (pi+1 - pi)

2  Iteration |pi+1 - pi| (pi+1 - pi)
2 

iteration 1 743.000000 552049.000000  iteration 51 0.025269 0.000639 
iteration 2 299.375000 89625.390625  iteration 52 0.015503 0.000240 
iteration 3 34.851563 1214.631444  iteration 53 0.008484 0.000072 
iteration 4 7.800537 60.848377  iteration 54 0.003235 0.000010 
iteration 5 2.252258 5.072666  iteration 55 0.000122 0.000000 
iteration 6 1.376648 1.895160  iteration 56 0.003113 0.000010 
iteration 7 1.503113 2.259349  iteration 57 0.005066 0.000026 
iteration 8 0.413391 0.170892  iteration 58 0.016296 0.000266 
iteration 9 0.408203 0.166630  iteration 59 0.008850 0.000078 
iteration 10 0.084229 0.007095  iteration 60 0.012573 0.000158 
iteration 11 0.162964 0.026557  iteration 61 0.014099 0.000199 
iteration 12 0.281250 0.079102  iteration 62 0.013611 0.000185 
iteration 13 0.287781 0.082818  iteration 63 0.013855 0.000192 
iteration 14 0.296143 0.087701  iteration 64 0.013977 0.000195 
iteration 15 0.178223 0.031763  iteration 65 0.014221 0.000202 
iteration 16 0.026123 0.000682  iteration 66 0.013855 0.000192 
iteration 17 0.151184 0.022857  iteration 67 0.014099 0.000199 
iteration 18 0.176514 0.031157  iteration 68 0.013977 0.000195 
iteration 19 0.169983 0.028894  iteration 69 0.014343 0.000206 
iteration 20 0.170715 0.029144  iteration 70 0.013916 0.000194 
iteration 21 0.112366 0.012626  iteration 71 0.013916 0.000194 
iteration 22 0.139038 0.019332  iteration 72 0.013672 0.000187 
iteration 23 0.039978 0.001598  iteration 73 0.013672 0.000187 
iteration 24 0.069458 0.004824  iteration 74 0.013611 0.000185 
iteration 25 0.083069 0.006900  iteration 75 0.013306 0.000177 
iteration 26 0.085999 0.007396  iteration 76 0.013000 0.000169 
iteration 27 0.069275 0.004799  iteration 77 0.013123 0.000172 
iteration 28 0.086426 0.007469  iteration 78 0.012695 0.000161 
iteration 29 0.016052 0.000258  iteration 79 0.012695 0.000161 
iteration 30 0.037842 0.001432  iteration 80 0.012451 0.000155 
iteration 31 0.045349 0.002057  iteration 81 0.012207 0.000149 
iteration 32 0.049072 0.002408  iteration 82 0.011780 0.000139 
iteration 33 0.051208 0.002622  iteration 83 0.011902 0.000142 
iteration 34 0.053040 0.002813  iteration 84 0.011719 0.000137 
iteration 35 0.054199 0.002938  iteration 85 0.011475 0.000132 
iteration 36 0.055054 0.003031  iteration 86 0.011230 0.000126 
iteration 37 0.055420 0.003071  iteration 87 0.010986 0.000121 
iteration 38 0.055847 0.003119  iteration 88 0.010803 0.000117 
iteration 39 0.165771 0.027480  iteration 89 0.010803 0.000117 
iteration 40 0.128113 0.016413  iteration 90 0.010376 0.000108 
iteration 41 0.078308 0.006132  iteration 91 0.010315 0.000106 
iteration 42 0.049988 0.002499  iteration 92 0.010132 0.000103 
iteration 43 0.032349 0.001046  iteration 93 0.010010 0.000100 
iteration 44 0.020630 0.000426  iteration 94 0.009583 0.000092 
iteration 45 0.041748 0.001743  iteration 95 0.009827 0.000097 
iteration 46 0.018555 0.000344  iteration 96 0.009338 0.000087 
iteration 47 0.109314 0.011950  iteration 97 0.009338 0.000087 
iteration 48 0.098145 0.009632  iteration 98 0.009155 0.000084 
iteration 49 0.060730 0.003688  iteration 99 0.008789 0.000077 
iteration 50 0.039795 0.001584  iteration 100 0.008850 0.000078 
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Fig 1. Image as a line Graph using ART after 01 iteration 

 
 

Fig 2. Image as a line Graph using ART after 15 iterations 

 

 
Fig 3. Image as a line Graph using ART after 25 iterations 

 

 
Fig 4. Image as a line Graph using ART after 55 iterations 
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Image (a) after 1 iteration                Image (b) after 10 iterations 

 
 
 
 
 
 
 
 
 
 
 

          Image (c) after 20 iterations               Image (d) after 30 iterations 

 
 

 
 
 
 
 
 
 
 
 
 
 

          Image (e) after 50 iterations                Image (f) after 55 iterations 
 

Fig.5 Reconstruction at different iterations 

 
CONCLUSION 
The convergence is tested by difference in projection data at each iteration which is taken as  

at kth iteration (k = 1, 2, 3, ………). The stopping criterion taken as 

 is small enough or stabilizes. The accuracy is also tested by another measure, image difference 

at successive iterations i.e. . These results for our example are 

given in table 5 and table 4 respectively. We observe that after the difference in projection reaches at its 
minimum it again starts increasing, which says our stopping criterion should be guided by projection difference 
rather than a large number of iterations. In present example we reach at this minima in 55th iteration. 
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