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Abstract—There are a variety of peer-to-peer (P2P) systems for sharing documents currently available. 
According to their data organization, P2P systems are classified into two categories: structured and 
unstructured P2P systems. In structured P2P systems, peers are organized according to some mapping 
techniques, e.g. hashing function. Whereas in unstructured P2P system, peers are connected to each 
others randomly; resources are not moved to other peers but hosted on site. Unstructured P2P systems 
offer a more flexible and autonomous environment, as they require less control for the placement of 
resources and peers. This work focuses on experimenting on unstructured P2P systems. The challenge in 
unstructured P2P system is designing routing strategies that lead the user in finding the documents 
needed. Routing strategies in unstructured P2P system need to consider the dynamic aspects of P2P 
systems; peers are dynamic and constantly joining and leaving the system, network load changes 
continuously and resources are added and removed over the time. Therefore, the routing strategy must 
adapt to such changes to maintain its performance. We propose routing strategies that adapt to these 
changes through learning mechanisms. The learning mechanisms are conducted by observing the internal 
and external behaviors of the system. Internal behaviors reflect the internal state of peers such as peers’ 
interest and collection. External behaviors reflect the external state of the system such as network load. In 
order to measure the performance of the proposed routing algorithms, some common performance 
measurements are used. These are “response time” and “number of messages generated” or what is 
commonly referred to as efficiency, “number of answered and satisfied queries” and the “similarity of 
documents” or what is commonly referred to as effectiveness of retrieval system. The experiment results 
show that the proposed algorithms are capable of adapting to new changes. By learning to adapt, the 
system maintains its performance in terms of efficiency and effectiveness. Moreover, comparison with 
other similar algorithms also shows the superiority of the proposed routing algorithms. Thus, the 
proposed routing algorithms are good candidates for effective and efficient retrieval of documents in P2P 
systems. 

Keywords- Adaptive routing algorithms; peer-to-peer system; document retrieval; routing index; interest 
groups; expert groups; hybrid groups; 

I.  INTRODUCTION 

 

Peer-to-peer (P2P) systems have recently attracted a lot of attention since it allows the implementation of 
large distributed repositories of digital information. The digital information can be in the form of video, audio, 
image, html, text file, etc. P2P systems consist of thousands, even millions, of peers sharing their resources in 
equal roles. Each peer provides services to other peers by sharing their resources; these peers can also get 
resources from other peers. Therefore the main problem in P2P systems is how to locate resources that are 
scattered in the network efficiently and effectively. Most of researchers measure such performance in term of hop, 
where one hop refers to a trip of message from a peer to another one without any intermediate peers.  

Nowadays we can see many emerging P2P applications. Most of them are used for file sharing systems. Many 
of those applications adopt and adapt previously established protocols such as Napster [1], Gnutella [2], 
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FastTrack [3], Freenet [4] and so forth. According to online Wikipedia [5], there are more than one hundred 
applications built on top of P2P technologies. 

In terms of network topology, many P2P systems follow a semi-centralized or hybrid [6] architecture (e.g., 
Napster [1]), where queries are posed to a centralized index whilst data and services are distributed. Each peer 
registers its resources to the index. Despite their advantages, hybrid systems inherit the drawbacks of centralized 
architectures as they still cause single points of failure when querying from the index.  

As an alternative, several fully distributed (or pure P2P) systems have been proposed. In these fully 
decentralized systems there are no centralized catalogues or functionalities; instead, peers are individually 
contacted and return the results they contain. According to their data organization, P2P systems can be divided 
into two main classes: structured and unstructured P2P systems. In structured P2P systems (e.g., Chord [7], CAN 
[8] and Past [9]), peers are connected to each other and resources or the records are moved to a peer according to 
some mapping techniques. Although they guarantee the location of content within a bounded number of hops, 
they require tight control of data placement and the network topology. In unstructured P2P systems (e.g., Gnutella 
[2], Freenet [4]), peers are connected to each other as they join the network and resources are not moved to other 
peers but are hosted on site. Hence, searching for a resource requires either broadcasting the request or using 
routing information. 

Thus the challenging problem in unstructured P2P systems is designing a routing strategy that enables the user 
to find the documents needed. Routing strategies in unstructured P2P systems need to consider the dynamic 
aspects of P2P systems as the peers constantly join and leave the system, network load changes continuously and 
resources are added and removed over the time. Therefore, the routing strategy must be able to adapt to such 
changes in order to maintain its performance.  

This research studies routing strategies that can adapt to the changes through learning processes. The 
algorithms are mainly constructed based on [10], [11], [12], [13], [14]. The learning processes are conducted by 
observing the internal and external behaviors of the system. The internal behaviors reflect the internal state of 
peers such as the peers’ interest and collection. The external behaviors reflect the external states of the system 
such as network load and peers’ load. By adopting the concept of propagation, the changes are propagated to the 
whole system to reflect the most recent states of the peers in the network.   

The proposed routing algorithms also consider the retrieval technique as in documents retrieval system. Many 
previously developed P2P systems such as Napster, Chord, and Kazaa support only documents retrieval based on 
their identities. Incorporating the retrieval technique in those systems will provide comfortable and easier way for 
the users to express their information needs. 

II. RELATED WORKS 

Researchers commonly categorize P2P systems according to level of decentralization. According to Karl 
Aberer et al [15], P2P systems can be classified into three, namely: centralized, decentralized, and hierarchical 
(hybrid) P2P systems.  In the centralized model, the system has a global index held by a central authority. Peers 
request file sending their queries to the central server. After receiving responses from the server, the requestor 
makes direct contact with the peer providing the resource. The example of P2P system that implements such a 
scheme is Napster. In the decentralized model, there is no global index and central coordinator. Global behaviors 
emerge from local interaction among peers. Examples of this kind of P2P systems are Gnutella, Freenet, etc. In 
the hierarchical model, the system introduces the concept of super-peers. A super-peer knows everything about all 
peers connected to it. This model is a mix between the centralized and decentralized models. Examples of P2P 
systems which use this approach are FastTrack and Kazaa. 

According to peer organization, decentralized P2P systems can be divided into two main classes namely: 
structured and unstructured P2P systems. In structured P2P systems such as Chord [7], CAN [8], and Past [9], 
peers are connected to each other and resources are moved to a peer according to some mapping techniques. For 
example, Chord employs a hashing technique to map resources to a key and peers to a key range. Peers host 
resources whose keys fall within their key range. In unstructured P2P system architecture as in Gnutella [2] and 
Freenet [4], peers are connected to each other randomly as they join the network and resources are remaining 
hosted on site. Hence, searching for a resource requires either broadcasting the request or using routing 
information. 

Some improvements had been proposed to increase the performance of routing in unstructured P2P systems. 
Beverly Yang and Hector Garcia-Molina [6] proposed three techniques to broadcast messages from a peer to its 
neighbors, two of which are put in this category: Iterative Deepening and Local Indices. In this research, Arturo 
Crespo and Hector Garcia-Molina [16] introduced the concept of Routing Indices (RIs). RIs allow peers to 
forward queries to a neighbor that is more likely to have answers. If a peer cannot answer a query, it will forward 
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the query to its best neighbor, based on its local RI, instead of selecting its neighbors randomly or flooding the 
network by forwarding the query to all its neighbors. The proposed routing indices named: Compound RI, Hop-
count RI and Exponentially Aggregated RI. 

Instead of improving the performance by creating more robust routing algorithms, the researchers also focus 
the improvement by creating overlay networks and replicating the resources. The first approach is the design of 
an overlay network based on the distance between a node and its neighbors [17]. In this approach, the overlay is 
formed by creating two types of links: short-link and long-link. Other approaches are by clustering peers based on 
their content/interest similarity. Among others are the studies by Vazirgiannis et al [18], Cheuk Hang Ng et al 
[19], Ramaswamy et al [20], Kalogeraki et al [21]. 

III. PROPOSED DESIGN 

 
The proposed adaptive routing algorithms are categorized into two classes: routing algorithms that are 

adaptive to internal behaviors (internal states of the peers) and routing algorithms that are adaptive to external 
behaviors (external states of the peers). Both strategies rely on the routing indices to locate the answers. To 
continuously learn the internal and external states, the proposed systems use propagation of routing indices. 
Figure 1 shows the whole components of the proposed designs. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Research framework 

The following section explains the general routing strategy in unstructured P2P systems. Second section 
explains the proposed adaptive routing that can adapt to external states. Third section explains the proposed 
adaptive routing that can adapt to internal states. That section describes how to exploit expertise/interest of the 
peers for creating groups that can be used to help routing process in P2P systems. Finally, the last section explains 
some proposed pruning of routing indices mechanisms. The routing indices contain information that can be used 
to help the routing process. 

A. General Routing Processes in Unstructured P2P Systems  

In P2P systems, peers store collections of documents. Queries are lists of terms or keywords and the retrieval 
of documents uses a similarity measure like cosine similarity. The network of peers is unstructured. Each peer 
maintains a routing index for the routing of queries. A routing index introduced by Crespo [16] is a data structure 
that records a list of potential relevant neighbors for each topic in a selected set of topics or keywords.  The 
maximum number of topics and the maximum number of neighbors are parameters of the system that can be set 
explicitly or managed indirectly with an appropriate replacement strategy such as Least Recently Used (LRU) and 
Least Frequently Used (LFU).  

A general form of query is q(, , ) where  is a (possibly weighted) list of keywords. It forms a vector 
represents a topic.  is the time-to-live (TTL), i.e. global expiry time or maximum number of hops allowed for the 
query (this is to avoid ghost queries from indefinitely circulating in the network).  is the maximum number of 
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documents requested. The form of query can be extended for various purposes, for example by adding parameter 
 as a threshold for minimum similarity of retrieved documents or by parameter w to control the user preference.  

A peer receiving the query compares the documents it stores with the query. The peer computes the similarity 
between  and the documents represented by weighted vector of keywords or terms in the vector space model. If 
the similarity is above the threshold , the document is returned as an answer of the query. If the time-to-live is 
not yet reached (i.e.  is not equal to 0,  is number of hops), the query is forwarded to some neighbors (and  is 
decremented if  is number of hops). The neighbors can be selected randomly or using a heuristic function.  

After receiving all documents from answering peers, the peer issuing the query will choose top  documents 
that have the highest similarity. 

B. Adaptive Routing Strategies Based On External States 

External states refer to the environmental condition of the peers such as network load and documents hosted 
on other peers. This research proposes to use adaptive routing strategies for the routing of requests, which are 
adaptive to such conditions. Those routing strategies are based on reinforcement learning: the Q-Routing. Q-
Routing is an adaptive routing strategy that uses Q-learning, a reinforcement learning algorithm. Q-Routing has 
been studied in various network routing and literature and the performance studies show it is able of adapting to 
network traffic. This research adapts the mechanism in Q-Routing [22] and implements this adaptation for 
document searching. In original Q-Routing, the routing indices contain information stored about estimations of 
routing time to particular address through each neighbor. In the proposed algorithms, the routing indices contain 
information about either estimation of routing time or similarity to particular topic through each neighbor.   

Each peer maintains a routing index, which consists of information about the status of the network in the local 
view of the peer. This section explains three proposed approaches and corresponding component. First subsection 
explains the design of routing indices for this purpose. Second subsection explains how to learn the network 
status to locate documents efficiently. Third subsection explains how to learn the collection owned in other peers 
to locate the documents that have high similarity to the query. Finally, the last subsection explains the algorithm 
combining efficiency and effectiveness to give users more flexibility in controlling queries. 

1) Routing Indices Design 
An important aspect to be considered to route queries efficiently and effectively is the design of the routing 

indices. The routing indices help peers selecting the best neighbor(s) to forward queries to. The first proposed 
approach adapts table of Q-values in Q-Routing to be implemented in the proposed adaptive routing algorithms. 
The design of the routing indices is similar to that of the indices for packet routing in network except that the 
entries containing IP addresses destination are replaced with the topics existing in the network.  

The proposed adaptive routing algorithms should be capable of adapting to the changes of external states 
which are network load and collection of other peers. Therefore, the routing index in each peer should reflect the 
changes of the two aspects. In case of adaptive routing algorithm privileging efficiency the routing index 
maintained by a peer o contains, for each neighbor n of the peer and for each topic t, values denoted To(n, t) (we 
call them T-values) which represent the estimated minimum time to retrieve at least a document similar to t by 
forwarding a query to n. In case of adaptive routing algorithm privileging effectiveness the routing index of each 
peer o maintains, for each neighbor n of the peer and for each topic t, values denoted Ro(n, t) (we call them R-
values) which represents the estimated maximum similarity to t of at least a document obtained by forwarding a 
query to n. In adaptive routing strategy combining efficiency and effectiveness the routing index of each peer o 
maintains, for each neighbor n of the peer and for each topic t, T-values and R-values. For the sake of simplicity, 
the form of routing indices that will be explained in this section is for adaptive routing algorithm combining 
efficiency and effectiveness. The form of routing indices for other two approaches can be inherited from them by 
only taking the respective column.  

 

 

 

 

 

 

Figure 2.  A routing index structure for adaptive routing algorithms based on external changes 
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Peers can seamlessly join and leave the network without having to tell the whole networks. The peers joining 
the network can initialize the content of the routing indices to the default and initial values, which is 0. Peers 
leaving the network can inform their direct neighbors to delete the corresponding entries in the routing indices. If 
a peer leaves the network on a failure, i.e. without informing its neighbors, its absence will be eventually 
discovered from its estimated performance in the routing indices. 

For a peer o, each entry in the routing index is of the form: 

 (n, (To (n, t1), Ro (n, t1)), …,  (To (n, tm), Ro (n, tm))) 

for each direct neighbor peer n, where m is the number of topics. Figure 2 shows the illustration of the form of 
routing index. 

Values in the routing indices, i.e. T- and R-values, are updated upon sending or forwarding or receiving a query. 
T-values for a peer o and a topic t are updated according to the following Q-routing formula: 

To (n, t)new = To (n, t) old + l(T n (t) + qo,n - To (n, t)old) (1) 

where n is the neighbor of o transmitting its best T-value for t, namely: 

)),((min)(
)(

tpTtT n
opnneighbourp

n 
  (2) 

qo,n is the overhead communication cost from o to n, l is a number between zero and one which determines the 
learning rate. The bigger l is, the more sensitive it is to changes in the system. When l is set to 1, the equation 
becomes: 

To (n, t)new = Tn(t) + qo,n  (3) 

which updates the T-value without considering the old value. 

R-values for a peer o and a topic t are updated according to the following formula: 

Ro (n, t)new = Rn(t) (4) 

where n is the neighbor of o transmitting its best R-value for t, namely: 

))),((max)),,((maxmax()(
)()(

tdrftpRtR
ndocd

n
opnneighbourp

n 
  (5) 

It is a learning process with a rate of 1 and an overhead cost of zero. The relevance function rf is used to 
compute the actual relevance (retrieval status value) of stored documents. 

Clearly the estimated R-values are expected to be less subject to fluctuation than the T-values. Indeed, 
although both values depend on the network structure (peers leaving and joining), the T-value depends on the 
traffic (requests and responses) while the R-value depends on the documents’ content and location. It is expected 
that the traffic to be the most dynamic element of the system. 

The design of the routing indices accommodates changes in network load and the collection of other peers. 
However, the system can use it separately by removing one of information from the routing indices; either using 
T-values only or using R-values only in the routing indices. When the system uses information from T-values 
only, the system emphasizes the routing on efficiency as it only can predict the path that leads to the solution as 
fast as possible. When the system uses information from R-values only, the system emphasizes the routing on 
effectiveness as it only can predict the path that leads to the solution that has the highest similarity to the query. 

The following subsections explain how to use information from routing indices to get different ways of 
locating the solutions that yield the three proposed adaptive routing algorithms which are routing strategy by 
privileging efficiency, routing strategy by privileging effectiveness, and combination both of them. 

 

2) Routing Strategy by Privileging Efficiency 
In this routing strategy, the routing indices only stores information about T-values as the goal is to locate the 

solutions within shortest amount of time. Given the current state of the network, the routing algorithm learns and 
finds an optimal routing policy from the T-values distributed over all peers in the network. Each peer p in the 
network represents its own view of the state of the network through a table that stores all the T-values, Tp(p’, r), 
where r R, a set of resource objects in the P2P systems and p’ N(p) the set of all neighbors of peer p. Tp(p’, r) 
is defined as the best estimated time that a query takes to reach the peer that hosts resource r from peer p through 
its neighbor p’. 
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The T-value, Tp(p’, r) can be represented by the following mathematical equation: 

 '' ),"(),'( ppp qrpTrpT   (6) 

From the equation we can derive that the minimum time needed to locate a resource r in the P2P network 
from the peer p through its neighbor p’, is affected by 3 components: 

 The time the query spends in peer p’, qp’. 
 The transmission delay between p and p’, . 
 The best estimation time for Tp’ (p”, r). 

The three components are used to make locally optimal routing decisions. When a peer p receives a query q(s, 
r) looks for resource r, peer p will look its T-values table Tp(p’, r) to select the neighboring peer p’ with the 
minimum Tp(p’, r) value. With this mechanism being used in every peer in the network, the query will be 
answered within the shortest amount of time. 

3) Routing Strategy by Privileging Effectiveness 
In this routing strategy, users are interested in documents that have the highest similarity to their queries. 

Finding such solutions may require queries to travel many peers. As a consequence, it may take a longer time to 
locate the solutions. The information about the estimates of similarity of documents to a particular topic can be 
found in R-values stored in the routing indices. As can be clearly seen in Equation 5, the R-values are updated by 
the highest similarity value of the documents and topic that can be achieved through neighbor peers.  

As the R-values keep the best estimation of similarity, it is easy to use them for making locally optimal 
routing decisions. When a peer p receives a query q(s, r) looks for the resource r, peer p will look its R-values 
table Rp(p’, r) to select the neighboring peer p’ with the maximum Rp(p’, r) value. With this mechanism being 
used in every peer in the network, the query will produce answers displaying maximum similarity. 

4) Routing Strategy by Combining Efficiency and Effectiveness 
The general routing strategies route a request to the neighbor with the smallest T-value for a strategy seeking 

to optimize the response time and to the neighbor with the highest R-value (while the local R-value is smaller 
than the neighbors R-values) for a strategy seeking to optimize the similarity to the query. Occasionally, requests 
are randomly routed to allow the correction of the estimated values. Also in practice, requests are deleted from the 
system after they have travelled a predetermined number of hops known as the time-to-live (TTL). 

A strategy seeking the combined optimization of the routing time with the similarity of retrieved documents to 
the query is clearly a call for trade-off. It is clear that the more exhaustive the search (therefore the longer the 
search), the higher the chances to locate and retrieve more similar documents. Such a strategy combines the T-
values and the R-values into a single value. 

Combining the R- and T-values into a single value that reflects the goodness of the peer cannot be 
straightforward as the two values have opposite meaning; the higher the T-value, the less efficient the system. 
Conversely, the higher the R-value, the more effective the system. Therefore, to get a single value that represents 
the goodness of a neighbor, it is required to normalize the two values into comparable values and in the same 
range. The T-and R-values are normalized as follows: 

)),((max

),(
),(_

)(
tyR

tnR
tnRnorm

o
oneighbory

o
o



  
(7) 

and 

)),((max

),(
1),(_

)(
tyT

tnT
tnTnorm

o
oneighbory

o
o



  
(8) 

For every pair of T- and R-values in the routing indices, a weighted sum, V (o, t), of their normalized values 
called the V-values or routing values are computed as follows: 

 V(o,t) = w x norm_To(n, t) + (1 – w) x norm_Ro(n, t) (9) 

Queries are forwarded to the neighbor with the highest routing values. A value close to 0 for w emphasizes 
higher similarity, while a value close to 1 emphasizes better response time. 

The reader notices that the weight w needs not be a parameter fixed globally to the system nor locally to the 
machines but can be associated to each individual request. This allows users to indicate their preference for the 
combination of efficiency or response time and effectiveness or relevance. 
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C. Adaptive Routing Strategies Based On Internal States 

The second approach proposes routing strategies that are adaptive to internal states. The internal states 
observed are domains which abstract the collection and interest of the peers. The two states are common and can 
be easily observed over time.  

This approach uses the internal states to improve both the efficiency and effectiveness of the system by 
creating a social group on the basis of above internal states. Through its observable internal behavior, a peer 
displays traits that can be assimilated with those of an individual. If a peer appears to be specialist in some 
domains, this means the domains are induced by the topics of documents a peer is storing and serving. If a peer 
appears to be interested in some (possibly different) domains, this means the domains are induced by the topics of 
the queries issued by the user or users of the peer.  

By exploiting the two internal states, this research aims to develop an unstructured P2P architecture in which 
the system adaptively learns the expertise of peers, and dynamically reorganizes itself by creating efficient 
communities (groups) of peers. 

1) Routing Indices Design 
In adaptive routing algorithms based on internal states, the routing indices should be able to accommodate the 

changes of internal behavior. The systems have to learn either the peer’s expertise or the peer’s interests or in 
more advance use, the system can observe both of them. Note that the peer’s expertise and interest can be 
represented in the form of a set of topics.   

The routing indices are implemented as a table of links. The routing index maintained by a peer o contains for 
each topic (either represents expertise or interest) values denoted by To(t) which represents a set of links to other 
peers that have a high possibility of answering the queries. Peers can seamlessly join and leave the network 
without need of telling to the whole network. Peers joining the network can initialize the content of their routing 
index to the default and initial values, which is empty link. Peers leaving the network just inform their direct 
neighbors as they do not maintain peers that refer to them. Their absence will be eventually discovered when 
other peers attempt to connect with them. 

Each entry in the routing indices is of the form: 

 (t, ((l1, αt1), .., (lk, αtk))) 

for each topic of a peer’s expertise/interest, where αtl is the average similarity of topic t with collection of peer 
l, and k is the number of allowed links which is parameter of the system. Figure 3 illustrates a routing index with t 
topics and k relevant neighbors for topic i. 

Topics Links 
T1 (l1, α11), .., (lk, α1k) 
…      …. 
Tt (l1, αt1), .., (lk, αtk)

Figure 3.  A routing index for adaptive routing algorithms based on internal states 

In addition to the neighbors in the routing index, each peer maintains a list of random neighbors. These are 
peers (randomly selected) with which the peer was acquainted as it joined the network or received various 
messages. Let us say that a peer knows a total of N neighbors, S neighbors are in the routing index and R = N-S 
neighbors are randomly chosen (as peers join the network and interact with other peers). R and S are parameters 
of the system. The peers and their neighbors form a small word graph in the sense of work done by Merugu [17]. 

The query is forwarded to a maximum of n neighbors (n ≤ N). However, there are some choices to forward 
queries to random neighbors only, to neighbors in the routing index only, or by combining them. Thus, the query 
can be forwarded to s neighbors selected from the routing index and r = n-s neighbors selected from the list of 
random neighbors, s and n are parameters of the system. If s = 0 the peer does not use the routing index and is 
similar to n-broadcast à la Gnutella (see Jovanovic [23] and Yang [6]). If s > 0, the peer computes the similarity 
between the query and the t topics in the routing index, which are weighted vectors of terms or keywords. The 
query is forwarded to those up-to s neighbors in the lists of neighbors of topics whose similarity with the query is 
maximum and higher than a threshold , which is a parameter of the system. For instance, a peer p has 3 topics t1, 
t2, and t3 and their corresponding most similar peers are {(p1,0.8), (p2,0.75), (p3,0.7)}, {(p2,0.9), (p4,0.83), 
(p5,0.7)}, {(p2,0.84), (p3,0.82), (p4,0.8)} respectively in its routing index. Peer p receives query q and after 
computing the similarity of q to topics t1, t2, and t3, the most similar topic to query q is t1, then the system will 
choose top-s most similar peers corresponding t1. Given the value of n=4 and s=2, then r = n - s = 2. Therefore the 
system will forward query q to p1 and p2 as the most similar peers and two random peers.  
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As shown in [10], [11], [12] that adaptive routing indices using reinforcement learning can efficiently and 
effectively route queries in unstructured networks. The following subsections explore three semantically 
motivated approaches to the creation and maintenance of routing indices. The three proposed algorithms differ in 
the way the routing indices are created and maintained. First algorithm is an adaptive routing based on the 
expertise of peers, i.e. the topics representative of the documents stored by a peer. Such algorithm is simply 
referred as Expert Groups. Second algorithm is an adaptive routing based on the interest of peers, i.e. the topics 
representative of the queries received by the peer (issued at the peer or received and forwarded). Such algorithm 
is simply referred as Interest Groups. Last algorithm is an adaptive routing by combining expertise and interest 
groups or we referred to as hybrid groups. 

2) Expert Groups 
In this architecture, peers are grouped according to topics representative of their content or expertise, i.e. of 

the documents that a peer stores, thus creating expert groups/networks. As in the architecture described in 
Vazirgiannis [18], peers in expert groups maintain a set of feature vectors that are centroids of the clusters of the 
documents, which are stored by the peers. These vectors can be obtained and maintained by online versions of 
vector or graph clustering algorithms (see Aslam [24] for an example of an efficient and effective online 
clustering algorithm). These vectors represent the abstract topics, in which the peer is an expert, i.e. it can answer 
queries.  The vectors or topics are the entries of the routing indices. Notice that the routing index is initially empty 
and evolves as documents are added or removed from the peer. 

 

Figure 4.  Illustration of links establishment in Expert Groups 

When a peer joins the network, it chooses random peers to be linked. Hereafter, the peer needs to advertise its 
expertise to get knowledge of other peers that share similar expertise by broadcasting all its feature vectors. The 
depth of broadcasting is controlled by time-to-live (TTL) parameters. Figure 4 illustrates the process. Suppose the 
time-to-live parameter for advertising is set to 2 and P1 that has topic t11 joining the network. P1 will broadcast 
topic t11 to P2 and P3, and time-to-live is decremented. P2 and P3 will evaluate t11 against their own topics and send 
the similarity of the most similar topic to P1, for instance 0.72 and 0.5 respectively. As the time-to-live is not yet 
reached, P2 and P3 will broadcast t11 to P4, P5 and P6 and decrement the time-to-live accordingly. P4, P5 and P6 will 
evaluate against their own topics and send the similarity of the most similar topic to P1, for instance 0.9, 0.6, and 
0.87 respectively. When the time-to-live is reached, the broadcasting is stopped. P1 has received a proposal of 
links with similarity 0.72, 0.5, 0.9, 0.6, 0.87. If the value of parameter S is set to 2, P1 will establish links to P4 
and P6 as they are the top two of the most similar peers it can reach within 2 hops. 

However, in order to adapt to the evolution of the network, broadcasting continues. In this way, the system 
learns the network status and adapts to new changes. The changes should be reflected in the routing indices by 
continuously exchanging peers’ expertise that can be managed using several updates mechanisms: requestor, 
return path, forward propagation, and dual propagation. The explanation of these mechanisms can be found in the 
next sub section D.  

When a peer receives an advertising message about another peer’s expertise, it compares the message with its 
own by computing the similarity between the vector of expertise and the vectors of topics in the routing index. If 
the similarity is above a threshold , which is a parameter of the system, the sending peer of the expertise is added 
as a neighbor corresponding to the topic in the routing index if size constraints for the routing index allow. It 
becomes an expert neighbor. Each topic in the routing index is associated to an explicit maximum of  neighbors. 
If the peer already has  neighbors for the topic concerned, it replaces one of expert neighbors with the smallest 
similarity to the topic with the new candidate neighbor, provided that the similarity of the new candidate neighbor 
is higher than the one to be replaced; otherwise, it ignores the new candidate. 
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If the similarity is above the threshold, conversely the receiving peer advertises its topics to the sending peer, 
which, in turn, considers it for inclusion in the list of expert neighbors in the routing index. Since the routing 
index is dynamically modified, the topology of the network of peers and their groups that it defines continuously 
evolves. Peers are dynamically grouped according to their expertise. 

3) Interest Groups  
In the second adaptive routing algorithm based on internal states, this research designs an architecture in 

which peers are grouped according to topics representative of their interest, i.e. of the queries that are issued or 
forwarded by the peer, thus creating interest groups. In this architecture, which is called as interest groups, the 
evolution of the network is different than in the previous scenario, as the interest of peers, i.e. the queries that it 
issues or forwards, can only be observed over time.  

The routing indices contain direct links to other peers, which have answers for particular topic. It is initially 
empty and evolves as the queries elapsed/received/forwarded to other peers. Figure 5 shows the mechanism. 
Upon receiving a query, a peer will search its own database first. If it can satisfy the query, it will send the result 
to the requestor otherwise it will broadcast the query to the peers that have the answer (if they exist in the routing 
index) or broadcast to random nodes. 

 

 
Figure 5.  Illustration of links establishment in Interest Groups 

When a peer receives an answer from another peer, it compares the respective query for the answer with its 
own by computing the similarity of the vector of query with the vector of topics in the routing index. If the 
similarity is above a threshold , which is a parameter of the system, the answering peer of the query is added as a 
neighbor corresponding to the topic in the routing index (if size constraints for the routing index allow). As the 
vector of query and the corresponding vector of topic in the routing index are considered similar, the vector of 
topic in the routing index can be updated by taking the resultant between both of them. Such an approach reduces 
the number of vectors that should be stored in the routing index thus maintaining the scalability of the system. 

Each topic in the index is associated to an explicit maximum of  neighbors. If the peer already has  
neighbors for the topic concerned, it replaces one of neighbors with the smallest similarity to the topic with the 
new candidate neighbor, provided that the similarity of the candidate neighbor to the topic is higher than that 
about to be replaced; otherwise, it ignores the new candidate neighbor. The same mechanisms in section 3.4, 
which are requestor, return path, forward and forward propagation and dual propagation can be applied to links 
exchange upon sending/receiving queries. By these mechanisms, the system will evolve and will dynamically and 
adaptively change its topology and follow the behavior of users’ interest. Thus peers are dynamically grouped 
according to users’ interest. 

4) Hybrid Groups 
Finally, the last approach provides a design of hybrid architecture combining neighbors obtained from both 

the expert groups and the interest groups. The system is designed by adding more entries in the routing indices of 
expert groups. In the standard expert groups, the routing indices only contain vectors representing the expertise of 
the peers. In the hybrid groups, routing indices of expert groups are added with interest links. This design has an 
anthropomorphic value: individuals seeking knowledge will navigate networks of acquaintances characterized by 
their expertise and interest.  

D. Propagation Strategies of Routing Indices 

The routing indices are designed to store information about internal and external states in local point of view 
of the peers, as it is quite expensive for collecting the whole states of the network. Basically peers can exchange 
their local view of the internal and external states in order to get estimation of the whole states of the network. 
Thus global view of the network states is emergent from interaction among peers. In this way, peers learn the 
network states so that they can take appropriate actions to respond to the users’ queries.  
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The proposed adaptive routing algorithms adopt the concept of propagation to disseminate and learn the 
changes of internal and external states. The changes then are reflected in the routing indices based on the received 
information. This research studies four mechanisms for propagating changes in internal and external states, which 
are requestor, return path, forward propagation, and dual propagation. The propagations are conducted during 
communication among peers in the network. The exchanged information can be in forms of following: 

 The estimation of routing time in case of adaptive routing strategy by privileging efficiency 
 The estimation of similarity in case of adaptive routing strategy by privileging effectiveness 
 The expertise links of corresponding queries in case of expert groups 
 The interest links of corresponding queries in case of interest groups 

Q-Routing algorithm uses the forward propagation, whereas the dual Q-Routing uses dual propagation. Figure 
6 shows the illustrations of the four studied mechanisms. Below are the explanations of each strategy based on the 
figures: 

 In the requestor strategy, a peer answering a query propagates the corresponding entry in the routing index to 
the peer that issued the query. Suppose P1 issues a query q, and Px has an answer for query q and sends to P1. 
Upon sending the answer, Px will also bring information from its routing index to P1. 

 In the return path strategy, a peer answering a query propagates the corresponding entry of the query in the 
routing index to all peers on the return path to the peer that issued the query. Suppose the query q from P1 has 
been forwarded through P2, and P4 has the solution.  P4 will bring information from its routing index to P1 and 
P2. 

 In the forward propagation strategy, a peer receiving a query (but not necessarily answering it) propagates the 
corresponding entry of the query in the routing index to the peer that sent the query. Suppose the query q 
from P1 is forwarded through P2, P2 will answer the query q and bring information from the routing index to 
P1.  If P2 cannot satisfy the query, it will forward the query to its neighbor, for instance to P4. P4 will answer 
the query as it has the solutions and bring information of its routing index to P2. The same process occurs 
until the query meets its time-to-live or the solutions are found. 

 In the dual propagation strategy, in addition to a backward propagation, the peer also propagates the 
corresponding entry of the query in the routing index to the peers it contacts (a backward propagation). Upon 
peer P sending the query to neighbor, it also brings information of its routing index and asks the neighbor to 
update its routing index (if applicable). The neighbor replies and brings information from its routing index to 
peer P.  

 
Liu et al [25] proposed strategies of propagation by employing requestor and return path methods. Forward 

and dual propagation are exploited in routing algorithms proposed by Kumar et al [26], [27]. 

 

 
Figure 6.  Illustration of the four strategies of changes propagation 

E. Pruning of Routing Indices 

The proposed adaptive algorithms also rely on routing indices to select the best peer(s) that will forward the 
query. The number of entries in the routing indices depends linearly on the number of topics in the whole system, 
in the case of adaptive routing strategy based on external states, interest groups and hybrid group. Storing all 
possible topics in the routing indices creates a scalability problem due to their potentially big numbers which 
make them unmanageable. An approach using routing indices is only scalable if the routing indices are of 
manageable size. 

In this sense, the routing indices can be viewed as caches. As the caches may have limited size comparing to 
number of information that have to be stored, it is required that the system only stores important information 
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accessed frequently. Fortunately, there are several page replacement algorithms that can be used to control 
information moved in and out of the cache. For this purpose of replacement strategies, this research also studies 
the popularity of resources in the local context. 

The following subsections explain the proposed algorithms to prune the size of routing indices. The pruning 
strategies adopt standard replacement strategies which are Random, Least Recently Used (LRU), and Least 
Frequently Used (LFU) method. Later, more advanced strategies can be used that perhaps will lead better 
performance. Below are the explanations of the used strategies: 

 Random Method 
This strategy can be viewed as the simplest strategy to manage routing indices. Given the fixed size of the 

routing index, the strategy will randomly remove one of the entries in the routing index to be replaced by a new 
entry (topic). This strategy is very simple and does not require any additional information. 

 Least Recently Used (LRU)  Method 
This method is based on the Least Recently Used (LRU) algorithm. Each peer learns the local popularity of 

resources by examining queries it receives. Each routing index only stores n topics which are most recently 
requested and their corresponding information. When a peer receives a request on topic t, its routing index is 
updated by replacing a topic that has been least recently requested with t and its corresponding information. 

 Least Frequently Used (LFU) Method 
This method is based on the Least Frequently Used (LFU) algorithm. The removal of any entry is based on 

the popularity of the topics. Each peer learns the local popularity (instead of global popularity) of topics by 
examining queries it receives. Each routing index only stores n topics which are most frequently requested. When 
a peer receives a request for topic t, its routing index is updated with the replacement of a topic that has been least 
frequently requested with t and its corresponding information. A column is added to the routing index to store 
frequency of access to the topics. The value in the column is set to 1 when a topic is put into the routing index for 
the first time or when it replaces the least frequently used topic. The value is incremented if the topic is in the 
routing index already.  

IV. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSES 

In the following section, we present our experiment results. The simulations use the PeerSim simulator [28] as 
a platform of the simulations. Some researchers also conducted their simulations on top of the Peersim simulator, 
among others are OverStat [29], [30], SG-1 [31] and T-Man [32]. Therefore, we believe it is appropriate to 
choose Peersim as the simulator for the experiments in this research. 

A. Simulation Parameters 

The simulations use a WireKOut graph structure as the topology of the network. A WireKOut is a graph with 
n vertices, each of which is connected to its nearest k neighbors, which are chosen randomly. The experiments use 
4.000 vertices (peer) and a k value of 4. This relatively small number is meant to reflect the small world effect. 
The delays between peers are assigned a value between 1 and 100; these values are generated randomly.  

We use symbols to represent keywords in the simulations. Hereafter, the terminology of symbol is referred to 
as keyword. Topics and documents are represented as a set of symbols. These simulations use 1,000 symbols to 
represent 1,000 keywords. These keywords are used to create 500 root topics as a base to create topics and 
queries for peers in the network. A topic consists of 5 weighted keywords. The weight of each keyword is 
assigned a randomly selected value between 0 and 1 inclusively. The function used to compute similarity between 
topics is Euclidian-distance. Each peer is assigned with 1 to 3 topics by varying the weight of keywords in the 
root topics. The weight of each keyword is varied over the weight in the root topics. Each peer is also assigned 
with 1 to 10 documents for each topic in the peer. The documents are created by varying the peer’s topics with the 
same fashion as creation of topics in peers from root topics.  

Queries are generated using Zipfian distribution with parameter  to reflect the popularity of each topic in the 
network. The default value of  in the simulation is 0.5. Setting of parameter  to 1 will lead to uniform 
distribution. The smaller the value of , the fewer the number of popular topics will be, i.e., few topics are 
accessed frequently and many topics are accessed infrequently. The values of   are varied in some simulation 
scenarios. 

Query originators are determined using [X,Y] distribution. The distribution means that X% of queries must be 
similar to peers’ topics and Y% of queries are determined randomly. A distribution of 0/100 reflects truly random 
distributions of query originators. The default value of the distribution in our simulation is [50,50]. In some 
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simulation scenarios, the values of X and Y are varied to simulate the behavior of users’ queries. The higher the 
value of X, the higher the users tend to request documents which are similar to their collection. 

A query is assigned a time-to-live (TTL) value. These simulations use two different values of TTL. In the first 
simulation for experimenting adaptive routing based on external state, the default value of TTL is set to 500. In 
the second experiment of adaptive routing algorithms based on internal states, the default value for TTL is set to 
5. This means a query can travel a maximum of 500 hops from its origin for the first scenarios and 5 hops from its 
origin for the second scenarios. In the first experiments, the TTL is set to high value as the nature of the first 
proposed algorithms that only forward the query to single neighbor. As the solutions possibly located far from the 
requestor, setting the TTL to a small value will cause many queries failing to satisfy the query. In contrast, in the 
second experiments, the TTL is set to small value as the nature of the algorithms that use broadcast mechanism to 
forward queries. By setting the TTL to 5 and each peer has 4 neighbors, a query will traverse to around 1,364 
peers (41 + 42 + 43 + 44 + 45) or around 1/3 of the size of the network to locate the solutions. Some scenarios vary 
values of TTL to study the impact of TTL to the performance of the proposed routing algorithms.  

The queries are also assigned a MaxWaitTime to reflect the maximum time a query waits for results from 
other peers. Answers that come to the requestor after MaxWaitTime will be ignored from the evaluation. Table 1 
summarizes the parameters of the simulations.  

TABLE I.  PARAMETERS OF SIMULATIONS 

Parameter Value 
Network topology WireKOut 
Number of peers 4,000 
Number of random neighbors per peer 4 
Number of expert/interest neighbors 
per peer 

4 

Number of keywords (symbols) 1,000 
Number of root topics 500 
Number of keywords per root topic 5 
Weight of each keyword  [0..1]  (Assigned randomly) 
Number of topics per peer 
 

Max. 3 keywords (Derived from root topics by varying the weight 
of each keyword) 

Number of documents per topic n each 
peer 

Max. 10 (Derived from the corresponding topic by varying the 
weight of each keyword) 

Default Zipfian  0.5 (Controlling the popularity of topics) 
Default [X,Y] distribution [50,50] (Controlling the relevance of queries to the peers’ expertise) 
Number of queries per simulation time 25 
Simulation time 5,000 
Default queries’ TTL  5 (Default value for adaptive routing strategies based on internal 

states) 
500 (Default value for adaptive routing strategies based on external 
states)

Maximum time for peers to wait 
answers from other peers  

150 (Default value for adaptive routing strategies based on internal 
states) 
3,000 (Default value for adaptive routing strategies based on 
external states) 

B. Experimental Results 

To measure the performance of the proposed algorithms, some measurements have been defined as follows: 

 Number of messages is defined as the accumulative number of messages generated for running the 
simulation. The messages counted may be in the form of messages for routing queries, messages for updating 
routing index and messages for finding similar peers. 

 Number of answered queries is defined as the number of queries answered by at least one peer.  
 Average response time of top-10 documents is defined as the average response time for locating answers in 

the top-10 documents. As in the previous measure, if no peer answers the query, the response time will be set 
to MaxWaitTime. 

 Average similarity of top-10 documents is defined as the average similarity of the top-10 documents with the 
highest similarity to the query. If no peer answers the query, the average similarity will be set to zero. 
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In our first experiments, we investigate the performance of adaptive routing strategies based on external 
states. As we mentioned in our research design, our research discussed some issues including: routing index 
design, replacement strategy, and effect of routing index size to the routing performance. These issues will be 
explored detailer in this first experiment. In the second experiment,  we investigate the performance of adaptive 
routing strategies based on internal states. In this second experiment, we focus in studying the performance of the 
proposed strategies.  

1) Experiment Results on Adaptive Routing Strategies Based on External States 
The experiments are conducted by setting a parameter w to various values representing users’ preference. The 

simulation uses dual propagation strategies as it shows the best result among other strategy. The values of w are 
set to 0, 0.2, 0.4, 0.6, 0.8 and 1. Setting value of w to 0 reflects the users who look for effectiveness. Setting value 
of w to 1 reflects the users who look for efficiency. Setting value of w between 0 and 1 will take effect of 
compromising between efficiency and effectiveness.  

Figures 7 to 10 show the results of the experiments. As seen in the figures, when value of w is set to 1, the 
solution can be found in the shortest amount of time regardless the similarity of retrieved documents to the query, 
i.e. emphasizing to the efficiency. When value of w is set to 0, the solution can be found with the highest 
similarity to the query regardless the time needed to locate the solution, i.e. emphasizing to the effectiveness. 
Setting  different values of the w indeed produce the expected gradual effect on routing time and similarity of 
answers to the query: routing time converges faster at smaller values as w varies from 0 to 1; average similarity 
varies from 0.5 to 0.9 as w varies from 1 to 0. Expected trends also happen on the number of generated messages 
and the number of queries answered and satisfied. As the values of w vary from 0 to 1, the system generates 
fewer messages and answers and satisfies more queries. 

Figure 7.  Number of messages generated for 
various value of w 

Figure 8.  Number of answered queries for various 
value of w 

Figure 9.  Average response time of the top-10 
documents for various value of w 

Figure 10.  Average similarity of the top-10 
documents for various value of w 

In real situations, not all topics have equal popularity. The distribution model widely used to represent such a 
situation is the Zipfian distribution. The distribution is controlled by the θ parameter. The values of θ are 
controlled by these values: 0, 0.2, 0.4, 0.6, 0.8, and 1. The smaller the value of θ, the more skewed the distribution 
is (i.e. fewer popular topics). This experiment studies the effect of the number of popular topics to the 
performance of the system, particularly when the sizes of the routing indices are limited. For this purpose, the 
routing indices are pruned up to 50% of their original size. The parameter w is set to 1.  

The experiment results show that popularity that is more skewed improves the convergence of the response 
time as can be seen in Figure 11 and 12. The smaller value of Zipfian  also reduces the number of generated 
messages as can be seen in Figure 11. The smaller the value of Zipfian , the fewer the popular topics is. As the 
number of popular topics is small, the system has more chance to load all those popular topics in the routing 
indices. The information in those routing indices is also frequently updated thus reflecting the latest states of the 
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network. Hence, the performance of the system in terms of efficiency is improved over time as can be seen in 
Figure 12. This experiment shows when many users tend to search for particular popular topics, the system 
performs better in achieving stability. Thus, the system offers better performance in satisfying such popular 
queries. 

 

Figure 11.  Number of messages generated for 
various Zipfian  

Figure 12.  Average response time of the top-10 
documents for various Zipfian  

We also investigate the performance of the propagation strategies for routing indices. The propagation of 
routing indices entries are the key of having adaptive routing algorithms. It is expected by appropriate 
propagation strategies, the system learns faster in order to improve the performance the routing. Original Q-
Routing uses only forward propagation to update the routing indices. Some improvements can be made to speed 
up stabilizing the routing indices. These experiments study the performance of the proposed propagation 
strategies, which are requestor, return path, forward propagation and dual propagation strategy.  

Figures 13 and 14 show the experiment results using these different propagation strategies. In terms of routing 
time, dual propagation outperforms other strategies, whereas the requestor strategy is the worst one as it learns the 
slowest. As can be seen in the Figure 14, the routing time for the requestor strategy increases then it is stable at a 
certain routing time. The trend of routing time for other strategies is different as they are initially increasing, but 
later they are capable to decrease. Among others, dual propagation strategy learns the fastest thus offering the 
best routing time to locate the answers.  

 

 
Figure 13.  Number of messages generated for various 

propagation strategies 

 
Figure 14.  Average response time of the top-10 

documents for various propagation strategies 

 
Figure 15.  Number of messages generated for various 

pruning levels 

 
Figure 16.  Average response time of the top-10 

documents for various pruning levels 
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In terms of number of generated messages as can be seen in Figure 13, the requestor strategy generates the 
highest number of messages even though it sends propagation messages to the requestor only. This is possibly 
caused by the system that learns very slowly, which is as a consequence, the system needs farther hops to locate 
the answers. Forward propagation strategy offers the lowest number of generated messages. The forward 
propagation strategy outperforms the dual propagation strategy as the dual propagation strategy needs to double 
its messages for routing indices propagation.    

The last experiments study the effect of pruning size to the performance of the proposed routing algorithms. 
The pruning levels of the routing indices are set to 10%, 30%, 50%, 70%, and 90%. The pruning level of X% is 
determined by pruning the size of the routing indices up to X% of the root topic size. For example, as these 
simulations use 500 root topics, by pruning level of 10% it means the system only keeps 450 entries in the routing 
index of each peer. Figures 15 and 16 show the results of the experiments. 

The figures show the higher the pruning factor, the longer the system to find answers from the network. 
Increasing pruning factor also generates more messages, as the system needs longer paths to locate the answers, 
particularly for those non popular topics that may not be kept in the routing indices of peers. In terms of number 
of answered queries, the system is capable to answer almost an equal number of queries for all pruning levels, 
given the parameter of the experiments. With a smaller value of queries’ TTL, it is expected that the smaller the 
size of the routing indices, the smaller the number of answered queries is, as many queries travel to the network 
without guidance from the routing indices.  

These experiments show that keeping more information in the routing indices offers better performance. More 
queries are forwarded to the correct paths as the routing indices offer greater possibility to provide the 
information corresponds to the topics of the queries. Thus, the most ideal situation is to have each peer with an 
unlimited size of the routing index; it offers the best performance.  

2) Experiment Results on Adaptive Routing Strategies Based on Internal States 
First experiment evaluates the performance of expert networks by varying number of random and expert links 

for broadcasting. Figures 17 to 19 show the performance of the system for various values of R, the number of 
random neighbors, to which a query is forwarded, and S, the number of expert neighbors in the routing index to 
which a query is forwarded. The performance baseline is random broadcast strategy ala Gnutella (S=0, R=4).  

Figure 17 shows the number of messages decreases with more neighbors from the routing indices as searches 
are more focused to peers with same expertise. Figure 18 shows the response time to locate the top-10 
documents.. As seen in the figure, the more the users use expert neighbors, the shorter the time needed to obtain 
the first answer. Figure 19 shows the average similarity of the top-10 documents. The Figure shows that 
broadcasting queries to all expert neighbors improves the similarity of documents found. Overall, using more 
expert neighbors improves the performance of the routing. 

 
Figure 17.  Number of messages generated for varying 

number of random links 

 
Figure 18.  Average response time of the top-10 
documents for varying number of random links 

 
Figure 19.  Average similarity of the top-10 documents 

for varying number of random links 

 
Figure 20.  Number of messages generated for various 

[X,Y] 
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Figure 21.  Average response time of the top-10 

documents for various [X,Y] 

 
Figure 22.  Average similarity of the top-10 documents 

for various [X,Y] 

 
Second experiments on expert groups are conducted by varying the proportion [X,Y] of related queries to 

unrelated queries to the peers expertise. The baseline is random originator, i.e. proportion [0,100], where the 
queries’ topics are assigned randomly. 

Figures 20 to 22 show that more related queries to the peers’ expertise improve the performance of the system 
in all performance measurements. As seen in Figure 20, more related queries to the peers’ expertise can reduce 
the number of generated messages. Figure 21 presents the response time of the system. Indeed, when more related 
queries elapse in the system, the performance is better. However, the similarity of the top-10 documents is 
slightly improved. As shown in the Figure 22, from the proportion of [0,100] to [100,0], the average similarity of 
the top-10 documents only increases in order less than 0.1. 

 

We also experimented on interest groups. As explained in the research design, in interest groups each peer 
will examine queries elapsed or forwarded to it. Thus, it probably requires a big size of the routing index as in the 
adaptive routing strategies based on external states. Therefore this routing technique is expected to have similar 
properties with the adaptive routing strategies based on external states particularly in accordance with routing 
index management. 

First, we compared the performance of interest groups by varying value of the queries’ TTLs. Figures 23 to 26 
show the results of the experiments. Again, as expected, setting longer queries’ TTLs produces a better 
performance at the cost of generating more messages. 

 

Figure 23.  Number of messages generated for 
various queries’ TTLs 

Figure 24.  Number of answered queries for various 
queries’ TTLs 

Figure 25.  Average response time of top-10 
documents for various queries’ TTLs 

Figure 26.  Average similarity of top-10 documents 
for various queries’ TTLs 
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The experiment results show that the users cannot use the queries’ TTLs that are too low as the system will 
not learn, but the users also do not need to set the queries’ TTLs to a very high value as this offers decreasing 
improvement on performance. At a particular value of queries’ TTLs, the system reaches its maximum 
performance. Afterward, increasing the queries’ TTLs generates more messages with lesser improvement on the 
system performance. 

Last, we showed the simulation results of the three proposed strategies in this category compared to other 
similar algorithms. There are two algorithms which are used as baselines of comparison: peer clustering and 
firework query model by Cheuk Hang et al [19] and interest-based locality by Kunwadee Sripanidkulchai et al 
[33]. Both algorithms are similar to the proposed adaptive algorithms. However, both of them do not have the 
capability of managing the routing indices. The network topology in [19] is also considered fixed as the 
reorganization of network topology is only conducted when the peers join the system. In [33], the reorganization 
of network topology is performed only when peers receive answers from other peers. The approach is quite 
similar with the proposed adaptive algorithm when using requestor propagation strategy.  

As can be seen in Figure 27, the proposed algorithm by Hang produces the smallest number of messages, 
whereas the expert groups and algorithm by Sripanidkulchai generate almost an equal number of messages. As 
previously explained, interest groups produces the highest number of messages. The algorithm by Hang very 
efficient in generating messages as its mechanism that only forwards queries to a single neighbor when reaching 
the cluster hosts the answer of the queries. In the proposed grouping mechanisms and algorithm by 
Sripanidkulchai, the system broadcasts the queries to all neighbors that make them producing messages higher 
than the algorithm by Hang.  

In term of number of answered queries, the algorithm by Hang only answers about a half of queries elapsed 
by the peers as shown in Figure 28. In algorithm by Hang, once a peer joins the network and gets a shortcut for 
the most similar peer, the network topology is not changed. The algorithm by Hang requires the peers to advertise 
their expertise to the whole system to be efficient and effective as they indeed rely only on this advertisement 
phase to group peers.  

Figure 29 compares the performance of the algorithms in terms of routing time to locate top-10 similar 
documents to the queries. The proposed interest and hybrid groups outperform other strategies. The interest and 
hybrid groups also perform better in retrieving documents with high similarities to the queries than other 
strategies as can be seen in Figure 30. Again, algorithm by Hang performs the worst and only capable to retrieve 
documents with similarity around 0.35.  

 

Figure 27.  Number of messages generated for all 
compared algorithms 

Figure 28.  Number of answered queries for all 
compared algorithms 

Figure 29.  Average response time of top-10 
documents for all compared algorithms 

Figure 30.  Average similarity of top-10 documents 
for all compared algorithm 
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From the explanation, it can be concluded that the proposed adaptive routing strategies are competitive 
enough. They are capable to locate answers in efficient time and effective retrieval. In implementing this adaptive 
routing, the users should be aware the possibility of a high number of messages as the impact of propagation of 
expertise and interest. However, it is expected by applying heuristic constraint as in adaptive routing based on 
external states (instead of broadcasting), the problem of a high number of message can be solved. 

When comparing results of the two strategies, it also can be seen that the adaptive routing strategies based on 
internal states show their outstanding performance over the adaptive routing strategies based on external states. In 
the adaptive routing strategies based on internal states, the system reorganizes its original topology by allowing 
peers to create additional links (shortcuts) to other peers that share similar expertise/interest. Thus it forms groups 
as a metaphor of social behavior.  This mechanism enables peer jumping to long-distance peers that have the 
answers. Without shortcuts, when searching for peers hosted the solution, peers should travel to other peers in the 
network hop-by-hop until they find the peers hosted the answers. With shortcuts, peers can search the solution 
directly to their shortcuts, as shortcuts point to other peers that share similar expertise/interest to these peers. Thus 
it reduces number of intermediate peers that should be contacted to locate solutions. It explains why the proposed 
adaptive routing algorithms based on internal states perform better than the proposed adaptive routing algorithms 
based on external states. 

V. CONCLUSIONS AND FUTURE WORKS 

All experimental results show how the proposed algorithms can learn and adapt to internal and external 
changes. In the beginning of the simulation, the performances in terms of routing time and similarity are unstable. 
But over time, the systems improve the performance and reach stability. Each proposed strategy has its own 
advantages and disadvantages. However, the simulation results show that the proposed adaptive routing strategies 
based on internal states outperform the proposed adaptive routing strategy based on external states in terms of 
routing time and similarity. In the adaptive routing based on external states, the user needs thousands of 
simulation time to get the first answer of the solutions. In the adaptive routing based on internal states, the users 
only need tens of simulation time to get the first answer of solutions.  

Comparison with other algorithms also shows that the proposed adaptive routing strategies based on internal 
states are competitive enough. The proposed algorithms are proven capable of providing better performance than 
the proposed algorithms by Hang et al [19] and Sripanidkulchai et al [33]. The main issue in the proposed 
approaches that needs to be considered is the high number of messages generated. Combining routing algorithm 
between adaptive routing based on external and internal states is a good candidate for reducing the messages. 
Another customization of algorithm also can be used for retrieving documents in any forms such as text 
documents, image documents and so forth. 

This research has proposed adaptive routing strategies that can be implemented for efficient and effective 
retrieval in P2P systems. The proposed algorithms are implemented in Peersim simulator. Measuring the exact 
effectiveness and efficiency of the proposed algorithms needs real environment and real documents. There are 
also some opportunities to improve the efficiency of the proposed algorithms. Here the future works that are 
considered important to be done to get more comprehensive system: 

 Conduct experiments using real documents. These experiments are important to measure precisely the 
effectiveness of the proposed algorithms. Some collections such as TREC have million of documents with 
relevant judgments for provided queries.  

 Implement the algorithms in real application. Some possible applications can be developed using the 
proposed strategies are file-sharing system, social behavior in e-Learning system, and so forth. In the context 
of e-Learning system, we can develop mechanism of personalization by examining the discussion contents, 
collections and so fort, thus creating social network of students and teachers. 

 Combine the proposed strategies (adaptive routing strategies based on external and internal states) into single 
systems. The benefit of the first strategies using adaptation of Q-Routing algorithm can be incorporated into 
the proposed grouping strategies. It is expected that the combination strategy can reduce traffic of the 
network thus improving efficiency.  

 Improve the routing strategies by incorporating other aspects. A possible approach that can be explored is 
incorporating the replication strategy to the system. Through elegant way of replication, it is expected that the 
system will have more chance to locate the solution thus improving the routing time and similarity of 
retrieved documents. 
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