

A Brief Overview Of Software Testing Metrics

Mr. Premal B. Nirpal
Department of CS & IT,
Dr. B. A. M. University,

Aurangabad, India

Dr. K. V. Kale,
Professor and Head,

Department of CS & IT,
Dr. B. A. M. University,

Aurangabad, India(Author)

Abstract—Metrics are gaining importance and acceptance in corporate sectors as organizations grow,
mature and strive to improve enterprise qualities. Measurement of a test process is a required
competence for an effective software test manager for designing and evaluating a cost effective test
strategy. Effective management of any process requires quantification, measurement and modeling.
Software Metrics provide quantitative approach to the development and validation of the software
process models. Metrics help organization to obtain the information it needs to continue to improve its
productivity, reduce errors and improve acceptance of processes, products and services and achieve the
desired Goal. This paper, focusing on metrics lifecycle, various software testing metrics, need for having
metrics, evaluation process and arriving at ideal conclusion have also been discussed in the present paper.

Keywords- Software Testing, Software Testing Metrics

I. INTRODUCTION

In recent years software testing technologies have emerged as a dominant software engineering practice which
helps in effective cost control, quality improvements, time and risk reduction etc. The growth of testing practices
has required software testers to find new ways for estimating their projects. A key research area in this field has
been ‘measurement of and metrics for’ the software testing. Measurement since plays a critical role in effective
and efficient software development, making measurements of the software development and test process is very
complex [2].

A. Business need

Increase in competition and leaps in technology have forced companies to adopt innovative approaches to
assess themselves with respect to processes, products and services. This assessment helps them to improve their
business so that they succeed and make more profits and acquire higher percentage of market. Metric is the
cornerstone in assessment and also foundation for any business improvement.

B. Software Metrics

Metric is a standard unit of measurement that quantifies results. Metric used for evaluating the software
processes, products and services is termed as Software Metrics.

Definition of Software Metrics:

Software Metrics is a Measurement Based Technique which is applied to processes, products and services to
supply engineering and management information and working on the information supplied to improve processes,
products and services, if required.

Fig. 1 Software Metrics

Measurement
Based

Techniques

Applied
To

Processes,
Products &

Services

To
Supply

Engineering &
Management
Information

To
Improve

Premal B. Nirpal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 204

C. Importance of Metrics

 Metrics is used to improve the quality and productivity of products and services thus achieving
Customer Satisfaction.

 Easy for management to digest one number and drill down, if required.
 Different Metric(s) trend act as monitor when the process is going out-of-control.
 Metrics provides improvement for current process.

D. Metrics Lifecycle

The process involved in setting up the metrics:

Fig. 2 Software Metrics Lifecycle

II. TYPE OF SOFTWARE TESTING METRICS

Based on the types of testing performed, following are the types of software testing metrics:

1. Manual Testing Metrics

2. Performance Testing Metrics

3. Automation Testing Metrics

Following table shows different software testing metrics.

Communique

Evaluating

Reporting

Analysis

-Identify Metric(s) to Use
-Define Metric(s) Identified
-Define Parameter(s) for identifying
the Metric(s) Identified.

-Explain the need of metric to
stakeholder and testing team
-Educate the testing team about the
data points need to be captured for
processing the metric.

-Capture the data.
-Verify the data.
-Calculating the metric(s) value using
the data captured.

-Develop the report with effective
conclusion
-Distribute report to the stakeholder
and respective representative.
-Take feedback from stakeholder.

Premal B. Nirpal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 205

TABLE I. SOFTWARE TESTING METRICS

 Manual o Test Case Productivity
o Test Execution Summary
o Defect Acceptance
o Defect Rejection
o Bad Fix Defect
o Test Execution Productivity
o Test Efficiency
o Defect Severity Index

Performance o Performance Scripting Productivity
o Performance Execution Summary
o Performance Execution Data - Client Side
o Performance Execution Data - Server Side
o Performance Test Efficiency
o Performance Severity Index

Automation o Automation Scripting Productivity
o Automation Test Execution Productivity
o Automation Coverage
o Cost Compression

Common
Metrics

o Effort variance
o Schedule Variance
o Scope change

A. Manual Testing Metrics

1) Test Case Productivity (TCP)
This metric gives the test case writing productivity based on which one can have a conclusive remark.

urStep(s)/ho
urs)Efforts(ho

Stepsst TotalRawTe
tyProductivi Case Total 







Example

Efforts took for writing 183 steps is 8 hours.

TCP=183/8=22.8

Test case productivity = 23 steps/hour

One can compare the Test case productivity value with the previous release(s) and draw the most effective
conclusion from it.

2) Defect Acceptance (DA)

This metric determine the number of valid defects that testing team has identified during execution.

% 100*
Defects ofNumber Total

Defects validofNumber
AcceptanceDefect 







The value of this metric can be compared with previous release for getting better picture

3) Defect Rejection (DR)
This metric determine the number of defects rejected during execution.

Test Case Name Raw Steps
XYZ_1 30
XYZ_2 32
XYZ_3 40
XYZ_4 36
XYZ_5 45

Total Raw Steps 183

Premal B. Nirpal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 206

% 100*
Defects ofNumber Total

Rejected Defects ofNumber
RejectionDefect 







This metric gives the percentage of the invalid defect the testing team has opened and one can control, if
required, in future.

4) Bad Fix Defect (B)
Defect whose resolution give rise to new defect(s) are bad fix defect.
This metric determine the effectiveness of defect resolution process.

% 100*
Defects Valid ofNumber Total

Defect(s)Fix Bad ofNumber
DefectFix Bad 







This metric gives the percentage of the bad defect resolution which needs to be controlled.
5) Test Execution Productivity (TEP)

This metric gives the test cases execution productivity which on further analysis can give conclusive result.

s)/DayExecution(8*
(hours) EffortsExecution

(Te) TCexecuted ofNumber
tyProductiviExecution Test 







Where Te is calculated as,
 Where,
Base Test Case = No. of TC executed at least once.
T (1) = No. of TC Retested with 71% to 100% of Total TC steps
T (0.66) = No. of TC Retested with 41% to 70% of Total TC steps
T (0.33) = No. of TC Retested with 1% to 40% of Total TC steps

6) Test Efficiency (TE)
This metric determine the efficiency of the testing team in identifying the defects. It also indicated the defects

missed out during testing phase which migrated to the next phase.

% 100*
DUDT

DT
EfficiencyTest 








Where,
DT = Number of valid defects identified during testing.
DU = Number of valid defects identified by user after release of application. In other words, post-testing

defect

7) Defect Severity Index (DSI)
This metric determine the quality of the product under test and at the time of release, based on which one can

take decision for releasing of the product i.e. it indicates the product quality.





 


Defects Valid ofNumber Total

severity for this Defect(s) Valid of No. *Index (Severity
IndexSeverity Defect

One can divide the Defect Severity Index in two parts:

a) DSI for All Status defect(s):
This value gives the product quality under test.

b) DSI for Open Status defect(s):
This value gives the product quality at the time of release. For calculation of DSI for this, only open status

defect(s) must be considered.





 


Defects Valid ofNumber Total

severity for this Defect(s) ValidOpen of No. *Index (Severity
(Open) DSI

B. Performance Testing Metrics

1) Performance Scripting Productivity (PSP)
This metric gives the scripting productivity for performance test script and have trend over a period of time.

Premal B. Nirpal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 207

s)/hourOperation(
(hours) Efforts

Performed Operations
ty Productivi Scripting ePerformanc 



 

 Where Operations performed

is: -
1. No. of Click(s) i.e. click(s) on which data is refreshed.
2. No. of Input parameter
3. No. of Correlation parameter
Above evaluation process does include logic embedded into the script which is rarely used.
Example

Operation Performed Total

No. of clicks 10
No. of Input Parameter 5
No. of Correlation Parameter 5
Total Operation Performed 20

Efforts took for scripting = 10 hours.
Performance scripting productivity =20/10=2 operations/hour.

2) Performance Execution Summary
This metric gives classification with respect to number of test conducted along with status (Pass/Fail), for

various types of performance testing.
Some of the types of performance testing: -

1. Peak Volume Test.
2. Endurance/Soak Test.
3. Breakpoint/Stress Test.
4. Failover Test

3) Performance Execution Data - Client Side
This metric gives the detail information of Client side data for execution.

Following are some of the data points of this metric
1. Running Users
2. Response Time
3. Hits per Second
4. Throughput
5. Total Transaction per second
6. Time to first byte
7. Error per second

4) Performance Execution Data - Server Side
This metric gives the detail information of Server side date for execution.
Following are some of the data points of this metric -
1. CPU Utilization
2. Memory Utilization
3. HEAP Memory Utilization
4. Database connections per second

5) Performance Test Efficiency (PTE)
This metric determine the quality of the Performance testing team in meeting the requirements which can be

used as an input for further improvisation, if required.

% 100*
PT of Signoffafter ment PT)Require duringnt (Requireme

PT duringt Requiremen
 EfficiencyTest ePerformanc 







To evaluate this
one need to collect data point during the performance testing and after the signoff of the performance testing.

Some of the requirements of Performance testing are:
1. Average response time.
2. Transaction per Second.
3. Application must be able to handle predefined max user load.
4. Server Stability

Example
Consider during the performance testing above mentioned requirements were met.
In production, average response time is greater than expected, then
Requirement met during PT = 4
Requirement not met after Signoff of PT = 1

Premal B. Nirpal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 208

PTE = (4 / (4+1)) * 100 = 80%
Performance Testing Efficiency is 80%

6) Performance Severity Index (PSI)
This metric determine the product quality based performance criteria on which one can take decision for

releasing of the product to next phase i.e. it indicates quality of product under test with respect to performance.





 

 100*
metnot t Requiremen of No. Total

severity) for thismet not Req. of No. *Index (Severity
Index Severity ePerformanc If requirement is not

met, one can assign the severity for the requirement so that decision can be taken for the product release with
respect to performance.

Example
Consider, Average response time is important requirement which has not met, then tester can open defect with
Severity as Critical.
Then Performance Severity Index = (4 * 1) / 1 = 4 (Critical)

C. Automation Testing Metrics

1) Automation Scripting Productivity (ASP)
This metric gives the scripting productivity for automation test script based on which one can analyze and

draw most effective conclusion from the same.

s)/hoursOperation(
(hours) Efforts

PerformedOperation
tyProductivi Scripting Automation 



 

 Where Operations

performed is: -
1. No. of Click(s) i.e. click(s) on which data is refreshed.
2. No. of Input parameter
3. No. of Checkpoint added
Above process does include logic embedded into the script which is rarely used.

Example
Automation scripting productivity = 2.5 operations/hour.

2) Automation Test Execution Productivity (AEP)
This metric gives the automated test case execution productivity.

s)/DayExecution(8*
(hours) EffortsExecution

(ATe)TCexecuted Automated of No. Total
tyProductiviExecution Test Automation 







Where Te is calculated as,

1))*(T(1)0.66)*(T(0.66)0.33)*((T(0.33)CaseTest BaseATe 

Evaluation process is similar to Manual Test Execution Productivity.

3) Automation Coverage
This metric gives the percentage of manual test cases automated.

 % 100*
TC manual of No. Total

 Automated TC of No. Total
Coverage Automation 







Example

If there are 100 Manual test cases and one has automated 60 test cases then Automation Coverage = 60%

4) Cost Comparison
This metrics gives the cost comparison between manual testing and automation testing. This metrics is used to

have conclusive ROI (return on investment).
Manual Cost is evaluated as: -
Cost (M) =Execution Efforts (hours) * Billing Rate
Automation cost is evaluated as: -
Cost (A) =Tool Purchased Cost (One time investment) + Maintenance Cost + Script Development Cost +

(Execution Efforts (hrs) * Billing Rate)
If Script is re-used the script development cost will be the script update cost.
Using this metric one can have an effective conclusion with respect to the currency which plays a vital role in

IT industry.

Premal B. Nirpal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 209

III. COMMON METRICS FOR ALL TYPES OF TESTING

A. Effort Variance (EV)

This metric gives the variance in the estimated effort.

Operation Performed Total Efforts took for scripting =
10 hours.

ASP=25/10=2.5

No. of clicks 10
No. of Input Parameter 5
No. of Checkpoint added 10
Total Operation Performed 25

% 100*
Efforts Estimated

Effort Estimated -Effort Actual
VarienceEffort 







B. Schedule Variance (SV)

This metric gives the variance in the estimated schedule i.e. number of days.

% 100*
Days of No. Estimated

 Days of No. Estimated - Days of No. Actual
Varience Schedule 







C. Scope Change (SC)

This metric indicates how stable the scope of testing is.

 % 100*
Scope Previous

 Scope Previous - Scope Total
Change Scope 







Where,
Total Scope = Previous Scope + New Scope, if Scope increases
Total Scope = Previous Scope - New Scope, if Scope decreases

IV. CONCLUSION

Metric is the cornerstone in assessment and foundation for any business improvement. It is a Measurement
Based Technique which is applied to processes, products and services to supply engineering and management
information and working on the information supplied to improve processes, products and services, if required. It
indicates level of Customer satisfaction, easy for management to digest number and drill down, whenever
required and act as monitor when the process is going out-of-control.

ACKNOWLEDGMENT

The authors wish to acknowledge UGC for the award of Research Fellowship in Sciences to Meritorious Students
(RFSMS) for carrying out this research.

REFERENCES
[1] Roger S. Pressman: “Software Engineering”, A Practitioner’s Approach 5th Edition, McGraw Hill, 1997.

[2] Yanping Chen, Robert L. Probert, Kyle Robenson “Effective Test Metrics for Test Strategy Evolution” Proceedings of the 2004
Conference of the centre for Advanced Studies on Collaborative Research CASCON’04

[3] Bellin, D., Manish Tyagi, Maurice Tyler: "Object-Oriented Metrics: An Overview", Computer Science Department, North Carolina A
,T state University, Greensboro, Nc 27411-0002.

[4] Booch, G: “Object-Oriented Analysis and Design with Applications”, 2nd ed., Benjamin Cummings, 1994

[5] Khaled El Emam,: “A Primer on OO Measurement”, 1530-1435/05 IEEE, Proceeding of the Seventh International Software Metrics
Symposium (ETRICS’01)

[6] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard G.: “Object- Oriented Software Engineering: A Use-Case Driven Approach”,
Addison- Wesley, 1992

[7] Fenton, N., S.L. Pfleeger: “Software Metrics: A Rigorous and Practical Approach”, PWS Publishing Co

[8] Rosenberg, H. Linda, Lawrence E. Hyatt: “Software Quality Metrics for Object-Oriented Environments”, Crosstalk Jounal,1997

[9] Yanping Chen, Robert L. Probert, Kyle Robenson “Effective Test Metrics for Test Strategy Evolution” Proceedings of the 2004
Conference of the centre for Advanced Studies on Collaborative Research CASCON’04

[10] B. Beizer, Software Testing Techniques 2nd Edition, International Thomson Computer Press, 1990.

[11] IEEE Standard for Software Unit Testing IEEE Std. 1008-1987 (R1993).

[12] P. C Jorgensen, Software Testing a Craftsman’s Approach. CRC Press, 1995.

[13] R.V. Binder Testing Object-Oriented Systems - Models, Patterns, and Tools, Addison-Wesley, 1999.

Premal B. Nirpal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 210

[14] M.R Lyu, eds., Handbook of Software Reliability Engineering, McGraw-Hill, 1996.

[15] G. Rothermel. and M.J. Harrold, “Analyzing Regression Test Selection Techniques”, IEEE Transactions on Software Engineering, vol.
22, no. 8, pp. 529 – 551, 1996.

[16] H. Zhu, P. A. V. Hall and J. H. R. May, "Software unit test coverage and adequacy," ACM Computing Surveys (CSUR), vol. 29, pp.
366-427, 1997

[17] W. Perry, Effective Methods for Software Testing, Wiley 1995.

[18] T. Ball, “The concept of dynamic analysis”, Proc.of joint 7th ESEC/7th ACM FSE, Toulouse, France, vol.24, no. 6, October 1999, pp.:
216 – 234.

[19] E.W. Dijkstra,“Notes on Structured Programming” T.H. Rep. 70- WSK03 1970.
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

[20] N. Juristo, A.M. Moreno, and S. Vegas, “Reviewing 25 Years of Testing Technique Experiments”, Empirical Software. Engineering
Journal, vol. 9, no. ½, March 2004, pp. 7-44.

[21] A. Bertolino, “Knowledge Area Description of Software Testing”, Chapter 5 of SWEBOK: The Guide to the Software Engineering
Body of Knowledge. Joint IEEE-ACM Software Engineering Coordination Committee. 2001. http://www.swebok.org/.

[22] Srinivasan Desikan, Gopalaswamy Ramesh “Software Testing Principles & Practices” PEARSON Education, 2006.

[23] Ron Patton “Software Testing” Techmedia.

[24] Tao Feng, Kasturi Bidarkar, “A Survey of Software Testing Methodology”.

[25] B. Jones, H. H. Sthamer and D. Eyres, "Automatic structural testing using genetic algorithms," Software Engineering Journal, vol. 11,
pp. 299-306, 1996.

[26] William E. Lewis, “Software Testing and Continuous Qualify Improvement” CRC Press LLC, 2000.

[27] Hamlet, D.Taylor,R. , “Partition testing does not inspire confidence”,IEEE Trans Software Eng., vol 17,pp.1402-1411,1990.

[28] W. Gutjahr, "Partition testing vs. random testing: The influence of uncertainty," IEEE Trans. Software Eng., vol. 25, pp. 661-674,
1999.

[29] S.P. Ng, T. Murnane, K. Reed, D. Grant, T.Y. Chen “A Preliminary Survey on Software Testing Practices in Australia” Proceedings of
the 2004 Australian Software Engineering Conference, IEEE, 2004.

[30] Mark Last, Shay Eyal, and Abraham Kandel “Effective Black-Box Testing with Genetic Algorithms” 2005.

[31] JoHo W. Cangussu “Modeling and Controlling the Software Test Process” IEEE, 2001

Premal B. Nirpal et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 211

