
A Dynamic Slack Management Technique for Real-
Time Distributed Embedded System with Enhanced

Fault Tolerance and Resource Constraints

Santhi Baskaran, I. Gugan, A. Aswin Kumar and D. Govindarajan

Department of Information Technology
Pondicherry Engineering College

Puducherry-605014, India

Abstract- This project work aims to develop a dynamic slack management technique, for real-time
distributed embedded systems to reduce the total energy consumption in addition to timing, precedence
and resource constraints. The Slack Distribution Technique proposed considers a modified Feedback
Control Scheduling (FCS) algorithm. This algorithm schedules dependent tasks effectively with
precedence and resource constraints. It further minimizes the schedule length and utilizes the available
slack to increase the energy efficiency. A fault tolerant mechanism uses a deferred-active-backup scheme
increases the schedulability and provides reliability to the system.

Keywords - Real-time; slack; precedence constraints; resource constraint; resource reclaiming; fault
tolerance.

I. INTRODUCTION
Many embedded command and control systems used in manufacturing, chemical processing, avionics,
telemedicine, and sensor networks are mission-critical. These systems usually comprise of applications that
must accomplish certain functionalities in real-time [1]. Dynamic voltage scaling (DVS) is an effective
technique to reduce CPU energy. DVS takes advantage of the quadratic relationship between supply voltage and
energy consumption, which can result in significant energy savings. By reducing processor clock frequency and
supply voltage, it is possible to reduce the energy consumption at the cost of performance of processors [2].
Battery powered portable systems have been widely used in many applications. As the quantity and the
functional complexity of battery powered portable devices continue to raise, energy-efficient design of such
devices has become increasingly important. Also these systems have to concurrently perform a multitude of
complex tasks under stringent time constraints. Thus minimizing power consumption and extending battery
lifespan while guaranteeing the timing constraints has become a critical aspect in designing such systems. The
interest in distributed systems has been growing steadily since more industrial systems rely on computer-based
operations. Therefore the critical applications are being done by the computer in real-time environment must
produce desired result at the correct time. The result which is not obtained in the correct time may be disastrous.
As per the definition the output of real-time systems not only depends on the correctness of the result but also
the time when the result is produced.

In order to make energy efficient, in the scheduling, the execution time of the tasks can be extended up to the
worst case delay for each task set. In real-time system designs, Slack Management is increasingly applied to
reduce power consumption and optimize the system with respect to its performance and time overheads. In
energy efficient scheduling, the set of tasks will have certain deadline before which they should finish their
execution and hence there is always a time gap between the actual execution time and the deadline. It is called
slack time [3]. Therefore to minimize the energy consumed and to satisfy the deadline of the tasks, the
processors run at variable speeds there by reducing the energy consumed by them. This scheduling will be
simulated with various task sets on different set of processors using various algorithms.

Precedence and resource constraints are important factors which must be considered. The precedence
relationships are represented as a Directed Acyclic Graph (DAG) consisting of nodes that represent
computations and edges that represent the dependency between the nodes [4]. If resources are available there is
no problem for allocation of these to various tasks, else resources should be allocate deficiently among tasks and
also care should be taken to see that no deadlock occurs. Therefore it is necessary to introduce resource
management mechanisms that can adapt to dynamic changes in resource availability and requirement. We
proposed a modified FCS algorithm, which employs software feedback loops that dynamically control resource
allocation in response to changes in input workload, task precedence and resource availability. We are
improving the fault tolerance of the system using deferred-active-backup system [5].

Santhi Baskaran et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 236

II. RELATED WORK

The two most commonly used techniques that can be used for energy minimization in such embedded systems
are Dynamic Voltage Scaling (DVS) [6] and Dynamic Power Management (DPM) [7]. The application of these
system-level energy management techniques can be exploited to the maximum if we can take advantage of
almost all of the idle time and slack time in between processor busy times. Hence, the major challenge is to
design an efficient slack distribution technique which can exploit the slack time and idle time of processors in
the distributed heterogeneous systems to the maximum. Various energy-efficient slack management schemes
have been proposed for these real-time distributed systems. Various energy-efficient slack management schemes
have been proposed for these real-time distributed systems. The static scheduling algorithm uses critical path
analysis and distributes the slack during the initial schedule. The dynamic scheduling algorithm provides best
effort service to soft aperiodic tasks and reduces power consumption by varying voltage and frequencies.
Resource adaptation techniques for energy management in distributed real-time systems need to be coordinated
to meet global energy and real-time requirements. This issue is addressed based on feedback-based techniques
to allocate the overall slack in the entire system.

Fault-tolerant scheduling is an attractive avenue to achieving high reliability in uniprocessor and multiprocessor
real-time systems. One of the first fault-tolerant scheduling mechanisms for uniprocessor real-time systems was
developed by Liestman and Campbell [8]. Some researchers also investigated the power management issues in
the fault-tolerant real-time systems [9]. Many fault-tolerant scheduling algorithms leverage the primary–backup
scheme to tolerate processor failures. In the primary–backup approach, each task has two versions allocated to
two different processors. Three variants of the primary–backup approach include: 1) the active-backup-copy-
based schemes; 2) the passive-backup-copy-based schemes; and 3) the primary–backup-copy overloading
techniques.

In the active-backup-copy-based schemes, the primary and backup copies of each task are executed in parallel
on two processors. The active-backup-based schemes exhibit the advantages of requiring no synchronization
between two copies and imposing no constraints on the execution times of tasks. However, it is recognized that
processor times required by tasks in the active-backup-based approaches are doubled when compared with the
passive-backup-based schemes. In contrast, the passive-backup-copy-based schemes only execute the backup
copy of a task if its primary copy fails to pass the acceptance test. The backup copy of a task can be deallocated
from its schedule if the task’s primary copy is successfully finished. More importantly, the passive- backup-
copy-based schemes can take advantage of the backup copy overloading technique. This overloading technique
allows passive-backup copies assigned to different processors to be overlapped on the same process to tolerate a
single processor failure. However, the passive-backup-copy-based schemes have a shortcoming of tight timing
constraints. The primary–backup-copy overlapping technique allows the primary copy and backup copies to be
overlapped in execution times. This technique, which can exploit the advantages of the aforementioned two
schemes, is envisioned as a compromise between the other two. Nevertheless, the common drawback of the
aforementioned fault-tolerant scheduling schemes is that they merely support a single type of backup copy.

III. MODELS
A. System Model
A distributed system with n homogeneous processors each with its private memory is considered for scheduling
the given real-time application. The system requires the complete details of the task processing times (i.e.) the
execution time and deadline before program execution. Each processing element (PE) in the system can support
discrete voltage and speed changes. We assume that the energy consumption, when the processor is idle, is
ignored. The real-time applications can be modeled by a task graph G = (V,E), where V is the set of vertices
each of which represents one computation (task), and E is the set of directed edges that represent the data
dependencies between vertices. For each directed edge (vi, vj), there is a significant inter-processor
communication (IPC) cost when the data from vertex vi in one PE is transmitted to vertex vj in another PE. The
data communication cost in the same processor can be ignored. Each real-time application has an end-to-end
deadline D, by which it has to complete its execution and produce the result. Each local task Ti executed at node
i have a specified local deadline di by which the task has to be processed. The local deadlines assigned must
satisfy

 (1)

The frequency selection is influenced by making a task more or less urgent by shifting its deadline back and
forth. The range within which the local deadline at node i can be varied is bounded by [Si−, Si+]. The values for

Santhi Baskaran et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 237

S can be derived from the local task parameters. If wceti represents the worst-case execution times of the local
task at node i, then

 (2)

The system output consists of the task numbers and how each every task is being scheduled. It also contains the
details regarding the speed, energy consumed by the variable voltage processor and also the increase in the
computation time for each and every task which is shown graphically. It also includes the fault tolerance ratio.

B. Resource Model
1. Basic Assumptions
To model non-CPU resources and resource requests, we make the following assumptions:

1) Resources are reusable and can be shared, but have mutual exclusion constraints. Thus, only one task
can be using a resource at any given time. If multiple identical resources or multiple instances of the
same resource are available, each identical instance of a resource should be considered as a distinct
resource. This applies to physical resources, such as disks and network segments, as well as logical
resources, such as critical code sections that are guarded by mutexes.

2) Only a single instance of a resource is present in the system. This requires that a task explicitly specify
which resource it wants to access. This is exactly the same resource model as assumed in protocols
such as the Priority Inheritance Protocol and Priority Ceiling Protocol [10].

3) A task can only request a single instance of a resource. If multiple resources are needed for a task to
make progress, it must acquire all the resources through a set of consecutive resource requests.

2. Resource Request and Release Model
During the lifetime of a task, it may request one or more resources. In general, the requested time intervals of
holding resources may be overlapped.

We assume that a task can explicitly release resources before the end of its execution. Thus, it is necessary for a
task that is requesting a resource to specify the time to hold the requested resource. We refer to this time as
HoldTime [11]. The scheduler uses the HoldTime information at run time to make scheduling decisions.

C. Precedence Constraints
Tasks can also have precedence constraints. For example, a thread Ti can become eligible for execution only
after a task Tj has completed because Ti may require Tj’s results. For implementing precedence constraints DAG
is used.

Precedence constraints between tasks can also be modeled as resource dependencies. The precedence constraint
that Tj precedes Ti is equivalent to the situation where Ti requires a logical resource (before it can start its
execution) that is available only after Tj has completed its execution. Thus, if Tj has completed its execution
before Ti arrives, then this logical resource is immediately available for Ti and Ti becomes eligible to execute
upon arrival. This respects the precedence relation semantics. Furthermore, if Tj has not completed its execution
when Ti arrives, then the logical resource is not available and, therefore, Ti is conceptually blocked upon arrival.
Later, when Tj competes its execution, the logical resource becomes available and Ti is unblocked. This again
respects the semantics of the precedence relation. This technique requires that both Ti and Tj share a binary
semaphore S with an initial value zero. The first operation of Ti is to execute P(S) and the last operation of Tj is
to execute V(S).

Santhi Baskaran et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 238

Figure1: Precedence constraints of a task set

Thus, by allowing resource dependencies in the task model, we also allow, albeit indirectly, precedence
constraints between tasks.

D. Fault Tolerance Model
In this section, we describe a fault tolerance model of real-time distributed systems. This model is composed of
a set of processors as well as a set of real-time primary copy tasks along with a set of corresponding backup
copies of the real-time tasks running in the distributed system. In this study, we consider real-time distributed
systems where processors accessing their local memory modules are connected to one another via an
interconnection network. Formally, a real-time distributed system model is composed of τ1, τ2, τ3. . . τN of tasks in
addition to P1, P2, . . . , PM of processors executing the task set. The ith periodic preemptive task τi is
characterized by two parameters: period Ti and execution time Ci. A set {β1, β2, β3. . . βN} of backup copies of
periodic tasks are introduced to make fault tolerance possible. di is the execution time of βi.
In our system model, each backup copy may be in one of two states: passive-backup copy or active-backup
copy. We assign a task’s primary copy before assigning its backup copy regardless of the backup copy’s status
form. The status forms of backup copies are formally determined by the following:

 (3)
R(i, j) denotes the worst case response time or WCRT of τi on processor Pj [12]. Bi denotes the recovery time for
βi, i.e., the time left after the execution of τi. P(τi) or P(βi) denotes the processor on which τi or βi is scheduled
on. For ease of presentation, γi represents a primary copy or a backup copy, i.e., γi = τi or βi. Equation (3)
indicates that an active backup copy must be running in parallel with its primary copy, whereas a passive-
backup copy only needs to be executed if its primary copy fails.

IV. PROPOSED WORK

The overall framework for the proposed system is shown in the figure

Santhi Baskaran et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 239

Figure 2: Architecture of Energy-Efficient FCS algorithm

A. First Come First Served (FCFS) Scheduling Scheme
In the FCFS method tasks are inserted into the queue based on the arrival time of the task. The tasks are inserted
into the queue in the increasing order of the arrival time. The pseudo code for inserting task sets in FCFS is
given in Figure 3.

Santhi Baskaran et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 240

Figure 3: FCFS Pseudo Code

B. Modified FCS Algorithm
A modified FCS (feedback control scheduling) algorithm has been proposed for homogeneous distributed real-
time systems, which include tasks supporting both precedence and resource constraints. The algorithm is based
on a mixed integer predictive control approach. The algorithm is based feedback control scheduling (FCS). This
algorithm can provide real-time performance guarantees efficiently, even in open environments. The feedback
control scheduling algorithm framework has three components; Resource reclaimer that computes difference
between task’s actual execution time and worst case execution time for local and global slack adjustment;
Monitors that track the CPU utilization of each processor; and Feedback scheduler that performs resource
reclaimer recommended schedule adaptations dynamically. An end-to-end task model implemented by many
distributed real-time applications is adopted. An application is comprised of m periodic tasks {Ti | 1≤ i ≤ m}
executing on n processors, and m ≥ n .Task Ti is composed of a chain of subtasks {Tij|1 ≤ j ≤ si} located on
different processors. The release of subtasks is subject to precedence constraints, i.e., subtask Tij(1 < j ≤ si)
cannot be released for execution until its predecessor subtask Tij-1 is completed [13].

Figure 4: Feedback Control Scheduling for Embedded Distributed System

A processor in the distributed system receives subtasks of different tasks, arrived to the global Feedback
scheduler. Within each processor the tasks are scheduled by FCFS method.

Santhi Baskaran et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 241

C. Resource Reclaiming

Resource reclaiming [14] refers to the problem of utilizing resources left unused by a task when it executes less
than its wcet, because of data-dependent loops and conditional statements in the task code or architectural
features of the system, such as cache hits and branch predictions, or both. Resource reclaiming is used to adapt
dynamically to these unpredictable situations so as to improve the system’s resource utilization and thereby
improve its schedulability. The resource reclaiming algorithm used is a restriction vector (RV) based algorithm
proposed in [15] for tasks having resource and precedence constraints. Two data structures namely restriction
vector (RV) and completion bit matrix (CBM) are used in the RV algorithm. Each task Ti has an associated
ncomponent vector, RVi[1 . . . n], where n is the number of processors. RVi[j] for a task Ti contains the last task
in T< i(j) that must be completed before the execution of Ti begins, where T< i(j) denotes the set of tasks
assigned to processor Pj that are scheduled in feasible schedule (prerun schedule) to finish before Ti starts. CBM
is an m X n Boolean matrix indicating whether a task has completed execution, where m is the number of tasks
in the feasible schedule. The pseudo code for the resource reclaiming RV algorithm is given in Figure.

Figure 5: RV Resource Reclaiming Algorithm

D. Resource Management
A dynamic real-time system is composed of a variety of software components, as well as a variety of physical
(hardware) components that govern the real time performance. The physical components of a real-time system
can be described by a set of computational resources and an interconnection network, and other devices. The
computational resources are a set of host computers H = {h1… hm}. It is generally assumed that the properties of
the computational resources and the network resources are known. A hierarchical ARM architecture and a
heuristic algorithmic approach based on a table lookup technique are proposed to solve the resource allocation
problem.

 Adaptive resource management middleware (ARM) [16] optimizes the real-time performance of sets of
application software. The middleware plans actions that include which software to run on which
resources to achieve the maximum system level benefit.

 The ARM is responsible for the correct operation of the whole system. As input, it is given the static
characteristics of both the hardware system and the software system. Based on these, it makes resource
allocation decisions and has the ability to modify certain performance parameters such as service
attributes.

 The resource manager consists of an allocation manager (AM) which chooses a new allocation of
application software to hosts, due to major changes of extrinsic requirements, a global meta agent
(GMA) which checks if reallocation of application software to hosts is necessary, and tries to optimize
total benefit, meta agents (MAi, i = 1, …, m)each being responsible for controlling an application
subsystem (SSi). One reason for including GMA is overall utility: each MAi tries to optimize its own
behavior.

 One of the main objectives is to find an optimal allocation of the applications to host computers. Both,
execution time and memory usage of a task depend not only on extrinsic and service attribute
parameters, but also on the machine on which the task is being executed.

Santhi Baskaran et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 242

E. Slack Management
In real-time system designs, Slack Management is increasingly applied to reduce power consumption and
optimize the system with respect to its performance and time overheads. This slack management technique
exploits the idle time and slack time of the system through DVS in order to achieve the highest possible energy
consumption. In energy efficient scheduling, the set of tasks will have certain deadline before which they
should finish their execution and hence there is always a time gap between the actual execution time and the
deadline. It is called slack time.

Figure 6: Slack Time

Conventional real-time systems are usually overestimated to schedule and provide resources using the wcet. In
average case, real-time tasks rarely execute up to their worst case execution time (wcet). In many applications,
actual case execution time (acet) is often a small fraction of their wcet. However, such slack times are only
known at runtime through resource reclaimers. This slack is passed to schedulers to determine whether the next
job should utilize the slack time or not.

The main challenge is to obtain and distribute the available slack in order to achieve the highest possible energy
savings with minimum overhead. But most of these do not address dynamic task inputs. Only a few that attempt
to handle dynamic task inputs assume no resource constraints among tasks. But in reality, few tasks need
exclusive accesses to a resource. In exclusive mode no two real-time tasks are allowed to share a common
resource. If a resource is accessed by a real-time task, it is not left free until the task’s execution is completed.
Other tasks in need of the same resource must wait until the resource gets freed. Our proposed algorithm handles
this issue through the RV algorithm mentioned above.
Our slack management algorithm decides when and at which voltage should each task be executed in order to
reduce the system's energy consumption while meeting the timing and other constraints. Our solution includes
two phases: First we use static power management schemes based on wcet to statically assign a time slot to each
task. Then we apply dynamic scheduling algorithm to further reduce energy consumption by exploiting the slack
arising from the run-time execution time variation. Here a small amount of slack time called unit slack is added
to all the tasks and finally we find the subset of tasks that can be allocated this slack time so that total energy
consumption is minimized while the deadline constraint is also met.

F. Fault Tolerance

Figure 7: Illustration of deferred-active-backup copies when any failure occurs

Figure 7 shows that deferred-active-backup scheme delays the execution of βi (backup copy) by Yi time units.
Let the WCRTs of τi (actual task) and βi be Ri and BRi, respectively. Note that BRi is always larger than Ri, and

Santhi Baskaran et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 243

this fact is determined by our task assignment strategy. Divided by Ri, the execution of βi is separated into two
parts: BP and RP. RP executes in parallel with the primary copy, whereas BP is executed after its primary copy
fails in producing correct results before the deadline. The implementation of deferred-active-backup scheme is
challenging, because it has to precisely determine how much time the execution of active-backup copies should
be delayed.
Again, we use Redundant (βi) and Backup (βi) to denote the execution time of RP and BP for βi. Thus,

Redundant(βi) = Ci(execution time of τi)−Backup(βi) (4)

It should be noted that not all active-backup copies can be executed in schedules made by deferred-active-
backup scheme. This is because, when a primary copy fails to produce correct results before its deadline, the
recovery time of the primary copy may be occupied by copies of other tasks with higher priorities. This leads to
an insufficient amount of time for the corresponding backup copy to be executed. We now introduce the
deferred-active-backup copies, i.e., status (βi) = deferred-active. The status of active-backup copies that cannot
make use of the deferred-active technique are active, i.e., status (βi) = active [5].

V. RESULTS AND DISCUSSIONS

For simulation, scheduling task sets and task graphs are generated using the following approach:

 Task sets are randomly generated with parameters such as arrival time, actual case execution time,
worst case execution time and resource constraints

 Actual case execution time must be lower than the worst case execution time
 The overall deadline is generated such that it is always greater than or equal to the sum of all the worst

case execution time
 Task graph is randomly generated using adjacency matrix where 0 represents the tasks that are not

dependent on any other tasks and 1 represents the dependency

FCS algorithm dynamically utilizes the slack time in a most efficient way i.e., we reduce the speed of the
processor and utilize the slack time completely which in turn reduces the power consumption of the system. It
also considers the resource and precedence constraints with strict timing constraints. Thus this modified FCS
for dynamic slack distribution has greater performance and energy efficiency against other existing slack
distribution techniques.

In conventional systems the active backup starts along with the main task. If the main task is interrupted the
backup task completes the execution. But it completes its execution before its deadline and leaves a certain
amount of slack. In deferred-active-backup scheme the backup task is delayed and then started such that it
completes the execution before its deadline but the slack time is zero. Thus the schedulability and reliability of
the system is boosted when compared to the backup scheme used in conventional systems.

VI. CONCLUSION

Thus the modified Feedback Control Scheduling (FCS) algorithm with precedence and resource constraints act
as a unified framework of adaptive real-time systems based on feedback control theory. The FCS framework
supports fundamental resource scheduling solutions that provide robust performance guarantees for real-time
systems. The modified FCS algorithm efficiently utilizes the slack dynamically. Thus the energy efficiency is
increased compared with the conventional models. Our system uses deferred-active-backup scheme for fault
tolerance. This scheme increases schedulability and reliability of the system when compared to the conventional
backup schemes.

ACKNOWLEDGEMENT

The authors are grateful to the anonymous referees for their insightful suggestions and comments for improving
the quality of this paper.

REFERENCES

[1] Rabi N. Mahapatra and Wei Zhao, “An Energy-Efficient Slack Distribution Technique for Multimode Distributed Real-Time
Embedded Systems”, IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 7, July 2005.
[2] Changjiu Xian, Yung-Hsiang Lu and Zhiyuan Li, “Dynamic Voltage Scaling for Multitasking Real-Time Systems with Uncertain
Execution Times”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 8, August 2008.
[3] Subrata Acharya and Rabi N. Mahapatra, “A Dynamic Slack Management Technique for
Real-Time Distributed Embedded Systems”, IEEE Transactions on Computers, vol. 57, no. 2, February 2008.
[4] Jaeyeon Kang and Sanjay Ranka, ”DVS based Energy Minimization Algorithm for Parallel Machines”, IEEE, 2008.

Santhi Baskaran et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 244

[5] Wei Luo, Xiao Qin, Xian-Chun Tan, Ke Qin, and Adam Manzanares, “Exploiting Redundancies to Enhance Schedulability in Fault-
Tolerant and Real-Time Distributed Systems”, IEEE Transactions on Systems, man, and Cybernetics—part a: systems and humans, vol. 39,
no. 3, May 2009.
[6] T. Ishihara and H. Yasuura, “Voltage Scheduling Problem for Dynamically Variable Voltage Processors”, Proc. Int’l Symp.
LowPower Electronics and Design, pp. 197-202, 1998.
[7] L. Benini, A. Bogliolo, and G. De Micheli, “A Survey of Design Techniques for System-Level Dynamic Power Management”, IEEE
Trans. VLSI Systems, pp. 299-316, 2000.
[8] L. Liestman and R. H. Campbell, “A fault-tolerant scheduling problem”, IEEE Trans. Softw. Eng., vol. SE-12, no. 11, pp. 1089–
1095, Nov. 1986.
[9] R. Melhem, D. Mosse, and E. Elnozahy, “The interplay of power management and fault recovery in real-time systems”, IEEE Trans.
Comput., vol. 53, no. 2, pp. 217–231, Feb. 2004.
[10] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance Protocols: An Approach to Real-Time Synchronization,” IEEE Trans.
Computers, vol. 39, no. 9, pp. 1175-1185, 1990.
[11] Peng Li, Haisang Wu, Binoy Ravindran and E. Douglas Jensen, “A Utility Accrual Scheduling Algorithm for Real-Time Activities
with Mutual Exclusion Resource Constraints”, IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006.
[12] A. Burchard, J. Liebeherr, and S. H. Son, “New strategies for assigning real-time tasks to multiprocessor systems”, IEEE Trans.
Comput., vol. 44, no. 12, pp. 1429–1443, Dec. 1995.
[13] Santhi Baskaran and P. Thambidurai, “Power Aware Scheduling for Resource Constrained Distributed Real-Time Systems”, (IJCSE)
International Journal on Computer Science and Engineering Vol. 02, No. 05, 2010, 1746 1753.
[14] C. Shen, K. Ramamritham and J.A. Stankovic, “ Resource reclaiming in multiprocessor real-time systems”, IEEE Trans. Parallel and
Distributed Systems, vol. 4, no. 4, pp. 382-397, Apr. 1993.
[15] G. Manimaran, C. Siva ram Murthy, Machiraju Vijay, and K. Ramamritham, “New algorithms for resource reclaiming from
precedence constrained tasks in multiprocessor real-time systems”, Journal of Parallel and Distributed Computing, vol. 44, no. 2, pp. 123-
132, Aug. 1997.
[16] N. Shankaran, N. Roy, D. Schmidt, X. Koutsoukos, Y. Chen and C. Lu. “Design and Performance Evaluation of an Adaptive
Resource Management Framework for Distributed Real-time and Embedded Systems”, EURASIP Journal on Embedded Systems, 2008.

Santhi Baskaran et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011 245

