
Omid Bushehrian et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3120-3125

Automated Transformation of Distributed Software
Architectural Models to Finite State Process

Omid Bushehrian
IT and Computer Department

Shiraz University of Technology
Shiraz,Iran

Bushehrian@sutech.ac.ir

Hassan Ghaedi
IT and Computer Department

Shiraz University of Technology
Shiraz,Iran

Hassan.ghaedi@yahoo.com

Reza Ghanbari Baghnavi
IT and Computer Department

Shiraz University Of Technology
Shiraz,Iran

R_gh101@yahoo.com

Abstract—Software Performance Engineering (SPE) represents
the collection of software engineering activities with the purpose
of identification, prediction and also improvement of software
performance parameters in the early stages of software
development life cycle. Various models such as queuing networks,
layered queues, Petri Nets and Stochastic Process Algebras are
suggested for modeling distributed systems. Particular ability of a
model is the prediction and estimation of non-functional
characteristic of one system before it has been made. The main
problem is a method by which we can easily transform
architectural software models into formal simulate able models.
In this paper a method for automatic transformation of UML
deployment and sequence diagrams into FSP(finite state process)
model is presented, so that we can analyze the resulting model
through discrete event simulation tools from the performance
perspective. In the proposed transformation algorithm, different
aspects of a software system such as: communication model of
software objects, synchronization and physical deployment of
objects are considered.

Keywords-performance engineering – distributed systems –
finite state process – simulation – performance evaluation

I. INTRODUCTION

Performance is an important matter in software systems;
everything affects it, including the software itself and all
underlying layers, such as operating system, middleware,
hardware, communication networks, etc [1]. Software
Performance Engineering (SPE) includes the collection of
software engineering activities and related analysis that it's
purpose is identification, prediction of performance problems
and also improvement of performance parameters in software
development cycle in the early stages [2].

Nowadays, The various types of analyzable formal models
are used for modeling a distributed system, including queuing
networks, layered queues, Petri Nets and Stochastic Process
Algebras. Particular ability of a model is the prediction and
estimation of non-functional characteristic of one system,
before it has been made. One of non-functional characteristics
is performance. The main problem is a method by which we
can easily transform software models such as deployment and
sequence diagrams into simulate able models in architectural
level.

Current methods in performance modeling and evaluation
haven’t represented an exact and complete algorithm for the
transformation of UML models into simulate-able models.
These methods have only sufficed at examples of how
transformation can be preformed [3,4,5]. Specifically, in the
previous methods, the communication models of
objects(synchronous or asynchronous), object types(active or
reactive), creation of threads and the deployment of the objects
haven't been considered when transforming a UML model into
its corresponding formal model.

In this article an algorithm for automatic transformation of
software deployment and sequence diagrams into FSP[13] as a
simulate-able model is presented. So that by simulating the
resulting FSP model different performance factors such as
response times, length of queues, objects population can be
measured. To achieve this, we use UML sequence diagrams
that are annotated with SPT profile[13]. As shown in Fig.1 in
this profile, performance tags can be augmented to sequence
diagrams which explain the performance aspects of the
modeled software.

II. RELATED WORKS

There are many researchers in the field of transforming
distributed system models to analyzable formal models.
Mainly queuing and Petri nets are used in this direction.

Some have used Petri nets for modeling timed or
stochastic analysis[6,7,8]. Some have extended Petri nets for
modeling to analyzing safety, reliability, or
performability[9,10]. In [11] an algorithm is presented for
automatic transformation of software architectural models into
Petri net models for performance analysis. Queuing networks
are another approach for modeling. In[12] automatic
algorithms are presented for transforming architectural models
into queuing models for performing various analysis. In[13]
FSP models are used as destination model in transforming
software architecture models.

In summary we can say that in presented algorithms in
previous researches for transforming UML models to Petri and
queuing models, following shortcomings are observed:

 Deployment diagrams that are particularly
important in distributed software are not
considered.

ISSN : 0975-3397 3120

Omid Bushehrian et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3120-3125

 In the previous methods, the issues such as
communication models of objects(synchronous or
asynchronous), object types(active or reactive),
creation of threads and the deployment of the
objects haven't been considered when
transforming a UML model into its corresponding
formal model.

In this article by selecting FSP model as the destination
model of the transformation, a 1-to-1 transformation algorithm
is presented for transforming deployment and sequence
diagrams to FSP’s.

III. FSP AND SPT PROFILE

FSP’s, are abstract machines used to model the behavior of
concurrent and distributed systems[14]. Each process of
distributed system can be modeled by a FSP that perform
sequence of actions repeatedly. A distributed system, is a
collection of such processes that some of their actions are
synchronized with each other. For transforming sequence and
deployment diagrams to FSP’s, we must transform objects,
CPUS and communication links to FSP’s. Each FSP is indeed
an automata with several states that transits between states[15].
Fig.2 illustrates automata corresponding to the server object
shown in Fig.1. In this section, the transformation algorithm is
explained with an example.

A simple sequence diagram that is annotated with SPT1
profile for performance, is illustrated in Fig.1[5].

The <<PAcontext>> stereotype indicates that this diagram
is a scenario involving some resources (software objects in this
case) driven by a workload. The objects are a server (an active
object, indicated by the heavy box), and a lock. The annotation
on the lifeline of the user object has a <<PAopenLoad>>
stereotype indicating that it is a workload, i.e. it defines the
intensity of the demand made on the system by the users of this
scenario; in this case the interval between requests is
exponentially distributed with a mean of 40 ms. A requirement
that the mean response time is 30 ms is given, along with a
placeholder variable ($Resp) for the predicted value that will
be determined by simulation. The server offers a single
operation, which requires the lock to be acquired and released -
each of these operations takes 10 ms on average.

The translation scheme generates an FSP process for each
object specified in the sequence diagram. We use the order of
operations shown on the timeline of each object to determine
the events available in each state. The sequence of messages
specified in the sequence diagram for each object are encoded
as actions in the FSP, e.g. enqueue, lock and unlock.response.
The open arrowhead on the request message in Fig. 1 implies
that several users may be requesting the server at the same time
and hence that there is an implicit queue (of undefined
capacity) at the server. This is made explicit in the FSP via the
auxiliary Queue process.

1 - Schedulability, Performance and Time

Figure 1. A Simple Scenario

Figure 2. Automata Relevant To Server Process of Fig. 1

 The process relevant to workload is expressed as
following:

Requestworkload=(arrival<c:exp(1/40)>->?c?next->
Requestworkload).

The definition of queue for server active object is
performed as following:

QUEUE= QUEUE [0],

QUEUE [i:0..N]=(when i<N enqueue-> QUEUE [i+1]

|when i>0 dequeue-> QUEUE [i-1]).

The process relevant to server active object is represented
as following:

SERVER=(request->lock->lock.response->unlock->
unlock.response->response->SERVER).

The process relevant to lock passive object is as following:

Lock=(lock<c1:exp(1/10)>->?c1?lock.response->
unlock<c2:exp(1/10)>->?c2?unlock.response->Lock).

As shown in Fig.1., some method bodies include time
delays and hence actions relevant to these methodse must wait.

to represent these delays, a concept named "clock" has been
proposed in [14] . Within a process, an action can set a clock
using the following instruction:

ISSN : 0975-3397 3121

Omid Bushehrian et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3120-3125

action<c:exp(parametr)>

This instruction sets clock c to an exponentially distributed
value which the mean value of this distribution is denoted by
parameter. The clock c can be checked for expiry by the
following instruction:

?c?action

And it says that action is executable when the value of c
reaches zero(i.e is expired). In Fig.1 there are two time delays
for lock object defined as follows:

lock<c1:exp(1/10)>->?c1?lock.response->unlock<c2:exp(1/10)>

->?c2?unlock.response

For measuring the simulation time between two
actions(events) the following instruction can be used:

timer W<variable1,variable2>

The first variable, is an action that starts the timer and the
second variable, is an action that stops the timer and the
resulted simulation time in between is kept in variable W. In
Fig.1. the mean response times of the arrival requests is
obtained by the following instruction and kept in Resp
variable:

timer Resp<.request ,response>

after defining each object seperately, all of them should be
simulated as a single concurrent system. We assume that the
name of the system is System:

||System=(QUEUE||Resp||SERVER||Lock||Requestworkload)

For synchronizing object actions with each other , the
following notation is used[14]:

/{arrival/enqueue,request/dequeue}.

The arrival workload is synchronized with the arrival of the
queue and the queue output is synchronized with the arrival of
the server object.

IV. TRANSFORMATION ALGORITHM

Being available the sequence and deployment diagrams
corresponding to one or more scenarios of a distribution
software, for each scenario a collection of FSP’s are created
independently. Afterward, according to the deployment
diagram of the system, a collection of processes corresponding
to the computational nodes and network links represented in
the deployment diagram is created as well. The whole
distribution system is produced by the composition of created
processes and appropriate synchronization of these processes.
Deployment and Sequence diagrams may include active and
passive objects, threads, synchronous and asynchronous
invocations, creation of objects and threads, network links,
CPU’s and replicas that for each of them the the
transformation method to FSP,s should be specified. Fig.3.
indicates the general structure of our proposed transformation
algorithm:

Algorithm FSPmodel UMLtoFSP(model m)
Begin

FSPmodel f=create FSPmodel();
For each SequenceDiagram sd in m

For each object o in sd
f.AddObject(o);

For each DeploymentDiagram d in m
For each Node n in d

f.AddNode(n);
For each Link l in d

f.AddLink(l);
f.Synchronize(m),

end

Figure 3. Transformation Algorithm

A. Definitions

Sets O,L,M and C denote the set of objects, the set of links, the
set of messages and the set of CPU’s respectively. Each object
o in O is specified by following multiplex that consists of
name, type, node, first message, last message and the set of
sent and received message by o respectively:

o:(Name, Type, Node, FirstMessage, LastMessage, MessageSet)

Each message m in M is specified by following multiplex
that consists of name, sender object, receiver object,
communication delay at the sender side, computational delay at
the receiver side and message index respectively:

m:(Name,Sender,Receiver,Type,ComunicationDelay,
ComputationalDelay,Index)

Each link l in L is specified by following multiplex that
consist of two various nodes:

l(N,M)

Each node n in N is specified by a node name and the
number of CPU’s installed on it.

n(Name,Number)

In the subsequent subsections, the transformation algorithm
body shown in Fig.3 will be explained. Note that each function
within the algorithm body generates a set of FSP codes and
augments them to the final FSP model. Emit() method is used
for this purpose.

B. AddObject() Function

For each object, if it is a thread or reactive one then we need a
threadpool and if it is an active object, we need a queue:

AddObject(o):
if(o.Type = active) then

//define Queue
Emit(Queue « o.Name » = « o.Name » [0],
 Queue « o.Name »[index:0..QueueSize]=(when
index<QueueSize « o.FirstMessage » [index]->
Queue « o.Name » [index+1]|when index>0 « o.LastMessage » [index]->
Queue « o.Name » [index-1]).)

Note that the parts enclosed in ‘<<’ and ‘>>’ symbols
should be replaced with the values corresponding to the object
for which the FSP is generated. For generating the FSP’code
corresponding to an object like o, the sent and received

ISSN : 0975-3397 3122

Omid Bushehrian et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3120-3125

messages by o, represented in the corresponding sequence
diagram, are examined consecutively. Each message m can be
described by an ordered pair <messageType,
messageDirection> in which messageType can be
synchronous(denoted by S), asynchronous (denoted by A) or
return message(denoted by R) and messageDirection can be
out-going (denoted by G) or incoming (denoted by I) . If m is
an out-going message network link is acquired and if m is an
incoming message CPU is acquired. The body of each object o
is formed as a sequence of actions each corresponding to an
out-going or incoming message. The getStatus() function in the
following code returns the ordered pair <messageType,
messageDirection> for each message m and object o:

// Object Body Transformation
For each m in o.MessageSet
 Emit(« o.Name » =(

switch(getStatus(m.Type,o))
case (S,I):
 Emit(« m.Name »->« o.Name » acquirecpu->)
 case (R,I):
 Emit(« m.Name »->« o.Name » acquirecpu->)
case (S,G):
 Emit(« o.Name » acquirelink -> « m.Name »->)
case (R,G):
 Emit(« o.Name » acquirelink -> « m.Name »->)
case (A,G):
 Emit(« o.Name » acquirelink-> « m.Name »-> Other[index],
Other[index]=(otherwork[index]->Other[index]|)
case (A,I):
Emit(« m.Name »->« o.Name » acquirecpu-> Other[index],
Other[index]=(otherwork[index]->Other[index]|)
Else Emit(« m.Name »->« o.Name » acquirecpu)
Emit(« o.Name »).)

C. AddLink() and AddNode() Functions

For each node n a process is added to the FSP model as
follows:

f.AddNode(n):

Emit(Cpu « n.Name »=(getcpu « n.Name »->releasecpu « n.Name »->
Cpu « n.Name »).)

Corresponding to each CPU installed on n, an instance of
the above FSP is added once composing the whole system. For
each communication link l an FSP is added to the model as
follows:

f.AddLink(l):
Emit(Link « l.n »to « l.m »=(getlink « l.n »to « l.m »->
releaselink « l.n »to « l.m » -> Link « l.n »to « l.m »).)

D. Synchronize() Function

In this section, the code generation algorithm for the
synchronization among previously generated FSP’s, is
presented. First, the previously defined FSP’s are composed
together as a single concurrent system with '||' symbol:

For all Links l in L
Emit(Link « l.n »to « l.m »||)

For all nodes n in N
Emit([1.. « n. number»]:Cpu « n.Name »||)

For all Queues
Emit(Queue « o.Name »||)

For all objects o in O
Emit([T]: «o.Name »||)

 Variable T represents the number of object replicas
corresponding to an active or re-active object. For
synchronizing two FSP’s P1 and P2 on action m1 and m2,
where there are T replicas or threads available for P2 the
action synchronization code is generated as follows:

Emit(/{[T].m2/m1,)

Corresponding to each message m sent by object S and
received by object R, the receiver object R should acquire CPU
to perform the computation of m. Therefore there should be
synchronization between getcpu action of the corresponding
CPU process and acquirecpu action of R which is placed before
action m:

 « o.Name »acquirecpu/[i]getcpu « n.Name »

 In the above synchronization, [i]getcpu « n.Name » denotes
the getcpu action corresponding to the ith CPU process
installed on node n. Node n is the node on which object o is
deployed according to the deployment diagram. If a node n has
more than one CPU installed on it, the allocation of CPUs to
objects deployed on n should be specified before generating the
synchronization codes.
 For an object o deployed on Node n with T threads or
replicas the code generation algorithm fairly divides the T
threads among the number of CPU’s c installed on n:

For each object o in O
Emit(
 [0..T/c]. « o.Name »acquirecpu/[1].getcpu « n.Name »,
[(T/c)+1..2*T/c]. « o.Name »acquirecpu/
[2].getcpu « n.Name »,…
[(c-1)/c*T+1..T]. « o.Name »acquirecpu/
[c]. getcpu « n.Name »
)

 The acquired CPU by an object o on receipt of message
m should also release the CPU after completion of m. Therefore
the FSP corresponding to o should contain a releasecpu action
which follows action m. Moreover, there should be
synchronization between releasecpu action of the
corresponding CPU process and releasecpu action of object o.
The generated code is similar to the one for getcpu
synchronization (see the above code).
 The sender object of each remote message m should acquire
the connecting link between the node on which the sender
resides and the node on which the receiver resides before
sending m. Therefore the acquirelink action of the sender
process of m and the getlink action corresponding to link
process should be synchronized:

For each object o in O
 For each outgoing message m in o.MessageSet

Emit(
 [T]. « o.Name »acquirelink« m.Name »/
getlink « m.sender.l »to « m.receiver.n »,
 [T].« m.Name »freelink« m.Name »/
releaselink « m.sender.l »to « m.receiver.n »
)

ISSN : 0975-3397 3123

Omid Bushehrian et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3120-3125

See the example sequence diagram shown in Figure 4:

Figure 4. A Simple Sequence Diagram

Considering Fig.4, the paymenthandler FSP is defined as
follows:

Paymenthandler=(createab->p_handleracquirecpu->
p_handleracquirelink -> can-> Paymenthandler).

With the assumption that there are two CPUS on the node
which paymenthandler resides, and the link between the two
nodes is Linkn2ton1, synchronizations are performed as
follows:

[0..poolsize/2]. Paymenthandler /[1].getcpu node2

[poolsize/2+1..poolsize]. Paymenthandleracquirecpu/

[2].getcpu node2,

[0..poolsize/2]. Paymenthandleracquirelink/ [1].releasecpu node2,

[poolsize/2+1..poolsize]. Paymenthandleracquirelink/

[2].releasecpu node2

[T]. Paymenthandleracquirelink/ getlink n2ton1,

 [T].can/[T].releaselink n2ton1

V. CASE STUDY

The case study is an electronic bill payment via the bank
web site and for this case study we measure the population and
throughput for each object and response time for each request.
The Figs.6 illustrates some results. Sequence diagram of this
system is illustrated in Fig.5. System objects are located on 4
nodes and each node has the number of CPUs. Bank, logger,
payment_system and billing_systems' objects, are active
objects of the system which require queue. Arrival rate is
exponential with 20 value.

Figure 5. Electronic Bill Payment Sequence Diagram

In this case study, the number of requests that are
performed simultaneously in system, are 15 requests. Time
delays for each stage according to SPT profile are illustrated in
Fig.5.

ISSN : 0975-3397 3124

Omid Bushehrian et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3120-3125

Figure 6. Mean Response Time Relevant To Arrival Request

VI. CONCLUSION AND FUTURE WORKS

In previous researches for transforming UML models to
analyzable formal models, Deployment diagrams that are
particularly important in distributed software are not
considered. In the previous methods, the issues such as
communication models of objects(synchronous or
asynchronous), object types(active or reactive), creation of
threads and the deployment of the objects haven't been
considered when transforming a UML model into its
corresponding formal model. In this paper with selecting FSP
model as transformation destination model, an 1-to-1
transformation algorithm is presented for converting sequence
and deployment diagrams of objects to FSP’s. We applied this
algorithm on our case study(Electronic bill payment) and
measured factors that are important for performance. This case
study has various characteristics such as synchronous and
asynchronous calls, network communications(links), active and
reactive objects. Though, FSP’s can be simulated by LTSA,
but there are cases in distributed systems that their modeling is
not possible by FSP’s particularly when several replicas of a
resource(like CPU) exists. Modeling resource scheduling
algorithms is not possible by FSP’s as well. For the future
work, our objective is to extend FSP models to overcome these
deficiencies.

REFRENCE
[1] [1] Murray Woodside, Greg Franks, Dorina C. Petriu, The Future of

Software Performance Engineering,2007

[2] [2] C.U. Smith, C. M. Lladó, V. Cortellessa, A.diMarco,L. Williams,
“From UML models to software performance results: an SPE process
based on XML interchange formats”,in Proc WOSP’2005, Palma de
Mallorca, 2005, . 87-98.

[3] S. Distefano,M. Scarpa, A. Puliafito, Software Performance Analysis in
UML Models,2005

[4] Nima Kaveh and Wolfgang Emmerich, Deadlock Detection in
Distributed Object Systems,2002.

[5] Andrew J. Bennett1, A. J. Field, and C. Murray Woodside."
Experimental Evaluation of the UML Profile for Schedulability,
Performance and Time",2005.

[6] G. Chiola, “Great SPN 1.5 software architecture,” in Proc. 5th Int. Con$
Modeling Techniques and Tools for Comput. Perform. Eval.,
Torino,Italy, Feb. 1991,.117-132.

[7] G. Ciardo, J. Mu ala, and K. Trivedi, “SPNP: Stochastic Petri net
package,” in Proc. Conf Petri Nets and Performance Models,
Kyoto,Japan, Dec. 1989, . 142-151.

[8] G. Estrin, R. S. Fenchel, R. R. Razouk, and M. K. Vernon, “SARA
(System Architect’s A rentice): Modeling, analysis, and simulation su
ort for design of concurrent systems,” IEEE Trans. Software Eng.,vol.
SE-12, no. 2, . 293-311, 1986.

[9] N. G. Leveson and J. L. Stolzy, “Safety analysis using Petri nets,” IEEE
Trans. Software Eng.,vol.SE-13,no.3, .386-397,1987.

[10] J. F. Meyer, “Performability modeling of distributed real-time
systems,”in Mathematical Computer Performance and
Reliability,Elsevier, 1984.

[11] Robert G.Pettit IV, Hassan Gomaa,Modelling Behavioral Pattern Of
Concurrent Objects Using Petri Nets,international symposium on object
and component-oriented real time distributed computing ,2006.

[12] F.Andolfi,F.Aquilani,S.Balsamo,and P.Inverardi. Deviving performance
models of software architectures from message sequence charts.
September 2000.

[13] Andrew J. Bennett and A. J. Field." Performance Engineering with the
UML Profile for Schedulability, Performance and Time: a Case
Study",2004.

[14] Alan Fekete, FSP Lectures, University of Sydney, 2004.

[15] Ashok Argent-Katwala, Allan Clark, Howard Foster,Stephen Gilmore,
Philip Mayer, and Mirco Tribastone, Safety and Response-Time
Analysis of an Automotive Accident Assistance Service,2008.

ISSN : 0975-3397 3125

