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Abstract—Software Performance Engineering (SPE) represents 
the collection of software engineering activities with the purpose 
of identification, prediction and also improvement of software 
performance parameters in the early stages of software 
development life cycle. Various models such as queuing networks, 
layered queues, Petri Nets and Stochastic Process Algebras are 
suggested for modeling distributed systems. Particular ability of a 
model is the prediction and estimation of non-functional 
characteristic of one system before it has been made. The main 
problem is a method by which we can easily transform 
architectural software models into formal simulate able models. 
In this paper a method for automatic transformation of UML 
deployment and sequence diagrams into FSP(finite state process) 
model is presented, so that we can  analyze the resulting model 
through discrete event simulation tools from the performance 
perspective. In the proposed transformation algorithm, different 
aspects of a software system such as: communication model of 
software objects, synchronization and physical deployment of 
objects are considered. 

Keywords-performance engineering – distributed systems – 
finite state process – simulation – performance evaluation 

I. INTRODUCTION 

Performance is an important matter in software systems; 
everything affects it, including the software itself and all 
underlying layers, such as operating system, middleware, 
hardware, communication networks, etc [1]. Software 
Performance Engineering (SPE) includes the collection of 
software engineering activities and related analysis that it's 
purpose is identification, prediction of performance problems 
and also improvement of performance parameters in software 
development cycle in the early stages [2]. 

Nowadays, The various types of analyzable formal models 
are used for modeling a distributed system, including queuing 
networks, layered queues, Petri Nets and Stochastic Process 
Algebras.  Particular ability of a model is the prediction and 
estimation of non-functional characteristic of one system, 
before it has been made. One of non-functional characteristics 
is performance. The main problem is a method by which we 
can easily transform software models such as deployment and 
sequence diagrams into  simulate able models in architectural 
level. 

Current methods in performance modeling and evaluation  
haven’t represented an exact and complete algorithm for the 
transformation of UML models into simulate-able models. 
These methods have only sufficed at examples of how 
transformation can be preformed [3,4,5]. Specifically, in the 
previous methods, the communication models of 
objects(synchronous or asynchronous), object types(active or 
reactive), creation of threads and  the deployment of the objects 
haven't been considered when transforming a UML model into 
its corresponding formal model. 

In this article  an algorithm for automatic transformation of 
software deployment and sequence diagrams into FSP[13] as a 
simulate-able model is presented. So that by simulating the 
resulting FSP model different performance factors such as 
response times, length of queues, objects population can be 
measured. To achieve this, we use UML sequence diagrams 
that are annotated with SPT profile[13]. As shown in Fig.1 in 
this profile, performance tags can be augmented to sequence 
diagrams which explain the performance aspects of the 
modeled software. 

II. RELATED WORKS 

There are many researchers in the field of transforming 
distributed system models  to analyzable formal models. 
Mainly queuing and Petri nets are used in this direction.  

Some have used  Petri nets for modeling  timed or 
stochastic analysis[6,7,8]. Some have extended  Petri nets for 
modeling to analyzing safety, reliability, or 
performability[9,10]. In [11] an algorithm is presented for 
automatic transformation of software architectural models into 
Petri net models for performance analysis. Queuing networks 
are  another approach for modeling. In[12] automatic 
algorithms are presented for transforming architectural models 
into queuing models for performing various analysis. In[13] 
FSP models are used as destination model in transforming 
software architecture models.  

In summary we can say that in presented algorithms in 
previous researches for transforming UML models to Petri and 
queuing models, following shortcomings are observed: 

 Deployment diagrams that are particularly 
important in distributed software are not 
considered. 
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 In the previous methods, the issues such as 
communication models of objects(synchronous or 
asynchronous), object types(active or reactive), 
creation of threads and  the deployment of the 
objects haven't been considered when 
transforming a UML model into its corresponding 
formal model. 

In this article by selecting FSP model as the destination 
model of the transformation, a 1-to-1 transformation algorithm 
is presented for transforming deployment and sequence 
diagrams to FSP’s.  

III. FSP AND SPT PROFILE 

FSP’s, are abstract machines used to model the behavior of 
concurrent and distributed systems[14]. Each process of 
distributed system can be modeled by a FSP that perform 
sequence of actions repeatedly. A distributed system, is a 
collection of such processes that some of their actions are 
synchronized with each other. For transforming sequence and 
deployment diagrams to FSP’s, we must transform objects, 
CPUS and communication links to FSP’s. Each FSP is indeed 
an automata with several states that transits between states[15]. 
Fig.2 illustrates automata corresponding to the server object 
shown in Fig.1. In this section, the transformation algorithm is 
explained with  an example.  

A simple sequence diagram that is annotated with SPT1 
profile for performance, is illustrated in Fig.1[5]. 

The <<PAcontext>> stereotype indicates that this diagram 
is a scenario involving some resources (software objects in this 
case) driven by a workload. The objects are a server (an active 
object, indicated by the heavy box), and a lock. The annotation 
on the lifeline of the user object has a <<PAopenLoad>> 
stereotype indicating that it is a workload, i.e. it defines the 
intensity of the demand made on the system by the users of this 
scenario; in this case the interval between requests is 
exponentially distributed with a mean of 40 ms. A requirement 
that the mean response time is 30 ms is given, along with a 
placeholder variable ($Resp) for the predicted value that will 
be determined by simulation. The server offers a single 
operation, which requires the lock to be acquired and released - 
each of these operations takes 10 ms on average. 

The translation scheme generates an FSP process for each 
object specified in the sequence diagram. We use the order of 
operations shown on the timeline of each object to determine 
the events available in each state. The sequence of messages 
specified in the sequence diagram for each object are encoded 
as actions in the FSP, e.g. enqueue, lock and unlock.response. 
The open arrowhead on the request message in Fig. 1 implies 
that several users may be requesting the server at the same time 
and hence that there is an implicit queue (of undefined 
capacity) at the server. This is made explicit in the FSP via the 
auxiliary Queue process.  

                                                           
1 - Schedulability, Performance and Time 

 

 

Figure 1.  A Simple Scenario 

 

Figure 2.  Automata Relevant To  Server Process of Fig. 1 

 The process relevant to workload is expressed as 
following: 

Requestworkload=(arrival<c:exp(1/40)>->?c?next-> 
Requestworkload). 

The definition of queue for  server active object is 
performed as following: 

QUEUE= QUEUE [0], 

QUEUE [i:0..N]=(when i<N enqueue-> QUEUE [i+1] 

|when i>0 dequeue-> QUEUE [i-1]). 

The process relevant to server active object is represented 
as following: 

SERVER=(request->lock->lock.response->unlock-> 
unlock.response->response->SERVER). 

The process relevant to lock passive object is as following: 

Lock=(lock<c1:exp(1/10)>->?c1?lock.response-> 
unlock<c2:exp(1/10)>->?c2?unlock.response->Lock). 

As shown in Fig.1., some method bodies include time 
delays and hence actions relevant to these methodse must wait. 

to represent these delays, a concept named "clock" has been 
proposed in [14] . Within a process, an action can set a clock  
using the following instruction: 
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action<c:exp(parametr)> 

This instruction sets clock c to an exponentially distributed 
value which the mean value of this distribution is denoted by 
parameter. The clock c can be checked for expiry by the 
following instruction: 

?c?action 

And it says that  action is executable when the value of c 
reaches zero(i.e is expired). In Fig.1 there are two time delays 
for lock object defined as follows: 

lock<c1:exp(1/10)>->?c1?lock.response->unlock<c2:exp(1/10)> 

->?c2?unlock.response 

For measuring the simulation time between two 
actions(events)  the following instruction can be used: 

timer W<variable1,variable2> 

The first variable, is an action that starts the timer and the 
second variable, is an action that stops the timer and the 
resulted simulation time in between is kept in variable W. In 
Fig.1. the mean response times of the arrival requests is 
obtained by the following  instruction and kept in Resp 
variable: 

timer Resp<.request ,response> 

after defining each object seperately, all of them should be 
simulated as a single concurrent system. We assume that the 
name of the system is System: 

||System=(QUEUE||Resp||SERVER||Lock||Requestworkload) 

For synchronizing object actions with each other , the 
following notation is used[14]: 

/{arrival/enqueue,request/dequeue}. 

The arrival workload is synchronized with the arrival of the 
queue and the queue output is synchronized with the arrival of 
the server object. 

IV. TRANSFORMATION ALGORITHM 

Being available the sequence and deployment diagrams 
corresponding to one or more scenarios of a distribution 
software, for each scenario a collection of FSP’s are created  
independently. Afterward, according to the deployment 
diagram of the system, a collection of processes corresponding 
to the computational nodes and network links represented in 
the deployment diagram is created as well. The whole 
distribution system is produced by the composition of created 
processes and appropriate synchronization of these processes. 
Deployment and Sequence diagrams may include active and 
passive objects, threads, synchronous and asynchronous 
invocations, creation of objects and threads, network links, 
CPU’s and replicas that for each of them  the the 
transformation method to FSP,s should be specified. Fig.3. 
indicates the general structure of our proposed transformation 
algorithm:  

 

Algorithm FSPmodel UMLtoFSP(model m) 
Begin 

FSPmodel f=create FSPmodel(); 
For each SequenceDiagram sd in m   

For each object o in sd 
f.AddObject(o); 

For each DeploymentDiagram d in m 
For each Node n in d  

f.AddNode(n); 
For each Link l in d 

f.AddLink(l); 
f.Synchronize(m), 

end 

Figure 3.  Transformation Algorithm 

A. Definitions 

Sets O,L,M and C denote the set of objects, the set of links, the 
set of  messages and the set of CPU’s  respectively. Each object 
o in O is specified by following multiplex that consists of 
name, type, node, first message, last message and the set of 
sent and received message by o respectively: 

o:(Name, Type, Node, FirstMessage, LastMessage, MessageSet) 

Each message m in M is specified by following  multiplex 
that consists of name, sender object, receiver object, 
communication delay at the sender side, computational delay at 
the receiver side and message index respectively: 

m:(Name,Sender,Receiver,Type,ComunicationDelay, 
ComputationalDelay,Index) 

Each link l in  L is  specified by following  multiplex that  
consist of  two various nodes: 

l(N,M) 

Each node n in N is specified by a node name and the 
number of CPU’s installed on it. 

n(Name,Number) 

In the subsequent subsections, the transformation algorithm 
body shown in Fig.3 will be explained. Note that each function 
within the algorithm body generates a set of FSP codes and 
augments them to the final FSP model. Emit() method is used 
for this purpose. 

B. AddObject() Function 

For each object, if it is a thread or reactive one then we need a 
threadpool and if it is an active object, we need a queue: 

AddObject(o): 
if(o.Type = active) then 

//define Queue 
Emit(Queue  « o.Name » =  « o.Name » [0], 
   Queue  « o.Name »[index:0..QueueSize]=(when 
index<QueueSize   « o.FirstMessage » [index]-> 
Queue  « o.Name » [index+1]|when index>0   « o.LastMessage » [index]-> 
Queue  « o.Name » [index-1]).) 

Note that the parts enclosed in ‘<<’ and ‘>>’ symbols 
should be replaced with the values corresponding to the object 
for which the FSP is generated. For generating the FSP’code 
corresponding to an object like o, the sent and received 
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messages by o, represented in the corresponding sequence 
diagram, are examined consecutively. Each message m can be 
described by an ordered pair <messageType, 
messageDirection> in which messageType can be 
synchronous(denoted by S), asynchronous (denoted by A) or 
return message(denoted by R) and messageDirection can be 
out-going (denoted by G) or incoming (denoted by I) . If m is 
an out-going message network link is acquired and if m is an 
incoming message CPU is acquired. The body of each object o 
is formed as a sequence of  actions each corresponding to an 
out-going or incoming message. The getStatus() function in the 
following code returns the ordered pair <messageType, 
messageDirection> for each message m and object o: 

// Object Body Transformation 
For each m in o.MessageSet  
  Emit( « o.Name » =(   

switch( getStatus(m.Type,o) ) 
case (S,I): 
   Emit( « m.Name »->« o.Name » acquirecpu-> )     
 case (R,I):  
   Emit( « m.Name »->« o.Name » acquirecpu->     ) 
case (S,G): 
   Emit( « o.Name » acquirelink ->  « m.Name »-> )  
case (R,G): 
   Emit( « o.Name » acquirelink ->  « m.Name »-> )  
case (A,G):   
   Emit( « o.Name » acquirelink->  « m.Name »-> Other[index], 
Other[index]=(otherwork[index]->Other[index]| ) 
case (A,I): 
Emit(    « m.Name »->« o.Name » acquirecpu->  Other[index], 
Other[index]=(otherwork[index]->Other[index]| ) 
Else Emit(    « m.Name »->« o.Name » acquirecpu ) 
Emit( « o.Name »). ) 

C. AddLink() and AddNode() Functions 

For each node n a process is added to the FSP  model as 
follows: 

 
f.AddNode(n): 

Emit(Cpu  « n.Name »=(getcpu  « n.Name »->releasecpu  « n.Name »-> 
Cpu  « n.Name »).) 

Corresponding to each CPU installed on n, an instance of 
the above FSP is added once composing the whole system. For 
each communication link l an FSP is added to the model as 
follows: 

f.AddLink(l): 
Emit(Link  « l.n »to  « l.m »=(getlink  « l.n »to  « l.m »-> 
releaselink  « l.n »to  « l.m » -> Link  « l.n »to  « l.m »).) 

D. Synchronize() Function 

In this section, the code generation algorithm for the 
synchronization among previously generated FSP’s, is 
presented. First, the previously defined FSP’s are composed 
together as a single concurrent system  with '||' symbol: 

For all Links l in L 
Emit(Link  « l.n »to  « l.m »||) 

For all nodes n in N 
Emit( [1..   « n.  number»]:Cpu  « n.Name »||) 

For all Queues  
Emit(Queue  « o.Name »||) 

For all objects o in O 
Emit( [T]:   «o.Name »||) 

     Variable T represents the number of object replicas 
corresponding to an active or re-active object. For 
synchronizing two FSP’s P1 and P2 on action m1 and m2, 
where there are T replicas or threads available for P2 the 
action synchronization code  is  generated as follows: 

Emit(/{[T].m2/m1,) 
 

Corresponding to each message m sent by object S and 
received by object R, the receiver object R should acquire CPU 
to perform the computation of m. Therefore there should be 
synchronization between getcpu action of the corresponding 
CPU process and acquirecpu action of R which is placed before 
action m: 

  « o.Name »acquirecpu/[i]getcpu   « n.Name » 

     In the above synchronization, [i]getcpu  « n.Name » denotes 
the getcpu action corresponding to the  ith CPU process 
installed on node n. Node n is   the node on which object o is 
deployed according to the deployment diagram. If a node n has 
more than one CPU installed on it, the allocation of CPUs to 
objects deployed on n should be specified before generating the 
synchronization codes.  
     For an object o deployed on Node n with T threads or 
replicas the code generation algorithm fairly divides the T 
threads among the number of CPU’s c installed on n: 
 

For each object o in O   
Emit(  
 [0..T/c].  « o.Name »acquirecpu/[1].getcpu  « n.Name », 
[(T/c)+1..2*T/c].  « o.Name »acquirecpu/ 
[2].getcpu  « n.Name »,… 
[(c-1)/c*T+1..T].  « o.Name »acquirecpu/ 
[c]. getcpu  « n.Name » 
) 

     The acquired CPU by an object o on receipt of message 
m should also release the CPU after completion of m. Therefore 
the FSP corresponding to o should contain a releasecpu action 
which follows action m. Moreover, there should be 
synchronization between releasecpu action of the 
corresponding CPU process and releasecpu action of object o. 
The generated code is similar to the one for getcpu 
synchronization (see the above code). 
     The sender object of each remote message m should acquire 
the connecting link between the node on which the sender 
resides and the node on which the receiver resides before 
sending m. Therefore the acquirelink action of the sender 
process of m and the getlink action corresponding to link 
process should be synchronized: 

 
For each object o in O  
   For each outgoing message m in o.MessageSet  

Emit( 
 [T].  « o.Name »acquirelink« m.Name »/ 
getlink  « m.sender.l »to  « m.receiver.n », 
  [T].« m.Name »freelink« m.Name »/ 
releaselink  « m.sender.l »to  « m.receiver.n » 
) 
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See the example sequence diagram shown in Figure 4: 

 
Figure 4.  A Simple Sequence Diagram 

Considering Fig.4, the paymenthandler FSP is defined as 
follows: 

Paymenthandler=(createab->p_handleracquirecpu-> 
p_handleracquirelink -> can-> Paymenthandler). 

With the assumption that there are two CPUS on the node 
which paymenthandler resides, and the link  between the two 
nodes is Linkn2ton1, synchronizations are performed as 
follows:  

[0..poolsize/2].   Paymenthandler /[1].getcpu  node2 

[poolsize/2+1..poolsize].   Paymenthandleracquirecpu/ 

[2].getcpu  node2, 

[0..poolsize/2].   Paymenthandleracquirelink/ [1].releasecpu  node2, 

[poolsize/2+1..poolsize].   Paymenthandleracquirelink/ 

[2].releasecpu  node2 

[T].   Paymenthandleracquirelink/ getlink  n2ton1, 

  [T].can/[T].releaselink  n2ton1 

V. CASE STUDY 

The case study is an electronic bill payment via the bank 
web site and  for this case study we measure the population and 
throughput for each object and response time for each request. 
The  Figs.6 illustrates some results. Sequence diagram of this 
system is illustrated in Fig.5. System objects are located on 4 
nodes and each node has the number of CPUs. Bank, logger, 
payment_system and billing_systems' objects, are active 
objects of the system which require queue. Arrival rate is 
exponential with 20 value. 

 

 

Figure 5.  Electronic Bill  Payment Sequence Diagram 

In this case study, the number of requests that are 
performed simultaneously in system, are 15 requests. Time 
delays for each stage according to SPT profile are illustrated in 
Fig.5. 

 

ISSN : 0975-3397 3124



Omid Bushehrian et al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No. 09, 2010, 3120-3125 

 

Figure 6.  Mean Response Time Relevant To Arrival Request 

VI. CONCLUSION AND FUTURE WORKS 

In previous researches for transforming UML models to 
analyzable formal models, Deployment diagrams that are 
particularly important in distributed software are not 
considered. In the previous methods, the issues such as 
communication models of objects(synchronous or 
asynchronous), object types(active or reactive), creation of 
threads and  the deployment of the objects haven't been 
considered when transforming a UML model into its 
corresponding formal model. In this paper with selecting FSP 
model as transformation destination model, an 1-to-1 
transformation algorithm is presented for converting sequence 
and deployment diagrams of objects to FSP’s. We applied this 
algorithm on our case study(Electronic bill payment) and 
measured factors that are important for performance. This case 
study has various characteristics such as synchronous and 
asynchronous calls, network communications(links), active and 
reactive objects. Though, FSP’s can be simulated by  LTSA, 
but there are cases in distributed systems that their modeling  is 
not possible by FSP’s particularly when several replicas of a 
resource(like CPU) exists. Modeling resource scheduling 
algorithms is not possible by FSP’s as well. For the future 
work, our objective is to extend FSP models to overcome these 
deficiencies. 

REFRENCE 
[1] [1] Murray Woodside, Greg Franks, Dorina C. Petriu, The Future of 

Software Performance Engineering,2007 

[2] [2] C.U. Smith, C. M. Lladó, V. Cortellessa, A.diMarco,L. Williams, 
“From UML models to software performance results: an SPE process 
based on XML interchange formats”,in Proc WOSP’2005, Palma de 
Mallorca, 2005, . 87-98. 

[3]  S. Distefano,M. Scarpa, A. Puliafito, Software Performance Analysis in 
UML Models,2005 

[4] Nima Kaveh and Wolfgang Emmerich, Deadlock Detection in 
Distributed Object Systems,2002. 

[5] Andrew J. Bennett1, A. J. Field, and C. Murray Woodside." 
Experimental Evaluation of the UML Profile for Schedulability, 
Performance and Time",2005. 

[6] G. Chiola, “Great SPN 1.5 software architecture,” in Proc. 5th Int. Con$ 
Modeling Techniques and Tools for Comput. Perform. Eval., 
Torino,Italy, Feb. 1991,.117-132. 

[7] G. Ciardo, J. Mu ala, and K. Trivedi, “SPNP: Stochastic Petri net 
package,” in Proc. Conf Petri Nets and Performance Models, 
Kyoto,Japan, Dec. 1989,  . 142-151. 

[8] G. Estrin, R. S. Fenchel, R. R. Razouk, and M. K. Vernon, “SARA 
(System Architect’s A rentice): Modeling, analysis, and simulation su 
ort for design of concurrent systems,” IEEE Trans. Software Eng.,vol. 
SE-12, no. 2,  . 293-311, 1986. 

[9] N. G. Leveson and J. L. Stolzy, “Safety analysis using Petri nets,” IEEE 
Trans. Software Eng.,vol.SE-13,no.3,  .386-397,1987. 

[10] J. F. Meyer, “Performability modeling of distributed real-time 
systems,”in Mathematical Computer Performance and 
Reliability,Elsevier, 1984. 

[11] Robert G.Pettit IV, Hassan Gomaa,Modelling Behavioral Pattern Of 
Concurrent Objects Using Petri Nets,international symposium on object 
and component-oriented real time distributed computing ,2006. 

[12] F.Andolfi,F.Aquilani,S.Balsamo,and P.Inverardi. Deviving performance 
models of software architectures from message sequence charts. 
September 2000. 

[13] Andrew J. Bennett and A. J. Field." Performance Engineering with the 
UML Profile for Schedulability, Performance and Time: a Case 
Study",2004. 

[14] Alan Fekete, FSP Lectures, University of Sydney, 2004. 

[15] Ashok Argent-Katwala, Allan Clark, Howard Foster,Stephen Gilmore, 
Philip Mayer, and Mirco Tribastone, Safety and Response-Time 
Analysis of an Automotive Accident Assistance Service,2008. 

ISSN : 0975-3397 3125




