
Fatemeh Mafi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2859-2864

Service Composition in Service Oriented Product
Line

Fatemeh Mafi
Computer Department

Tehran Jonub Azad University
Tehran, Iran

Marjan_mafi_2007@yahoo.com

Shahriar Mafi
Tehran, Iran

Mehran Mohsenzadeh
Computer Department

Olum Tahghighat Azad University
Tehran, Iran

Abstract—The paradigm of Service Oriented Architecture
(SOA) and Software Product Line Engineering (SPLE)
discipline facilitate the development of families of
software-intensive products. Software Product Line
practices can be leveraged to support the development of
service-oriented applications to promote the reusability of
assets throughout the iterative and incremental
development of software product families. Such approach
enables various service oriented business processes and
software products of the same family to be systematically
created and integrated. [4] In this way service composition
is an important task to produce new product/service with
using the core assets. In this paper we try to explain the
service composition in service oriented product line.

Keywords-Service Oriented Architecture; Software Product
Line; Service Oriented Product Line; Service Composition

I. INTRODUCTION

All The term Service-Oriented Product Line is used for
service oriented applications that share common parts and vary
in a regular and identifiable manner. In this context, high
customization and systematic planned reuse are achieved
through managed variability as in SPL engineering: core assets
and product development.

A service is an abstract resource that represents a
capability of performing tasks that represents a coherent
functionality from the point of view of provider entities and
requester entities. To be used, a service must be realized by a
provider agent. This provider agent is the concrete piece of
software (or hardware) that sends and receives messages,
while the service is the resource characterized by the abstract
set of functionality that is provided. Service identification is to
select related resources.

In service oriented applications, services are basic
elements. So design and implementation of services is
necessary steps in developing service oriented product line. In
this way service composition is done to reuse existing services
instead of implementing the new service.

Service composition can be defined as the process of
combining and linking existing services (atomic or composite)
to create new working services. It constitutes an essential part

of service provisioning, since it leads to novel service offering
thus adding value that was not existent in the individual
services.

In service composition, the result of combining services is
referred to as a composite service. When you use services
together to achieve new functionality in a business process, the
composition process itself that dictates that the order and
interactions between the lower-level services is exposed as this
composite service.

The rest of the paper is organized as follows. Section 2
provides background and concepts definition. Approach
overview is described in section 3. Section 4 includes related
works. Conclusion remarks and future works finally discussed
in Section 5.

II. BACKGROUND AND CONCEPTS

A. Service Oriented Product line [11]

First, Service-Oriented Architectures (SOA) and Software
Product Lines are two concepts that currently get a lot of
attention in research and practice. Both promise to make
possible the development of flexible, cost effective software
systems and to support high levels of reuse. But at the same
time they are quite different from one another.

So an approach in which SOA applications are developed
as Software Product Lines (SPLs) was proposed. Thus, the
term Service-Oriented Product Line is used for service
oriented applications that share common parts and vary in a
regular and identifiable manner. In this context, high
customization and systematic planned reuse are achieved
through managed variability and the use of a two life-cycle
model as in SPL engineering: core assets and product
development.

B. Service life cycle [8]

 The Service identification is the first major step in the
life of a service. It is driven off of the business model,
process definition, and semantic information model.
This results in the proposal for a new service.

 In service discovery, comparing the requirements
with the available services is done and the locations
of the matched services are return.

ISSN : 0975-3397 2859

Fatemeh Mafi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2859-2864

 The purpose of service selection is to select optimal
web service for a particular task.

 Service composition aims at providing effective and
efficient means for creating, running, adapting, and
maintaining services that rely on other services in
some way.

o The composition of web services could be
static or dynamic. The differentiation
between static and dynamic composition
deals with the point of time at which a
concrete Web Service is integrated into the
specification of a composition. With static
composition the concrete services are
determined and integrated into the
specification at design time. With dynamic
composition on the other hand, at design
time there is only a specification of the type
of service given. The concrete service is
then integrated at run-time.

 Service implementation
 Service monitoring

C. Service Composition[7]

After the service request is defined, the service discovery
and composition phase starts. The different services that could
be used in a composition are discovered according to the
composition algorithm. Service discovery is performed by
invoking the interface provided by the service registry, based
on information contained in the published service description
documents. The information published in the publication
phase should be compatible with the information required in
the discovery and composition phase, which can be achieved
by complying to open standards even if different organizations
implement their own publication and discovery mechanisms.

The composition consists of four steps:

 Service providers publish their services at a Web
service registry.

 The Service Composition Engine decomposes
user requirements into an abstract service and
sends a SOAP request to the registry to find the
proper services.

 The Web service registry returns a set of concrete
services.

The service composition engine sends a SOAP request to
the concrete services and binds to them.

D. Static or dynamic service composition

Composition of software components/services during
system design time (a.k.a., static software composition) is not
flexible and agile enough in cases when there are frequent
runtime changes of requirements and/or operational
circumstances that cannot be anticipated. Static composition is
sufficient for constructing applications with well-defined
specific requirements that are not likely to change frequently.

If a software system has a loosely defined set of operations to
carry out or it has to adapt to relatively frequent changes in the
environment that might not even be predicted during design
time, static composition is too limited. Redesigning the system
to accommodate the changes often requires considerable
human involvement, which significantly slows down the
overall reaction to change. Further, modifying or updating
statically composed software usually requires disrupting its
operation, which is not suitable for high-availability, mission-
critical, and hard real-time systems. As will be discussed later
in this paper, many business systems would benefit from
greater runtime flexibility, agility, and availability of software
systems.[12]

Dynamic composition of software services/components is
an important step forward in achieving these goals. It enhances
flexibility of software systems since it enables the runtime
construction of new services, if they do not already exist, to
address a specific problem. A large number of useful services
can be created from a set of basic services. Some of these
services may not have been designed or even conceived of
ahead of time. The services can be assembled based on the
demands of the system or its users. The involvement of
humans in the composition process is minimized. The users do
not need to be interrupted during upgrades or the addition of
new functionality into the system. To conclude, dynamic
service composition provides an ability to rapidly and
autonomously (i.e., with minimal human involvement) adapt
even to changes that were not envisioned during design time,
while keeping the running software system constantly
available to users. Dynamic service composition is a very
challenging undertaking and there are a number of issues to
take into consideration. It has some elements in common with
static service composition but it also has some unique features.
One of these features is the crucial nature of time limits. The
dynamic service composition process often must complete
within some specified, relatively short, time limits or it
becomes impractical. Generally, it is an automated process
with limited human involvement.[12]

There have been several benefits to dynamic service
composition [13]:

 Greater flexibility – the customization of
software, based on the individual needs of a user,
can be made dynamic through the use of dynamic
composition without affecting other users on the
system.

 New services can be created at runtime – the
application is no longer restricted to the original
set of operations that were specified and
envisioned at the design or compile times. The
capabilities of the application can be extended at
runtime.

 Users are not interrupted during upgrades of
applications – instead of being brought offline
and having all services suspended before
upgrading, through the dynamic composition
infrastructure, users can continue to interact with

ISSN : 0975-3397 2860

Fatemeh Mafi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2859-2864

the old services while the composition of new
services are taking place. This will provide
continuous and seamless upgrading service
capabilities to existing applications.

 Unlimited set of services – unlike static
composition, where the number of services
provided to end users is limited and the services
are specified at design time, dynamic composition
can serve applications or users on an on-demand
basis. With dynamic composition, theoretically an
unlimited number of new services can be created
from a limited set of service components.

E. Software product line process

In traditional software product line, domain requirements
engineering defines the required component features which are
considered during the component selection. They define the
required functionality and quality that a component should
offer and a component must match the variability desired for
the software product line.

As a result of a component selection process, adaptations
of requirements can be required. One reason for such an
adaptation is the identification of functionality or quality
offered by a component that was not considered by the product
line, but which will improve the product line and is thus added
as a new feature. Another reason for an adaptation is the fact
that it is quite unlikely for a component to match all the
desired requirements artifacts and/or to comply fully with the
desired variability. Also in this case an adaptation of the
requirements or the variability is required.

The output of component selection includes the identified
candidate components. Typically, rankings of the components
with regard to several criteria are provided. A detailed
valuation is conducted only for components that perform well
in a preliminary screening activity.

As the selected component has to become an integral part
of the reference architecture, domain design imposes
architecture constraints to be considered during component
selection, such as the architectural styles and patterns that the
component must conform to, compatibility constraints, and
constraints caused by the process structure of the reference
architecture.

Domain design develops the reference architecture, which
is the basis for the application architecture. The reference
architecture determines common components and interfaces.
The application architect binds the architectural variability
according to the bindings defined in the application variability
model.

The goals of the domain realization are to provide the
detailed design and the implementation of reusable software
assets, based on the reference architecture. It means that
domain realization delivers components and interfaces for
reuse by application realization. The reusable software assets
are mainly reusable components and interfaces. In addition,
domain realization incorporates configuration mechanisms

that enable application realization to select variants and build
an application with the reusable components and interfaces.

Product management defines the major application features
for all applications of the product line. The development of the
applications is supported by the commonality and variability
of the platform.

Application requirements engineering reuses the common
parts and chooses the variant parts that are suitable to match
the features defined by product management for the
application. Certain features are application specific, i.e. they
only apply for a single application. The main output of
application requirements engineering is the application
requirements specification which is a complete specification
of the application. It includes the application variability model.

The main goal of the application design is to produce the
application architecture. The application architecture is a
specialization of the reference architecture developed in
domain design. Application architects bind the variability of
the reference architecture and introduce application-specific
changes according to the application requirements
specification.

Application realization builds the application based on the
application architecture. The application architecture
determines the structure of the application to be built as well
as the rules how to build it, which are contained in the texture.
The application architecture also determines the configuration
of reused domain components and interfaces that are part of
the application as well as their interrelation with application-
specific components and interfaces.

III. APPROACH OVERVIEW

[1] is the most related work to our work. In this paper we
modeled the development process of service oriented
applications with product line approach. In this model because
of two separate processes in software product line paradigm
(Domain engineering and Application engineering), each phase
has two sections .First section is for domain (all products in
product line) and second is for the application that is requested.
For this reason, for developing a family of SOA application, in
application section, we have service identification, discovery,
selection, composition and monitoring.

Since that in each service oriented application, there are two
kinds of service compositions (static and dynamic), in this
model both static and dynamic composition are considered in
separate steps. Static composition implies that the compositions
is performed at design or compile time. Dynamic service
composition, on the other hand, composes an application
autonomously when a user queries for an application at
runtime. Therefore, dynamic composition involves adapting
running applications by changing their functionalities and/or
behavior via the addition or removal of service components at
run time.

ISSN : 0975-3397 2861

Fatemeh Mafi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2859-2864

A. Feature Analysis [9]

Feature modeling is the activity of identifying externally
visible characteristics of products in a product line and
organizing them into a model called feature model. The
primary goal of feature modeling is to identify commonalities
and differences of products in a product line and represent them
in an exploitable form, i.e., a feature model. Once we have a
feature model, it is further analyzed through feature analysis.
Feature analysis starts with identification of service features. A
service feature represents a major functionality of a system and
may be added or removed as a service unit. The output of this
process is a set of features that need to be bound together into a
product to provide a service correctly, a product can be
considered as a composition of features.

B. Identification

In this phase, the required features which are considered
during the selection and the required functionality and quality
that a service should offer are defined.

C. Discovery

In discovery phase, comparing the features with the
available services is done and the locations of the matched
services are return. If there are not any matched services, we
have three alternatives for selection phase:

 Implement the required service(s) ourselves

 Do static service selection and composition at
design time

 Do dynamic service selection and composition at
run time

So after discovery, if there is a list of possible service
candidates, we should select them from reusable service
repository according to our architecture and selection criteria.
Otherwise, we have three alternatives. If we select the static
composition, the output of design section will be composite
service and if we want to do dynamic composition, we should
plan the composition structure for the run time. The service
composition planner should select qualified atomic services
and make an appropriate composition plan. Once an optimal
service composition plan is determined, it is passed on to the
construction phase, where the preparation for composite service
execution is performed.

D. Design time with static compositionme

If there is a list of possible service candidates, we should
select them from reusable service repository. The purpose of
service selection is to select optimal web service for a
particular task. As the selected service has to become an
integral part of the reference architecture, domain design
imposes architecture constraints to be considered during this
selection, such as the architectural styles and patterns that the
service must conform to, compatibility constraints, and
constraints caused by the process structure of the reference
architecture.

At this time, if there are not any matched services and we
select the static composition, we should decompose the main
feature into sub features, chose the best available services that
are matched with these sub features, linked together these
atomic services and finally compiled and deployed the new
(composite) service.

Two main approaches are currently investigated for static
service composition. The first approach, referred to as web
service orchestration, combines available services by adding a
central coordinator (the orchestrator) that is responsible for
invoking and combining the single sub-activities. The second
approach, referred to as web service choreography, does not
assume the exploitation of a central coordinator but rather
defines complex tasks via the definition of the conversation
that should be undertaken by each participant.

Static composition is purely manual i.e. firstly, the user
problem must be defined and then a manual selection of
services according to desired outputs is performed. There are
many potential problems, exceptions, and errors that may
occur during this process. The challenge lies in dealing with
these unexpected issues in the limited time frame that is
permitted for a particular composition. Also, it is not possible
to precisely predict or test at design time what the exact
environmental circumstances of operation will be at
composition time and whether the process will be successful.
While steps are taken to decrease the chance of a failed
composition, it cannot always be avoided.

E. Run time with dynamic service composition

Dynamic service composition is the process of creating
new services at runtime from a set of service components.
This process includes activities that must take place before the
actual composition such as locating and selecting service
components that will take part in the composition, and
activities that must take place after the composition such as
registering the new service with a service registry.

A very important aspect of dynamic service composition is
that the new composite service need not be envisioned at
design time. This feature, known as unanticipated dynamic
composition, provides considerable flexibility for modifying
and extending the operation of software systems during
runtime. However, it also introduces a number of
complications and problems for designing and operating
software systems that support dynamic service composition. In
this paper, we will describe our experiences with dynamic
service composition and discuss how it can be used to improve
the agility, flexibility, and availability of business software
systems, particularly for e- and m commerce systems.

In dynamic composition, automated tools are used to
analyze a user problem, select and assemble web service
interfaces so that their composition will solve the user
problem. Furthermore, even if the dynamic composition
process seems successful, there is the potential for unexpected
feature interactions that cannot be easily and rapidly
discovered and recovered from. A feature interaction is the
way a service component (i.e., a feature) modifies or affects at

ISSN : 0975-3397 2862

Fatemeh Mafi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2859-2864

runtime the behavior of other service components in a
particular composition. The problem is similar to a program
that compiles without errors but still fails to execute properly.

Compilation is only one part of the successful execution of
a program just as the composition process will not guarantee
the composite service will function correctly. When
unexpected feature interactions arise despite all measures
taken to avoid them, it might be almost impossible for the
composition infrastructure to correct the situation. Human
(i.e., user) input is needed to determine if the side effects are
neutral or service affecting. If the feature interactions cause
the composite service to function incorrectly or behave
erratically, the composite service can be terminated and never
reassembled. However, in many situations it may be
appropriate to simply ignore those feature interactions that do
not seriously affect the operation of the composite service.

There is also a lack of support for dynamic composition
techniques in programming languages and other development
tools. The fundamental challenge in composing services at
runtime is the design and implementation of an infrastructure
that will support the process. Locating components at runtime
requires a component library or code repository that is
integrated with the software infrastructure that is actually per
forming the composition. The infrastructure should also
support mechanisms to recover (e.g., rollback) from an
unsuccessful composition and to discover and, if possible,
recover from unexpected feature interactions. All these and
other issues make the dynamic composition process inherently
complex. Consequently, cost-benefit analysis must be taken
into consideration before applying dynamic service
composition techniques to a particular circumstance.

F. Evaluation

The final step contains the evaluation of the proposed
service compositions. The evaluation is carried out partly by
means of performance tester (as overall speed, reliability or
costs of a composition) and partly by means of voting where
each participant can input non-rational elements to express his
preference for a certain composition. The outputs of this step
are ranked list of compositions including the data of the votes
and possibly include important comments/remarks of the
voting session.

IV. RELATED WORK

After In [1] we propose an approach to modeling service
oriented software product line. In this approach we first model
service oriented architecture and software product line
architecture separately and then we put them together. We
present common phases in modeling these two paradigms for
developing a service or product. We have described how a
family of business process can be modeled and variability can
be captured in different development stages to approach the
flexible and cost-effective development and deployment of a
family software products.

The [2] work presents a contribution to the combination of
SOA and SPL concepts. In particular, how these concepts can

be used together to achieve desired benefits such as improved
reuse, decreased development costs and time to market, and
production of flexible applications customized to specific
customers or market segment needs. In order to achieve these
goals, they presented an approach for service-oriented product
line architectures that introduces the concepts of managed
variability into service oriented world and uses a two life-cycle
model as in SPL engineering, however, only core assets
development is considered in this work. These concepts were
introduced in order to provide support for high customization
and systematic planned reuse during service-oriented
development. In this context, services are developed to be
reused in specific contexts and service-oriented applications
can be developed rapidly and customized according to specific
customer requirements. They also present a case study on the
conference management domain clarifying and explaining the
activities of the approach.

In [3] they have two main conclusions of this work. First,
the modification of the classical product line lifecycle where
they include a specific process for composing web services.
Second, the definition of specific variation points in the
architecture for specifying different alternatives for composing
such services. This becomes a key aspect to facilitate the
evolution of these systems and for customizing web services
during the design and implementation phases. Another key
point related to the evolution of systems is the ability of the
variation points to support dynamic changes depending of the
context in which the system runs. In addition to this, more
variation points can be defined (e.g.: user preferences, type of
network protocol, etc.) to improve the product derivation
process and to provide other alternatives that can be selected at
different binding times. Finally, they argue that agile models
such as lightweight product lines constitute a good approach
for those systems that have strong time to market requirements.
This definitely holds for Web systems. In this way and
compared to other approaches, they improve the evolution of
service oriented systems through the use of specific variability
information in the service description.

In [4] they presented a novel methodology for development
of business process family by exploiting SPLE and SOA. In
their methodology they introduce variability modeling derived
from different levels of SOA development to support a high
level of reuse and to facilitate the development of variant rich
business process model. They have described how a family of
business process can be modeled and variability can be
captured in different development stages to approach the
flexible and cost-effective development and deployment of a
family software products. Furthermore, with the comparison of
current approaches for model-driven development of
semantically rich business processes and supporting SOAs they
described how they improve the state of the art in model-driven
development of families of SOAs. Furthermore, they have also
made the initial steps toward realization of supporting tools for
our vision.

In [5] they defined a web service-based web application
(WSBWA) as a collection of web services or reusable proven
software parts that can be discovered and invoked using

ISSN : 0975-3397 2863

Fatemeh Mafi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2859-2864

standard Internet protocols. In particular, they used the
lightweight product line model proposed in Capilla and
Yasemin Topaloglu (2005) and extended it to support a
domain-specific visual language and environment at the
application engineering level thus allowing them to perform
agile calibration and customization of WSBWAs. At the
domain engineering level, their approach includes the
identification of commonalities and variability of WSs in
WSBWAs domain as well as the construction of a Model View
Workflow (MVWf)-based framework that is instantiated to
identify a specific product or WSBWA. At the application
level, their approach supports agile methods, in particular by
relying on a domain-specific visual language and environment
with innovative extraction capabilities of WSs directly from
web sites that are ‘‘imported” into our visual environment. This
speeds up the development process by facilitating the
composition and customization (or calibration) of a product or
WSBWA for a specific customer.

V. CONCLUSION AND FUTURE WORK

In this paper with considering our proposed model in [1],
we introduce an approach for explain the service composition
process in one of the development phases of service oriented
software product line (design or implementation). In this way
we separated static with dynamic service selection and
composition for developing a family of SOA application.

As future work, we will try to use a model driven approach
for modeling the dynamic service composition in families of
SOA applications.

REFERENCES
[1] Fatemeh Mafi, Shahriar Mafi, Ma Seyyedi, An approach to modeling

service oriented product line. Tehran Jonub University.

[2] Fl´avio Mota Medeiros, Eduardo Santana de Almeida,Silvio Romero de
Lemos Meira, Towards an Approach for Service-Oriented Product Line
Architectures.

[3] Rafael Capilla1, N. Yasemin Topaloglu .Product Lines for Supporting
the Composition and Evolution of Service Oriented Applications

[4] Mohsen Asadi, Bardia Mohabbati , Nima Kaviani, Dragan Gašević,
Marko Bošković, Marek Hatala . Model-Driven Development of
Families of Service-Oriented Architectures.

[5] Marcel Karam, Sergiu Dascalu, Haidar Safa, Rami Santina, Zeina
Koteich .A product-line architecture for web service-based visual
composition of web applications. The Journal of Systems and Software
(2008),855–867.

[6] Klaus Pohl, Günter Bckle, Frank van der Linden. Software Product Line
Engineering, Foundations, Principles, and Techniques. Springer-Verlag
Berlin Heidelberg 2005.

[7] Mike Rosen, Boris Lublinsky, Kevin T. Smith, Marc J. Balcer. Applied
SOA Service-Oriented Architecture and Design Strategies. Wiley, 2008

[8] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall , 2005

[9] Ali Gondal, Michael Poppleton, Colin Snook. Feature Composition
Towards product lines of Event-B models

[10] ANR PERSO. State of the art: Models and Algorithms for Service
Composition. 2009.

[11] Andreas Helferich, Georg Herzwurm, and Stefan Jesse. Software
Product Lines and Service-oriented Architecture: A Systematic
Comparison of Two Concepts, Universidad Stuttgart, Stuttgart,
Germany, sei,2007.

[12] Antonio Bucchiarone , Stefania Gnesi . A Survey on Services
Composition Languages and Models.

[13] Mohamad Eid, Atif Alamri , Abdulmotaleb El Saddik . A reference
model for dynamic web service composition systems. 2008Eason, B.
Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-Hankel type
involving products of Bessel functions,” Phil. Trans. Roy. Soc. London,
vol. A247, pp. 529–551, April 1955.

ISSN : 0975-3397 2864

