
Jestin Rajamony et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2947-2952

Overload Identification for Multiprocessor in Real
Time System

JESTIN RAJAMONY Dr. K.RAMAR K.P.AJITHA GLADIS

IT Department Principal IT Department
CSIIT, Thovalai SVCET, Virudhunager CSIIT, Thovalai

INDIA INDIA INDIA

Abstract

In spite of many real time scheduling algorithms
available it is not clear that these scheduling algorithms
support fully the problems in the real time system in a local
area network. There are certain “open loop” algorithm that
can support only some set of characteristics such as the
deadlines, precedence constraints, shared resources and
future release time etc. Open loop are being referred as once
the schedules are fixed there is no alterations. Open loop is
fine for the static or dynamic models where the job is
perfectly modeled and assigned. But when it executed for
unpredictable dynamic systems the open loop does not offer
its full performance due the problem of overloading in the
processor. In this paper, the overloading of the processor is
detected and rectified to give full performance of the
processors in the network for the real time system. Here the
case is studied from the worst case to the best case.

1. Introduction

There are many real time scheduling algorithms

available but it is not clear that these scheduling algorithms
support fully the problems in the real time system in a local
area network in the onboard computers of the space shuttle.
There are certain “open loop” algorithms that can support
only some set of characteristics such as the deadlines,
precedence constraints, and shared resources. Static
scheduling algorithms have the complete knowledge of the
task set and its constraints. For example the Rate

Monotonic Algorithm (RMA). But RMA does not give

the full performance in the dynamic environment that is the
essential in the real time systems. The dynamic scheduling
algorithm does not have a complete knowledge of the task
set and its constraints. For example, if a new task is in
urgent and wants to be inserted in the middle of the
scheduling then the RMA scheduler will not be knowing of
the current task and its timing even thou the task is a
predictable one.

Many real world complex problems occur in the

network of computers. For example, a system in the node of

the network may meet the different variation in the overload
of the execution as in the case of network of computers
controlling the spacecraft the workload parameters that
differ due to different input from the space sensors and their
interpretation. Despite there are many real time scheduling
algorithms available it is not clear that these scheduling
algorithms support fully the problems in the real time
system in a network. There are certain “open loop”
algorithms that can support only some set of characteristics
such as the deadlines, precedence constraints, shared
resources etc.

In the case of networks the workload may differ from

one way or the other which tends to be unpredictable for the
dynamic systems. Even though the open loop scheduler
spring scheduling algorithm is designed for the worst-case
workload parameter they are underutilized system for
workload models that are not available. The problem here is
that scheduling paradigms all assume the timing
requirements are to be known and also to be fixed. If there is
a fixed time range for the scheduling then in the case of
networks it will be more tedious because of the varying
inputs. So it is better to fix to a range of dead lines for the
job to be finished but that becomes too complex. Due to
these problems in this paper a new paradigm for detecting
the overload in a network of systems is introduced.

Open loop scheduling is fair for both static and dynamic

systems if there is sufficient resource in a stand-alone
system. Earliest Deadline First Algorithm (EDFA) is
dynamic scheduling algorithm that has the complete
knowledge of the task set or timing constraints for the
resource sufficient environment. If the resource is
insufficient in the environment then the EDFA performance
will rapidly degrade in overload situations. But EDFA will
rapidly degrade its performance in overload situations
because the entire task is moved to the limited available
resource that doesn’t suit the real time environment

Dynamic scheduling can be classified into resource

sufficient environment & resource insufficient environment.
Resource sufficient environment is one where the systems
have the system resources in prior to the task that arrives

ISSN : 0975-3397 2947

Jestin Rajamony et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2947-2952

dynamically at any time and are subjected to the scheduling.
But resource insufficient environment is one where the
systems have the system resources in limited to the task that
arrives.

2. Motivation

Operating System is the core portion between the
application program and the hardware and provides the
abstract view between each other. Operating system is
designed to maximize resource utilization to assure that all
available CPU time, memory and I/O are used efficiently. It
enhances its utility by eliminating duplicate efforts of
hundreds of programmers in developing tedious and
complicated routines. It provides the provision of security
and confidentiality of information to users. The primary
goal of operating system is efficient operation of the
computer system [1]. Multi programming and time sharing
system improve performance by overlapping CPU and I/O
operations on a single machine. But they need to send the
task in a sequence for the CPU to make the CPU to work for
the maximum to give full utility.

By switching the CPU among processes, the

operating system can make the computer more productive.
To maximize the CPU utilization some of the process runs
at all times. Process alternate between two states like CPU
burst and Input Output burst and so on. The duration of the
CPU burst has to be measured [2]. Whenever the CPU
becomes idle the operating must select one of the processes
in the ready queues to be executed. The selection process is
carried out by the short term scheduler or the CPU
scheduler. The scheduler selects from the processes in
memory that are ready to execute and allocate the CPU to
one of them. Dispatcher then distributes the process to the
particular CPU that is free. Time taken by the dispatcher to
stop one process and start another process for running is
known as the dispatch latency.

From the single core to dual core and today

multicore CPU have become a commodity items in major
researches. The expectation in the next decades is that the
number of cores in a CPU will increase to as many as
hundreds [3]. All cores in a homogenous multiprocessor
have same performance with a same instruction set, but
however they differ in terms of performance characteristics
with changes in clock frequency, cache size etc. Recent
researches have advocated the need for a class of
heterogeneous multicore processors. Here even with same
instruction set, there is a possibility of lot of changes in the
performance characteristics [4]. The architecture available
for performance symmetric (homogenous) multi core
processor is effective compared to the performance
asymmetric (heterogeneous) multicore processor [5]. For
example, when workload characteristics are matched to

heterogeneous cores, performance gains up to 40% are
observed [6].

Environments are classified into real time system

and non real time system. Non real time system does not
have to finish any task particular time but can take its own
time and can also be used as a test work. Real time systems
require that the task be performed within a particular time
frame. Real time systems are classified into hard real time
system and soft real time system. The dead line in the hard
real time system has to be met else it leads to terrific
problem. But the soft real time system is not so lenient to
deadline and this leads to the minor problems. So real time
scheduling is to be dealt with cautious in order to avoid
disaster. Static scheduling and dynamic scheduling
algorithms are the two types of algorithm that fall in the real
time scheduling algorithm.

If the available resources are sufficient and the

scheduling algorithm has complete knowledge of the task
set and its constraints then static scheduling is preferred.
E.g. Rate Montonic Algorithm [7]. When a new task arrives
it is not known to the scheduling algorithm, so the algorithm
does not have the complete knowledge of the task set then it
is called dynamic scheduling. Dynamic scheduling is hard to
predict, since it does not know about the task and its future
release time. Earlier deadline first (EDF) algorithm is a
dynamic scheduling algorithm that works fine with resource
sufficient environment. Resource sufficient environment
means all the resources are available in priority before the
job arrives.

But when the system gets overloaded then the EDF

algorithm degrades rapidly than any other schedulers. This
is due to the fact that it gives the highest priority to
transaction that is close to the deadline misses. So Adaptive
earliest deadline (AED), is used that detects overload
condition and then modifies transaction with priority [8]
using the feed back control mechanism. In an unpredictable
environment, it is very difficult for the real time system
designer to meet the required deadline. Spring scheduling
algorithm [9] using the online admission control algorithm
can guarantee partly in resource insufficient environment
that is unpredictable.

Now the distributed soft real time systems are

becoming increasingly unpredictable where the execution
parameters vary with the input data. So the traditional real
time scheduling algorithms used in systems are less useful.
So it is necessary to specify the convergence speed to the set
desired performance upon load or resource changes [10].
This reveals that the performance is quite excellent in steady
state behavior and also meets stability, overshoot and
settling time requirements.

ISSN : 0975-3397 2948

Jestin Rajamony et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2947-2952

There are many other scheduling algorithms [11]
that support the real time scheduling environment with
sufficient resources. Despite many real time algorithms
available, none of the algorithm supports fully the real world
problems. Operating systems goals are efficiency,
robustness, scalability, extensibility, portability, security,
interactivity and usability.

Most of the scheduling algorithms are open loop

scheduling algorithm. Open loop means once the schedules
are created by the scheduler they are not adjusted based on
continuous feedback. If the work load is well known in prior
and is predictable, then open loop is the best algorithm for
static and dynamic environment. EDF, AED are the best
algorithms for open loop while the resources are sufficient
and are predictable. Even with automatic technique, the
problem is the resource required by the code and the
resources available provides by the multicore processor are
to be determined [12].

The research of this paper is towards hard real time
application in the aircraft takeoff and landing. It uses the
feedback control theory and its framework in an
unpredictable real time system. Failure to meet these leads
to deadly problems and finally disaster. Almost every
research papers related to this is concerned with deadline
misses and overload, but they are not fulfilling even the
deadline misses and the overload problems. And while
computing in the multiprocessor, they do not directly
involve on the timing constraints that is the key features of
the real time system. An event triggered sampling [13] has
been proposed with an idea of sampling, communicating
and controlling only if something significant has occurred in
the system.

The effect of control system performance degrades
when a periodic task is implemented. This generates the
problem in sampling and produces latency jitter [14]. Two
major problems have been identified in the control
application that reduces the performance of the system.

 Allocation of resources to control applications in

order to maximize control performance.
 Novel computational models for implementing

control algorithms using real time technology.

The second problem was removed by a one shot task model
[15]. In this paper the allocation of resources to the
multicore processor using proper control algorithm in order
to maximize the control performance.

The major work of the paper is selecting the
desired algorithm and fixing to the desired processor in the
heterogeneous multicore processor. So if a deadline is not
met by any one of the processor, then the scheduler submits
it to the next processor of high or low end speed using the
feed back control framework [16]. The aim of this paper is
based on the deadline based metrics from the worst case to

the best case, where there is a major shift of total load in the
system. The system CPU should be fully utilized when there
is job waiting in the queue. Also the processor utilization
can be dynamically obtained by assigning priorities on the
basis of the current deadlines [17]. Most of today’s job
works with the threads, where a processor holds the
specified resources. The thread are given a specified
percentage of CPU cycle over a period of time and uses a
feedback back scheduler to assign automatically both
proportion and periods [18].

Based on this a QoS optimization algorithm and a

communication subsystem architecture was developed [19].
The actuator depends on the QoS algorithm that meets both
predictability and graceful degradation requirements. The
QoS negotiation guarantees the required QoS and rejects the
service request, by outperforming binary admission control
schemes [20]. Our Scheduler architecture includes the
following elements

 Feed back control schedulers architecture that maps

the feed back control structure.

 Resource as multicore processor in a shared
network with a on shot model selective approach.

 A set of performance metrics and a speed analyzer
for the digital controller.

In contrast, our frame work enables system designers to
systematically design adaptive real time systems with
established analytical methods to achieve desired
performance guarantee in an unpredictable environment

 3. Stability

Stability of the system is an important part of the

scheduling. It is a necessary condition to prevent miss ratio
and utilization from staying at the undesirable limit 100%. If
there is no input, the internal stability will automatically
settle to the nearby set point within a specified amount of
time. But here for the sake of simplicity the stability is now
kept still for future research.

4. Schedulers Architecture

The real time scheduler for the network of computers
consists of a scheduler, a Dispatcher and 5 CPU’s as shown
in the figure 1.

ISSN : 0975-3397 2949

Jestin Rajamony et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2947-2952

These components are been explained in brief. The

scheduler receives the tasks in the queue and is based on the
algorithm, the task are rescheduled to the dispatcher. The
dispatcher finds out the idle Central Processing Unit (CPU)
in the Network and the task is executed there. But most of
the works are research oriented on the task that is fixed and
is well known. Here in this paper the task are unpredictable
and is dynamic and time varying. In the network, the
systems could get workload where it is shared with initial
start as the nominal assumption.

5. Processor specialization

Assume that each system in the network has
different workload and each task is independent. Several
different forms such as milestone method, sieve function
method or multiple version method are imprecise
computation [21].

A job with longer execution time and another job
with smaller execution time is called. But the task Ti will
have a deadline as Di and a start time Si. Each task Ti in the
system has the set I, ET, VAL, S, D in it where I represents
logical version, ET represents the execution time, VAL
represents the values of different types of implementation, S
is the start time and D is the deadline. Each task can be
adjusted within the range that is specified for given
deadline. Each task has one or more logical versions I = (Ti1,

Ti2 … Tik). When applied in the network of systems these
tasks are sent to different CPU so the task does not seams to
have multiple implementations. Generally in digital control
systems the task timing constraints are allowed to adjust
within a specified range without affecting the system
stability.

Each task in different CPU has different execution

time ET = {ET11, ET12, … ETkj} of different versions and they
get into different values. This ET specified here is for one

CPU. But in different CPU the ET get split to ET21, ET22, …

ETkj. This specifies the CPU and the task that is split for that
CPU. The nominal execution time is used for the requested
CPU utilization. For example if the ET11 = 0.01, then the
CPU1 utilization is 1% from the miss ratio for the first
version. For the same CPU if the ET12 = 0.25 then the
processor utilization is 2.5% for the second version and for
the third ET13 = 0.15 means 1.5% and so on. So the total
execution time results in just 0.35 that is about 3.5% CPU
utilization.

6. Observation

Imagine five types of job of different sizes 50, 40,

30, 20, 10 are approaching the processor for the execution as
shown in the table 1. It takes nearly 5 secs for a job of size
50 to complete its execution. So to get full processor
utilization it requires 50 size jobs. But the second job is of
the size just 40 which spares 20% of the processor time
unused.

And the third job of the size 30 that spares 40% of

the time unused. So in total the overall performance is 60%
leaving 40% of the time to remain the processor in the
network to be idle.

Job Size Performance Drop out Loss

50 100 % 0 % 0 %

40 80 % 20 % 0 %

30 60 % 40 % 0 %

20 40 % 60 % 0 %

10 20 % 80 % 0 %

Total Performance 60 %

Total Drop out 40 %

Waste age 0 %

Table 1 Dropout Problem

At the same time consider if the job size is of the size

70 then the processor represents that the CPU utilization is
of 100% (i.e. full CPU utilization) as shown in the of table
2. So the above 20 size of the job is now overloaded which
is held as waiting. The scheduler does not know this because
it has crossed the scheduler and is in the processor and is not
shown by the processor as that it is overloaded. So a loss of
nearly 40% is occurring as shown in the table 2.

Another job of the size 60 is overloaded to the

processor that gives the loss of the 20%. With this it is
possible only to get the CPU total utilization to 88% giving

Figure 1: Real Time Scheduler

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

Dispatcher

Scheduler

Queued
Task Arriving

Tasks

Completed
task

ISSN : 0975-3397 2950

Jestin Rajamony et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2947-2952

a total loss of 12% and a total wastage of 12% from the
overloading of a processor. To overcome this situation of
overloading in the network of the processors this paper
defines the full work of how to make utilize full
performance of the processor in the network without
overloading.

7. Experiment

Consider 5 CPU, scheduler, and a dispatcher in the

network of processor. Assume 5 jobs have arrived in the
queue, the scheduler schedules the job in the queue using
any of the scheduling algorithms and sends it to the
dispatcher. The dispatcher then identifies the processor that
is idle in the network and sends the task to it.

Job Size Performance Drop out Loss

70 140 % 0 % - 40 %

60 120 % 0 % - 20 %

50 100 % 0 % 0 %

40 80 % 20 % 0 %

30 60 % 40 % 0 %

Total Performance 88 %

Total Drop out 12 %

Waste age -12 %

 Table 2 Overloading Problem

The processor will execute the job if it is a predictable
one because here the jobs are considered as real time jobs.
Since it is a real time system any inputs from the related
sensors may occur. If in case the task is totally unpredictable
then it is removed from the scheduler and corrective
measures are taken [22]. This part is not discussed in depth
in this paper.

Consider 5 jobs of varying sizes of 70, 60, 50, 40, and

30 are arriving at the scheduler from the job queue as shown
in the table 3. This is then passed to the scheduler where it
schedules according to any scheduling algorithm and passes
it to the dispatcher that identifies the idle CPU and gives the
job for execution. The processor in the network has a
capacity to execute the job of 50 sizes to bring out its full
performance. But the first job here is 70 in size so there is an
overloading 40% that is considered as overloading and
processor shows that it is executing in full performance
leaving the wastage time. But this can be of nothing for a
non real time system but for a real time system this wastage
can lead to some disaster. Similarly the second job has a
wastage time of 20%. The third job is in full utilization of
the processor. But the fourth job whose maximum

utilization itself is 80% leaving the CPU idle for 20% of
time.

In this paper to overcome this overloading, it is detected

first for each processor and then the total utilization of the
processors in the network is determined. Then the overall
total utilization is raised to the maximum to get the full
performance of the processor.

Job Size Performance Drop out Loss

70 99.99 % 0.01 % 0 %

60 99.99 % 0.01 % 0 %

50 99.99 % 0.01 % 0 %

40 99.99 % 0.01 % 0 %

30 99.99% 0.01% 0 %

Total Performance 99.99 %

Total Drop out 0.01%

Waste age 0 %

Table 3 Rectification of Overloading

Consider now the first job of size 70 is now executed in

the first processor, which has the capacity of 50 sizes to be
the maximum to get the full performance. So when the job
size reaches the 50th size of the 70 size job then it is equated
to 99% i.e. processor utilization u(k) = 0.99. That is the
processor is in full utilization. The rest 20 size that is left
from the 70 size is shifted to the next processor.

So the next processor which takes 50 size from the

current job and the next job (for example here 20 + 60 = 80)
is equated to u(k) = 1 leaving behind for the third processor
30 size of the job. This is done for all the jobs in the queue.
So the total utilization T(k) is now 99% i.e. T(k) = 1. Now
the T(k) = 99% is now increased from the 99% to slight
higher to 99.99% giving a marginal increase of 0.01%. This
gives the T(k) = 1 when the total processor utilization is
99.99%. But the actual CPU utilization is A(K) = 100%, that
is compared to the T(k) which gives T(k) ≈ A(K) giving the
full performance of the processor.

8. Results:

From the above experiment it very clear that the CPU is

in full utilization as shown in the figure 2 for a network of
computers working in the real time environment. The 0.01%
wastage is negligible since in a real time system if the
processor didn’t work for 1% of the time it might lead to
disasters but not for 0.01% of negligible time. Combination

ISSN : 0975-3397 2951

Jestin Rajamony et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2947-2952

of negligible wastage does not affect the efficiency of the
computer in the network.

The output is about 12% more than the other schedulers
when it is used in the multiprocessors. The CPU processor
when it crosses the 99.99% is immediately set to the next
processor that remains idle. So no processor can cross the
limit of 100% that indicates the processor is overloaded.

Figure 2 Grapical Representation of Overloading Rectification

9. Related Works

This closed loop information to adjust the scheduling

has been in trial in the multilevel feedback queue [23].
There is no systematic study on the feedback driven
scheduling. [24] presented a feedback based scheduling
scheme that adjusts CPU allocation based on the application
dependent progress monitors. [7] has adopted a priority
assignment policy based on the EDF. [25] has given the feed
back control on the CPU to be overloaded at all the time
causing the CPU to be in full work. When the workload is
worst then the CPU still has the starvation problem.

10. Conclusion

In this work, for a real time scheduling systems in a

network of systems that communicate with one another the
overloading of the processor has been explored. This would
give a new idea on the real time scheduling in the network.
Any algorithms used, and some experiment results that are
used for the scheduling are not mentioned in this paper. But
the way it operates in the real time to give full performance
has been mentioned with a sample result.

References

[1] "Operating System", Deitel, Choffnes, Pearson Education, III Edition,
2007.

[2] S.Y.Borkar et al, "Platform 2015; Intel Processor and Platform
evolution for the next decade Technical Report White Paper", Intel
Corporation, 2005.

[3] Matt Gillespie, "Preparing for the second stage of multicore
hardware: Asymmetric heterogeneous cores", Technical Report, Intel
Corporation, 2008.

[4] R.Kumar et al, "Single ias hetrogenous multicore architecture for
multithreaded workload performance", ISCA, Page 64, 2004.

[5] R.Kumar et al, "Core architecture optimization for heterogeneous
chip multiprocessors", PACT, 2006.

[6] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son, and M.
Marley, "Performance Specifications and Metrics for Adaptive Real-
Time Systems," 21th IEEE Real-Time Systems Symposium, Orlando,
FL, December 2000.

[7] J. R. Haritsa, M. Livny and M. J. Carey, “Earliest Deadline
Scheduling for Real-Time Database Systems”, IEEE RTSS, 1991.

[8] W.Zhao, K. Ramamritham and J.A.Stankovic, "Preemptive
Scheduling Under Time and Resource Constraints," IEEE
Transactions on Computers 36(8), 1987.

[9] John A. Stankovic, Tian He, Tarek Abdelzaher, Mike Marley, Gang
Tao, Sang Son and Chenyang Lu, “Feedback Control Scheduling in
Distributed Real-Time Systems,” IEEE Real-Time Systems
Symposium, London, UK, December 2001.

[10] J.A.Stankovic, M.Spuri, K.Ramamritham and G.C.Buttazzo, Deadline
scheduling for real-time systems EDF and related algorithms, Kluwer
Academic Publishers, 1998.

[11] Chenyang Lu, John .A.Stankovic, "Feedback Control Real Time
Scheduling: Framework, Modeling and algorithm," Journal of Real
Time System., 2000.

[12] Tyler sondag, Hridesh Rajan, "Phase guided thread to core
assignment for improved utilization of performance asymmetric
multicore processors", Paper of multicore processor, USA, 2009.

[13] Anton Cervin, Toivo Henningson, "Scheduling of event triggered
controllers on a shared network", Proc. Of IEEE Conference on
Decision and control, Cancun, Mexico, 2008.

[14] K.E.Arzen, A.Cervin, J.Eker and L.sha, "An Introduction to control
and scheduling co-design", Proc. IEEE conference, Decision and
control, 2000.

[15] Camilo Lozoya, Manel Velasco, Pau Marti, "The one shot task model
for robust real time embedded control systems", IEEE Transactions
on Industrial informatics, vol 4, No. 3, 2008.

[16] C.L. Liu and J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,” Journal of
ACM, Vol. 20, No. 1, pp. 46-61, 1973.

[17] D.C. Steere at.al, "A Feed back - driven proportion allocator for real
rate scheduling", 2000.

[18] T.F. Abdelzaher and K.G.Shin, “End-host Architecture for QoS-
Adaptive Communication,” IEEE Real-Time Technology and
Applications Symposium, Denver, Colorado, June 1998.

[19] T.F.Abdelzaber, E.M.Atkins & K.G.Shin, "QoS Negotiation in Real
time systems and its application to automatic flight control," IEEE
Real time Technology and Applications Symposium, June 1997.

[20] Pawet Piqtek, Wojciech Greja, "Speed Analysis of a Digital
Controller In the Critical Application", Journal of Automation,
Mobile Robotics & Intelligent Systems, Vol 3, 2009

[21] J.W.S. Liu.et.al “Algorithms for Scheduling Imprecise
Computations”, IEEE Computer, Vol 24, No.5, May 1973.

[22] Jestin Rajamony, “Closed Loop Scheduling for Real Time Network
Operating System”, Proceed ICCES’05 – IITM, India, 2005.

[23] P.R. Blevins and C.V.Ramamoorthy, “ Aspects of a dynamically
adaptive operating systems”, IEEE Transactions on Computers, Vol.
25, No.7, pp. 713-725, July 1976.

[24] D.C. Steere. et. al., “ A feedback-driven Proportion Allocator for
Real-Rate Scheduling”, Operating Systems Design and
Implementation, Feb 1999.

[25] Chenyang Lu, J.A. Stankovic, Gung Tao, Sang H. Son “ Design and
Evaluation of a feedback Control EDF Scheduling Algorithm”,
Department of Computer Science, University of Virgina.

0

T(k) = 1

Overloading 99.99%

Underloading

Saturation
Zone

ISSN : 0975-3397 2952

