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Abstract— This paper empirically compares the performance and 
scalability of Differential Evolution (DE) and Dynamic 
Differential Evolution (DDE) variants for solving high 
dimensional unconstrained global optimization functions. Four 
functions with different modality and decomposability viz 
unimodal separable, unimodal nonseparable, multimodal 
separable and multimodal nonseparable were chosen. Fourteen 
variants of DE and DDE were implemented and tested on these 
four benchmark functions, for the dimensions of 30,100, 500 and 
1000. The performance of the variants are well compared by 
their mean objective function value (MOV), probability of 
convergence (Pc) and the success performance (SP). The analysis, 
done based on the results obtained for 100 runs for each variant-
function-dimension combination,   identifies the competitiveness 
and the scalability of the variants.  
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I.  INTRODUCTION 

Evolutionary algorithms (EA) have been widely used to 
solve optimization problems. Differential Evolution [1] is an 
EA proposed to solve optimization problems, mainly to 
continuous search spaces. The DE algorithm, a stochastic 
population-based search method, has been successfully 
applied to many global optimization problems, benchmark 
functions and real world applications [2, 3, 4]. DE shares 
similarities with traditional EAs. As in other EAs, two main 
processes that derive the evolution are the perturbation process 
(crossover and mutation) which ensures the exploration of the 
search space and the selection process which ensures the 
exploitation properties of the algorithm. In the case of DE, the 
perturbation of a population element is done by 
probabilistically replacing it with an offspring obtained by 
adding to a randomly selected element a perturbation 
proportional with the difference between other two randomly 
selected elements. The selection is done by one to one 
competition between the parent and its offspring. 

There are three strategy parameters in DE, the population 
size NP, the crossover rate CR and the scaling factor F. Many 
works have been done to study the suitable setting of these 
control parameters [5, 6]. The conceptual and algorithmic 
simplicity, high convergence characteristics and robustness of 

DE has made it one of the popular techniques for real-valued 
parameter optimization. Nevertheless, from the point of view 
of population updating, DE is static. The whole population in 
DE remains unchanged until it is replaced by a new 
population. Inevitably, it results in slower convergence. To 
alleviate this problem, a dynamic version of DE called 
Dynamic Differential Evolution (DDE) has been proposed in 
[7]. DDE updates the population dynamically and responds to 
any improvement immediately. 

Interestingly, little research effort has been devoted to 
understand and compare the efficacy of DDE variants 
Moreover, most of the studies on DE is done on low 
dimensional benchmark functions (up to only 100). In this 
paper, an empirical analysis of the performance and scalability 
of fourteen DE and DDE variants on four benchmark functions 
has been carried out, for higher dimension (up to 1000). The 
remainder of the paper is organized as follows. Section 2 
describes DE and DDE algorithms. After a brief review of the 
related work in Section 3, Section 4 details the design of 
experiments. Section 5 discusses the simulation results and 
finally Section 6 concludes the paper. 

II. DE AND DDE ALGORITHMS 

DE algorithm aims at exploring the search space by 
sampling at multiple, randomly chosen NP D-dimensional 
parameter vectors (population of initial points). The initial 
population should sufficiently cover the search space as much 
as possible, by uniformly randomizing individuals. After 
population initialization an iterative process is started and at 
each iteration (generation) a new population is produced until a 
stopping criterion is satisfied. 

At each generation, DE employs the differential mutation 
operations to produce a mutant vector. A number of differential 
mutation strategies have been proposed in the literature. Along 
with the strategies came a notation scheme to classify the 
various DE-variants. The notation is defined by DE/a/b/c 
where a denotes the base vector or the vector to be perturbed; b 
denotes the number of vector differences used for perturbation; 
and c denotes the crossover scheme used between the mutant 
vector and the target vector to create a trial vector. The seven 
commonly used mutation strategies are rand/1, best/1, rand/2, 
best/2, current-to-rand/1, current-to-best/1 and rand-to-best/1.  
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The two crossover schemes are binomial and exponential.  
With seven commonly used mutation strategies and two 
crossover schemes, the fourteen possible variants of DE and 
DDE are */rand/1/bin, */rand/1/exp, */best/1/bin, */best/1/exp, 
*/rand/2/bin, */rand/2/exp, */best/2/bin, */best/2/exp, 
*/current-to-rand/1/bin, */current-to-rand/1/exp, */current-to-
best/1/bin, */current-to-best/1/exp, */rand-to-best/1/bin and 
*/rand-to-best/1/exp. After the mutation and crossover 
operations, a one-to-one knockout competition between the 
target vector  and its corresponding trial vector decides the 
survivor for the next generation.  Figure 1 depicts the 
algorithmic description of general DE. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  The algorithmic description of DE  

As can be seen from the DE algorithm, in Figure 1, the 
repeated cycles of differential mutation and crossover do not 
make use of any progress taking place in the current 
generation, even if better fit individuals are generated in the 
current generation they are reserved for use in the next 
generation. The dynamic differential evolution, shown in 
Figure 2, employs a dynamic evolution mechanism. The 
dynamic evolution mechanism in DDE updates both the current 
optimal individual with the new competitive individual (if 
better than the current optimal) and the non optimal individuals 
dynamically. Consequently, the trial vectors are always 
generated using the newly updated population and thus DDE 
always responds to any progress immediately.  

III. RELATED WORKS 

The conceptual simplicity of DE has attracted many 
researchers, who are working on its improvement, resulting in 
many variants of the algorithm [8, 9, 10, 11]. However most of 
the experimental results on DE are obtained using low-
dimensional problems, the reported studies on the scalability 
of DE derivative algorithms are scarce. In contrast, other 
evolutionary algorithms such as evolutionary programming 
(EP) have been tested up to 1000 dimension [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The algorithmic description of DDE  

Cooperative co-evolution architecture was firstly proposed 
by Potter for genetic algorithm, called CCGA [13], and had 
been successfully applied to other evolutionary algorithms [12, 
14 and 15]. In the context of DE, the cooperative co-evolution 
has also been introduced, and it was proposed as CCDE [16]. 
However, CCDE only extended the problem domain up to 100 
dimensions, which are relatively small. Zhenyu Yang, Ke 
Tang and Xin Yao, proposed two new DE variants named 
DECC-I and DECC-II for high dimensional optimization, up 
to 1000 dimension [8]. These two algorithms are based on a 
cooperative-coevolution.  

Menzura-Montes et. al. [17] empirically compared the 
performance of eight DE variants on unconstrained 
optimization problems. The study concluded rand/1/bin, 
best/1/bin, current-to-rand/1/bin and rand/2/dir as the most 
competitive variants. However, the potential variants like 
best/2/*, rand-to-best/1/* and rand/2/* were not considered in 
their study. 

Babu and Munawar [18] compared the performance of ten 
variants of DE (excluding the current-to-rand/1/* and current-
to-best/1/* variants of our variants suite). Qin, Huang and 
Suganthan [19], recently, proposed a self adaptive DE (SaDE). 
Four variants viz. rand/1/bin, rand-to-best/2/bin, rand/2/bin 
and current-to-rand/1/bin were considered for study. 

Qing proposed the dynamic differential evolution in [7] and 
analyzed the performance of DDE/best/1 variant on a function 
minimization problem with 8, 16, 24, 50 and 100 optimization 
parameters and on a benchmark electromagnetic inverse 
scattering problem. The study concluded that DDE 
significantly outperforms the classical DE. 

A recent study by Qing [20] compared DDE/rand/1/bin and 
DDE/best/1/bin against their classical counterparts. The test 
bed involved around 37 test functions with dimension less than 
10 and three application problems with 6, 8, 9, 16 and 24 

 Population Initialization  
 X(0) ← { x1(0),…,xNP(0) } 
 g ←0 
Compute { f(x1(g)),...,f(xNP(g)) } 
While the stopping condition is false do 
        for i = 1 to NP do 
             yi ← generatemutant(X(g)) 
             zi ← crossover(xi(g), yi) 
             if f(zi) < f(xi(g)) then 
 xi(g+1) ← zi  
             else 
 xi(g+1) ← xi(g) 
             end if 
        end for 
g ← g+1 
Compute {f(x1(g)),…,f(xNP(g))} 
End while 

Population Initialization  
X(0) ← { x1(0),…,xNP(0) }   g ←0 
Compute { f(x1(g)),...,f(xNP(g)) } 
While the stopping condition is false do 
         for i = 1 to NP do 
  yi ← generatemutant(X(g))  
  zi ← crossover(xi(g), yi) 
  if f(zi) < f(xi(g)) then 
      xi(g) ← zi  
 endif  
  if f(zi) < f(xbest(g)) then 
      best ← i  
  endif  
           end for 
g ← g+1 
Compute {f(x1(g)),…,f(xNP(g))} 
End while 
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dimensions. The work concluded DDE/best/1/bin as the most 
competitive variant among the scrutinized four strategies. 

IV. DESIGN OF EXPERIMENTS 

In this paper, we compared the performance efficacy of 
DDE variants against DE counterpart variants, for the 
dimension D=30. The scalability of the variants are compared 
for the higher dimensions viz. 100, 500 and 1000, on a set of 
benchmark functions with different features. We have chosen 
four test functions [17, 22] with different features f1-Schwefel's 
problem 2.21 (unimodal separable), f2-Schwefel's Problem 1.2 
(unimodal nonseparable), f3-Generalized Rastrigin's Function 
(multimodal  separable)  and  f4-Ackely's Function (multimodal 
nonseparable). The details of the functions are presented in 
Table I. All the functions have its optimum value at zero. 

TABLE I.  THE DETAILS OF THE BENCHMARK FUNCTIONS 

f1  - Schwefel’s Problem 2.21 
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 f3 – Generalized Restrigin’s Function  
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The three crucial control parameters of the DE and DDE 
algorithms are population size (NP), scaling factor (F) and 
crossover rate (CR). We fixed the population size (NP) as 100, 
a large population affects the ability of the approach to find 
the correct search direction, so we fixed a moderate population 
size in all the experiments, for both DE and DDE variants. We 
fixed the maximum number of function evaluations as 
proportional to the dimension, which is equal to D * 5000. We 
also fixed the stopping criteria as an error value of 1 x 10 -12. 
Based on [17, 23], we decided a range for the parameter F  
[0.3, 0.9], this value is generated anew at each generation. The 
same F value is assigned to K, which is used for mutation. 

The CR parameter is tuned for each Variant-Function 
combination. 11 different values for the “CR” parameter were 
tested {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} for 
each Variant-Function combination, with dimension D=30. 
We conducted 50 independent runs for each combination of 
Variant-Function-CR value. A bootstrap test was conducted 

for each combination, the “CR” value corresponding to the 
best confidence interval (95%) was chosen. The same CR 
values are adopted for D=100, 500 and 1000 also. The CR 
values of the variants are shown in Table II. 

TABLE II.  THE FOURTEEN VARIANTS OF DE AND DDE ALONG WITH THE 
CR VALUES FOR EACH TEST FUNCTION, FOR D = 30 

No 
Variant 

f1 f2 f3 f4 
DE DDE DE DDE DE DDE DE DDE

V1  rand/1/bin 0.9 0.3 0.9 0.9 0.1 0.1 0.9 0.9 
V2  rand/1/exp 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
V3  best/1/bin 0.8 0.9 0.5 0.7 0.1 0.1 0.1 0.1 
V4  best/1/exp 0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 
V5  rand/2/bin 0.9 0.2 0.9 0.9 0.1 0.1 0.9 0.9 
V6  rand/2/exp 0 0 0.1 0.1 0.1 0.1 0.1 0.1 
V7  best/2/bin 0.1 0.9 0.7 0.8 0.1 0.1 0.5 0.9 
V8  best/2/exp 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
V9  current-to-rand/1/bin 0.3 0.2 0.9 0.9 0.1 0.1 0.1 0.1 
V10  current-to-rand/1/exp 0 0 0 0 0.1 0.1 0.1 0.1 
V11  current-to-best/1/bin 0.2 0.2 0.9 0.9 0.1 0.1 0.1 0.1 
V12  current-to-best/1/exp 0 0 0 0 0.1 0.1 0.1 0.1 
V13  rand-to-best/1/bin 0.9 0.3 0.9 0.9 0.1 0.1 0.9 0.9 
V14  rand-to-best/1/exp 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

We initialized the population with uniform random 
initialization with in the search space and 100 independent 
runs were performed for each Variant-Function-Dimension 
combination. We recorded, mean objective function value 
(MOV) for 100 runs, probability of convergence (Pc) [21] and 
measured the success performance [SP] [19, 24]. 

V. RESULTS AND DISCUSSION 

In Table III, we present the MOV obtained for f1, f2, f3 and 
f4, for D=30.  The values with bold and underline are the best 
MOV for that Function-Variant combination.  

Results in Table III shows that, for f1,  none of the variants 
could solve this function. Most of the DDE variants are 
outperforming their classical DE counterparts, except 
DDE/rand/1/bin, DDE/rand/2/bin, DDE/rand/2/exp, 
DDE/current-to-rand/1/exp and DDE/rand-to-best/1/bin. The 
best performing DDE variant is DDE/best/1/bin, but its 
counterpart variant has given contrary result. Except this, it is 
interesting to note that the best and worst performance for f1 
was provided by similar set of DE and DDE variants.  For f1, 
the top four best performing variants are */rand-to-best/1/bin, 
*/rand/1/bin, */best/2/bin, DE/rand/2/bin and DDE/best/1/bin. 
The worst performing variants are DE/best/1/exp, 
DE/best/1/bin, DDE/rand-to-best/1/exp, DDE/rand/1/exp, 
*/current-to-rand/1/exp and */current-to-best/1/exp. 

For the function f2, Table III, most of the DDE variants 
outperforming their classical DE counterparts, except 
DDE/current-to-rand/1/* and DDE/current-to-best/1/exp.  The 
superiority of DDE variant is more evident in the case of 
*/best/1/exp variants. The top two best and worst performance 
were provided by the similar set of DE and DDE variants. The 
DDE/best/1exp  is  one  of  the  best  performing variants but its 
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classical counterpart variant shown only moderate 
performance. The best performing variants were */best/2/bin, 
*/best/2/exp, */rand-to-best/1/bin, */rand/1/bin, */best/1/bin 
and DDE/best/1/exp. The worst performing variants were 
*/current-to-best/1/* and */current-to-rand/1/*. 

TABLE III.  MEAN OBJECTIVE FUNCTION VALUES (MOV) FOR DE AND 
DDE VARIANTS FOR D = 30 

Variant 
f1 f2 f3 f4 

DE DDE DE DDE DE DDE DE DDE
rand/1/bin 0.91 1.00 0.55 0.30 0.00 0.00 0.09 0.00
rand/1/exp 17.82 17.44 5.71 5.011 97.63 98.32 0.00 0.00
best/1/bin 28.72 0.69 0.79 0.22 3.40 3.138 3.52 3.04
best/1/exp 25.96 2.83 364.74 0.00 47.41 45.74 7.39 7.59
rand/2/bin 3.34 3.81 1073.51 891.05 16.40 401.20 0.09 0.00
rand/2/exp 7.13 7.87 1049.47 959.51 161.05 159.72 4.04 3.82
best/2/bin 2.60 0.94 0.00 0.00 0.63 0.67 0.09 2.59
best/2/exp 9.09 2.13 0.00 0.00 120.97 120.92 0.43 0.52
current-to-
rand/1/bin 18.83 17.36 13937.70 14105.89 63.66 64.55 1.58 1.59
current-to-
rand/1/exp 55.74 54.88 1262.38 1265.43 249.82 245.68 15.65 15.45
current-to-
best/1/bin 17.05 17.03 13749.31 14354.49 64.90 64.06 1.69 1.63
current-to-
best/1/exp 55.75 55.26 1259.26 1221.48 245.38 248.02 15.44 15.67
rand-to-
best/1/bin 0.78 1.00 0.54 0.2788 0.00 0.00 0.09 0.00
rand-to-
best/1/exp 17.98 17.4 5.54 4.8769 100.97 98.99 0.00 0.00

For the function f3, Table III, we noticed that eight out of 
fourteen variants of DDE could outperform their classical DE 
counterparts. The top four best performance were provided by 
the similar set of DE and DDE variants viz. */rand/1/bin, 
*/rand-to-best/1/bin, */best/2/bin and */best/1/bin. The worst 
performance was provided by */current-to-rand/1/exp, 
*/current-to-best/1/exp and DDE/rand/2/bin. Results in Table 
III, for the function f4, shows that the function was solved by 
most of the variants. For f4, seven DDE variants have 
outperformed their classical counterpart DE variants and two 
DDE variants have shown similar performance as its DE 
counterpart variants. The best performance were provide by the 
similar set of DE and DDE variants viz. */rand-to-best/1/exp, 
*/rand/1/exp, DDE/rand/1/bin, DDE/rand/2/bin and 
DDE/rand-to-best/1/bin. The worst performing variants viz. 
*/rand/2/exp, */best/1/exp, */current-to-best/1/exp and 
*/current-to-rand/1/exp. 

Next, in our experiment, the probability of convergence 
(Pc), the percentage of successful runs to total runs, is 
calculated for each variant-function combination. This measure 
identifies variants having higher convergence capability to 
global optimum. It is calculated as the mean percentage of 
number of successful runs out of total number of runs i.e. Pc = 
(nc / nt)% where nc is total number of successful runs made by 
each variant for all the functions and nt is total number of runs, 
in our experiment nt = 4 * 100 =400. 

The convergence probability results are shown in Table IV, 
for dimension D=30. The table presents the number of 

successful runs made by each variant for each function, the 
total number of successful runs and Pc.  The results show that 
the variants with higher Pc are */rand/1/bin, */best/2/bin, 
*/best/2/exp, DE/rand-to-best/1/bin, DDE/best/1/bin, 
DDE/best/1exp and DDE/rand/2/bin. The worst performing 
variants viz. */current-to-best/1/*, */current-to-rand/1/* and 
*/rand/2/exp were found to have the least Pc value. It is worth 
noting that DDE has given overall more number of successful 
runs than that of DE. Consequently, DDE variants have higher 
probability of convergence compared to classical DE variants, 
irrespective of their recombination type. 

TABLE IV.  PC VALUES FOR DE AND DDE VARIANTS FOR D=30 

DE 
Variant f1 f2 f3 f4 nc Pc 
DE/rand/1/bin 37 0 100 0 137 34.25
DE/rand/1/exp 0 0 0 10 10 2.5 
DE/best/1/bin 0 14 6 0 20 5 
DE/best/1/exp 0 0 0 0 0 0 
DE/rand/2/bin 0 0 0 0 0 0 
DE/rand/2/exp 0 0 0 0 0 0 
DE/best/2/bin 0 100 38 0 138 34.5 
DE/best/2/exp 0 100 0 0 100 25 
DE/current-to-rand/1/bin 0 0 0 0 0 0 
DE/current-to-rand/1/exp 0 0 0 0 0 0 
DE/current-to-best/1/bin 0 0 0 0 0 0 
DE/current-to-best/1/exp 0 0 0 0 0 0 
DE/rand-to-best/1/bin 40 0 100 0 140 35 
DE/rand-to-best/1/exp 0 0 0 9 9 2.25 

DDE 
Variant f1 f2 f3 f4 nc Pc 
DDE/rand/1/bin 0 0 100 100 200 50 
DDE/rand/1/exp 0 0 0 26 26 6.5 
DDE/best/1/bin 44 98 9 8 159 39.75
DDE/best/1/exp 0 100 0 0 100 25 
DDE/rand/2/bin 0 0 0 100 100 25 
DDE/rand/2/exp 0 0 0 0 0 0 
DDE/best/2/bin 8 100 37 2 147 36.75
DDE/best/2/exp 0 100 0 55 155 38.75
DDE/current-to-rand/1/bin 0 0 0 0 0 0 
DDE/current-to-rand/1/exp 0 0 0 0 0 0 
DDE/current-to-best/1/bin 0 0 0 0 0 0 
DDE/current-to-best/1/exp 0 0 0 0 0 0 
DDE/rand-to-best/1/bin 0 1 0 0 1 0.25 
DDE/rand-to-best/1/exp 0 0 0 30 30 7.5 

 
Figure 3 compares the performances of all DE and DDE 

variants, for dimension 30, by plotting empirical distribution 
of normalized success performance. The success performance 
(SP) has been calculated as follows. 

       
   

runs successful #

runs  total#runs successfulfor  evalutionsfunction mean 
 SP


         (1) 

      A run is considered successful if the global optimum is 
reached with the given precision, before the maximum number 
of functions evaluations. The success performances of all 14 
variants on each benchmark function are calculated and are 
normalized by dividing them by the best SP on the respective 
function. As can be seen from equation (1) small values of SP 
and therefore large values in the empirical distribution are 
preferable.  
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                                            (a)                                                                                     (b)                                                                           (c) 

 
    (d)      (e)     (f) 

Figure 3.  Success Performance of DE variants (a-c) and DDE variants (d-f), for the dimension 30. 

The first variant that reaches (earlier) the top of the graph 
will be regarded as the best variant. For the sake of display, 
the variants have been plotted in three groups. As can be seen 
from the first row (a-c) of Figure 3, DE/rand/1/bin, 
DE/best/2/bin and DE/rand-to-best/1/bin have displayed 
overall superior performance. It is worth noting that none of 
the DE variants reached top of the graph because none of them 
solved all the benchmark functions even once. However, as is 
shown in the second row (d-f) of Figure 3, DDE/best/1/bin and 
DDE/best/2/bin reached top as they solved all the benchmark 
problems at least once. DDE/best/2exp is performing relatively 
better than DE/best/2/exp. It is worth noting that Figure 3 (a-c) 
do not display the variants DE/best/1/exp, DE/rand/2/bin, 
DE/rand/2/exp, DE/current-to-rand/1/bin, DE/current-to-
rand/1/exp, DE/current-to-best/1/bin and DE/current-to-
best/1/exp due to their poor overall performance. However 
Figure 3 (d-f) could display DDE/best/1/exp and 
DDE/rand/2/bin due to their better performance over their DE 
counterparts. Thus the superior performance of DDE over DE 
is much more evident in case of worst performing variants. 
Interestingly, as can be seen from the graphs, the binomial 
variants have shown a relatively better performance against 
their exponential counterparts. 

From the overall analysis, for dimension 30, the best 
performing variants are */rand-to-best/1/bin, */rand/1/bin, 
*/best/2/bin and */best/1/bin (closely followed by 
*/rand/2/bin). The identified worst performing variants are 
*/current-to-rand/1/exp, */current-to-best/1/exp and 
*/best/1/exp. The variants with binomial recombination have 
shown superior convergence nature, compared to the variants 
with exponential crossover. The DDE variants are 

outperforming their counterpart DE variant for all the 
functions, in most of the cases. 

On identifying the best and worst performing variants for 
dimension 30, next we focused on analyzing the scalability 
nature of DE variants and comparing it with the corresponding 
DDE counterpart variants. The simulations results for the 
functions f1, f2, f3 and f4 for the dimensions D = 30, 100, 500 
and 1000 are presented in Table V and VI for the DE and DDE 
variants, respectively. 

A. f1 : Schwefel's   problem 2.23 (Unimodal Separable) 

   In dimension 100, 500 and 1000, the results in Table V 
and VI, show that f1 was not solved by any of the variants. In 
D=100, in the case of DE, comparatively the best results were 
provided by DE/best/2/bin and DE/rand/1/bin, with the MOV 
of 30.11 and 30.12, respectively. The poorest performances 
were provided by DE/current-to-rand/1/exp and 
DE/rand/2/exp with the MOV of 94.50 and 94.49, 
respectively.  For DDE, the best performance was shown by 
DDE/rand/1/bin and DDE/rand-to-best/1/bin with the MOV 
of 14.12 and 14.21, respectively. For dimension 100, 
DDE/rand/1/bin is competitive than DE/rand/1/bin. The worst 
performance was provided by DDE/rand/2/exp and 
DDE/current-to-rand/1/exp, and they outperform their 
counterpart classical DE variants.  

For DE, in D=500, comparatively the best results were 
provided by DE/best/1/exp and DE/best/1/bin with the MOV 
of 41.84 and 64.15, respectively. The poorest performance was 
provided by DE/rand/2/bin with MOV of 98.63. For DDE, 
DDE/best/1/bin was the best performing variant and it could 
outperform DE/best/1/bin. The poor performance was 
provided by DDE/best/2/bin.  
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TABLE V.  MOV MEASURED FOR D = 30, 100, 500 AND 1000 FOR DE VARIANTS 

f1 f2 
Variant 30 100 500 1000 Variant 30 100 500 1000 
DE/rand/1/bin 0.91 30.12 98.53 98.78 DE/rand/1/bin 0.55 7061.26 378461.24 1302355.44
DE/rand/1/exp 17.82 90.95 98.33 98.72 DE/rand/1/exp 5.71 239074.44 15216875.17 14342315.34
DE/best/1/bin 28.72 50.09 64.15 64.62 DE/best/1/bin 0.79 10464.86 854930.98 3191306.42
DE/best/1/exp 25.96 34.71 41.84 42.79 DE/best/1/exp 364.74 144233.48 14870737.35 79492389.71
DE/rand/2/bin 3.34 94.47 98.63 98.80 DE/rand/2/bin 1073.51 218155.96 6632782.43 19785758.60
DE/rand/2/exp 7.13 94.49 98.52 98.78 DE/rand/2/exp 1049.47 311891.24 15328136.09 68431518.00
DE/best/2/bin 2.60 30.11 88.26 89.65 DE/best/2/bin 0.00 2248.43 391863.94 1558474.60
DE/best/2/exp 9.09 89.61 98.30 98.67 DE/best/2/exp 0.00 209909.29 15183598.61 71901345.60
DE/current-to-rand/1/bin 18.83 81.30 98.55 98.77 DE/current-to-rand/1/bin 13937.70 667057.83 16347074.17 63430502.40
DE/current-to-rand/1/exp 55.74 94.50 98.50 98.82 DE/current-to-rand/1/exp 1262.38 440334.78 8048956.17 28044382.29
DE/current-to-best/1/bin 17.05 72.85 98.45 98.82 DE/current-to-best/1/bin 13749.31 657134.55 15664122.22 62995994.80
DE/current-to-best/1/exp 55.75 30.17 98.57 98.84 DE/current-to-best/1/exp 1259.26 442178.83 7985850.68 28555998.20
DE/rand-to-best/1/bin 0.78 91.35 98.46 98.85 DE/rand-to-best/1/bin 0.54 6853.77 388102.10 1167663.24
DE/rand-to-best/1/exp 17.98 91.35 98.34 98.62 DE/rand-to-best/1/exp 5.54 246681.38 15443684.83 71024066.00

f3 f4 
Variant 30 100 500 1000 Variant 30 100 500 1000 

DE/rand/1/bin 0.00 1579.21 3782.37 17700.42 DE/rand/1/bin 0.09 1.93 9.05 12.74 
DE/rand/1/exp 97.63 599.03 7836.49 9146.20 DE/rand/1/exp 0.00 19.56 20.90 21.03 
DE/best/1/bin 3.40 1575.65 607.87 17733.15 DE/best/1/bin 3.52 3.47 2.06 2.66 
DE/best/1/exp 47.41 834.01 7721.86 10808.09 DE/best/1/exp 7.39 20.20 20.98 21.07 
DE/rand/2/bin 16.40 1580.49 4448.48 17729.09 DE/rand/2/bin 0.09 0.02 16.88 20.89 
DE/rand/2/exp 161.05 769.45 7947.06 17741.80 DE/rand/2/exp 4.04 20.03 20.94 21.04 
DE/best/2/bin 0.63 1587.85 3920.91 17702.71 DE/best/2/bin 0.09 0.03 1.75 1.52 
DE/best/2/exp 120.97 677.79 7943.69 9785.23 DE/best/2/exp 0.43 19.33 20.93 21.05 
DE/current-to-rand/1/bin 63.66 1586.25 7096.76 17679.43 DE/current-to-rand/1/bin 1.58 4.20 20.72 21.00 
DE/current-to-rand/1/exp 249.82 1504.33 8343.67 17707.06 DE/current-to-rand/1/exp 15.65 20.42 21.01 21.08 
DE/current-to-best/1/bin 64.90 1586.12 7065.75 17714.14 DE/current-to-best/1/bin 1.69 4.25 20.72 20.99 
DE/current-to-best/1/exp 245.38 1503.51 8338.84 17734.21 DE/current-to-best/1/exp 15.44 20.42 21.01 21.08 
DE/rand-to-best/1/bin 0.00 1583.53 3785.98 17681.53 DE/rand-to-best/1/bin 0.09 0.48 4.54 10.23 
DE/rand-to-best/1/exp 100.97 595.62 7843.83 9107.64 DE/rand-to-best/1/exp 0.00 19.55 20.90 21.03 

In D=1000, in the case of DE, comparatively the best 
results were provided DE/best/1/exp with the MOV of 42.79. 
The poorest performance was provided by DE/rand-to-
best/1/bin with the MOV of 98.85. In the case of DDE, the 
best and worst performance was given by DDE/best/1/bin and 
DDE/current-to-rand/1/bin, respectively.   

The best performing DE variants for the dimension of 30, 
100, 500 and 1000 are DE/rand-to-best/1/bin (0.78), 
DE/best/2/bin (30.11), DE/best/1/exp (41.84) and 
DE/best/1/exp (42.79), respectively. The best performing DDE 
variants are DDE/best/1/bin (0.69), DDE/rand/1/bin (14.12), 
DDE/best/1/bin (54.47) and DDE/best/1/bin (55.52), 
respectively. For the dimension 30 and 100, DDE has given 
least MOV compared to DE, but for dimension 500 and 1000 
DE has given least MOV than DDE. 

On the other hand, the worst performing DE variants for 
the dimension of 30, 100, 500 and 1000 are DE/current-to-
best/1/exp (55.75), DE/current-to-rand/1/exp (94.50), 
DE/rand/2/bin (98.63) and DE/rand-to-best/1bin (98.85), 
respectively. The worst performing DDE variants are 
DDE/current-to-best/1/exp (55.26), DDE/rand/2/exp (94.35), 
DDE/best/2/bin (98.62) and DDE/current-to-rand/1/bin 
(98.92), respectively. In the worst performing variants cases, 
for all the dimension DDE has given, comparatively, least 
MOV than DE, except for the dimension 1000. 

It is observed from the overall comparative performance 
analysis of the variants, for f1, that most of the DDE variants 
are outperforming their classical DE counterparts, irrespective 
of the dimension, except of few cases. For f1, for the 
dimensions 30, 100 and 500 nine out of fourteen DDE variants 
and for the dimension 100 eight out fourteen DDE variants 
have outperformed their classical DE variant. This shows the 
superiority of DDE in solving f1 in all the dimensions. 

To say about the scalability of the variants to the higher 
dimensions, the DE variants are not scaling with the 
dimension. It is interesting to note that the DDE/best/1/bin 
demonstrates better scalability, it continued to be the best 
performing DDE variant in all the dimension, except for 
D=100. DE/best/1/exp has shown competitive result for the 
dimensions of 500 and 1000. DE/best/2/bin and 
DDE/rand/1/bin are good in D=100. This shows that the 
*/best/1/* variants are good for high dimensional function 
optimization. 

B. f2: Schwefel's  Problem 1.2 (Unimodal NonSeparable) 

The result, Table V and VI, shows for the dimensions of 
100, 500 and 1000,  f2 was not solved by any of the variants.  
In dimension 100, comparatively the best results were 
provided by  DE/best/2/bin  with  the  MOV  of  2248.43.   
The   poorest performance was provided by DE/current-to- 
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TABLE VI.  MOV MEASURED FOR D = 30, 100, 500 AND 1000 FOR DDE VARIANTS 

f1 f2 
Variant 30 100 500 1000 Variant 30 100 500 1000 

DDE/rand/1/bin 1.00 14.12 98.47 98.80 DDE/rand/1/bin 0.30 6637.46 383888.18 1299255.38
DDE/rand/1/exp 17.44 90.61 98.27 98.80 DDE/rand/1/exp 5.01 240363.05 14939295.29 75385246.55
DDE/best/1/bin 0.69 31.84 54.47 55.52 DDE/best/1/bin 0.22 1259.21 352902.38 1510373.51
DDE/best/1/exp 2.83 90.14 98.25 98.60 DDE/best/1/exp 0.00 141526.49 15243616.03 72440117.57
DDE/rand/2/bin 3.81 43.54 98.39 98.64 DDE/rand/2/bin 891.05 214154.89 7166948.68 21860325.56
DDE/rand/2/exp 7.87 94.35 98.51 98.84 DDE/rand/2/exp 959.51 314246.18 15066990.09 63196774.55
DDE/best/2/bin 0.94 31.05 98.62 98.76 DDE/best/2/bin 0.00 1583.60 370816.19 1457755.15
DDE/best/2/exp 2.13 89.65 98.39 98.68 DDE/best/2/exp 0.00 204320.84 15302298.13 74245393.22
DDE/current-to-rand/1/bin 17.36 72.72 98.43 98.92 DDE/current-to-rand/1/bin 14105.89 654438.79 16056102.62 64136432.16
DDE/current-to-rand/1/exp 54.88 94.17 98.54 98.72 DDE/current-to-rand/1/exp 1265.43 438408.69 8174238.38 29423339.00
DDE/current-to-best/1/bin 17.03 73.08 98.43 98.80 DDE/current-to-best/1/bin 14354.49 656880.63 16111978.77 61850086.72
DDE/current-to-best/1/exp 55.26 94.23 98.44 98.72 DDE/current-to-best/1/exp 1221.48 443737.50 8178306.49 28770555.30
DDE/rand-to-best/1/bin 1.00 14.21 98.50 98.80 DDE/rand-to-best/1/bin 0.28 6646.89 380753.96 1240678.54
DDE/rand-to-best/1/exp 17.40 91.32 98.30 98.52 DDE/rand-to-best/1/exp 4.88 240388.47 15062434.97 61102382.96

f3 f4 
Variant 30 100 500 1000 Variant 30 100 500 1000 

DDE/rand/1/bin 0.00 320.14 3783.48 9083.81 DDE/rand/1/bin 0.00 1.96 9.74 13.32 
DDE/rand/1/exp 98.32 1030.92 7834.76 16730.77 DDE/rand/1/exp 0.00 19.49 20.90 21.03 
DDE/best/1/bin 3.14 151.30 578.48 1317.76 DDE/best/1/bin 3.04 3.43 2.13 2.85 
DDE/best/1/exp 45.74 833.35 7736.94 16670.45 DDE/best/1/exp 7.58 20.20 20.98 21.07 
DDE/rand/2/bin 401.20 401.20 4449.98 11182.90 DDE/rand/2/bin 0.00 1.24 5.16 17.90 
DDE/rand/2/exp 159.72 1146.47 7958.94 16868.71 DDE/rand/2/exp 3.82 20.04 20.94 21.05 
DDE/best/2/bin 0.67 342.58 3923.32 8985.19 DDE/best/2/bin 2.59 9.46 16.14 16.65 
DDE/best/2/exp 120.92 1082.43 7959.34 16861.72 DDE/best/2/exp 0.52 19.25 20.93 21.04 
DDE/current-to-rand/1/bin 64.55 580.61 7056.70 16548.26 DDE/current-to-rand/1/bin 1.59 4.26 20.71 21.00 
DDE/current-to-rand/1/exp 245.68 1360.12 8336.10 17302.01 DDE/current-to-rand/1/exp 15.45 20.41 21.01 21.09 
DDE/current-to-best/1/bin 64.06 574.96 7061.56 16549.52 DDE/current-to-best/1/bin 1.63 4.25 20.72 21.00 
DDE/current-to-best/1/exp 248.01 1357.18 8321.75 17298.95 DDE/current-to-best/1/exp 15.67 20.40 21.01 21.09 
DDE/rand-to-best/1/bin 0.00 323.22 3787.94 9081.63 DDE/rand-to-best/1/bin 0.00 2.21 9.77 13.33 
DDE/rand-to-best/1/exp 98.99 1032.48 7844.41 16727.88 DDE/rand-to-best/1/exp 0.00 19.56 20.90 21.03 

best/1/bin and DE/current-to-rand/1/bin with the MOV of 
657134.55 and 667057.83, respectively.  The best performing 
DDE variant was DDE/best/1/bin with MOV of 1259.21, and 
it has also outperformed DE/best/1/bin. The worst results were 
shown by DDE/current-to-rand/1/bin and DDE/current-to-
best/1/bin with the MOV of 654438.79 and 656880.63, 
respectively.  

In D=500, for DE, comparatively the best results were 
provided by DE/rand/1/bin with the MOV of 378461.23, the 
poorest performance were provided by DE/current-to-
best/1/bin and DE/current-to-rand/1/bin with the MOV of 
15664122.22 and 16347074.17, respectively. For DDE, the 
best performance was provided by DDE/best/1/bin with MOV 
of 352902.38 and the worst performance was provided by the 
variants DDE/current-to-rand/1/bin and DDE/current-to-
best/1/bin with MOV of 16056102.62 and 16111978.77, 
respectively.  

In D=1000, for DE, comparatively the best result was 
provided by the variant DE/rand-to-best/1/bin with the MOV 
of 1167663.24. The poorest performance was provided by the 
variant DE/best/1/exp with the MOV of 79492389.71. For 
DDE, the best result was provided by DDE/rand-to-best/1/bin 
with the MOV of 1240678.54, and it is failed to outperform its 
DE counterpart. The worst result was provided by the variant 
DDE/rand/1/exp with the MOV of 75385246.55.  

The best performing DE variants for the dimension of 30, 
100,   500   and   1000   are   DE/best/2/*   (0), DE/best/2/bin 
(2248.43), DE/rand/1/bin (378461.24) and DE/rand-to-
best/1/bin (1167663.24), respectively. The best performing 
DDE variants are (DDE/best/2/*, DDE/best/1/exp) (0), 
DDE/best/1/bin (1259.21), DDE/best/1/bin (352902.38) and 
DDE/rand-to-best/1/bin (1240678.54), respectively. For D = 
100 and 500 the DDE variants have achieved least MOV. 

On the other hand, the worst performing DE variants for 
the dimension of 30, 100, 500 and 1000 are DE/current-to-
rand/1/bin (13937.70), DE/current-to-rand/1/bin (667057.83), 
DE/current-to-rand/1/bin (16347074.17) and DE/best/1/exp 
(79492389.71), respectively. The worst performing DDE 
variants are DDE/current-to-best/1/bin (14354.49), 
DDE/current-to-best/1/bin (656880.63), DDE/current-to-
best/1//bin (16111978.77) and DDE/rand/1/exp 
(75385246.55), respectively.  For the dimension 100, 500 and 
1000, among the worst performing variants itself, the DDE 
variants have outperformed their counterpart DE variant, by 
providing least MOV. 

For f2, most of the DDE variants are outperforming their 
classical DE counterparts, irrespective of the dimension, 
except of few cases. For the dimensions 30 and 100 the 
superiority of DDE variants were more evident, in these cases 
11 out of 14 DDE variants have outperformed their DE 
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counterparts. For dimension 500 seven, and for dimension 
1000 eight, out of fourteen DDE variants have shown their 
competitiveness compared to their corresponding DE variants. 
The results show the superiority of DDE variants in solving f2 
in all the dimensions. 

The DDE/best/1/bin variant is good at dimension 100 and 
500, */rand-to-best/1/bin variants are good at the dimension 
1000.  DE/rand/1/bin and DE/best/2/bin variants have shown 
competitive results for the dimension 500 and 100, 
respectively.  

C. f3: Generalized Rastrigin's Function (Multimodal Separable) 

The results, Table V and VI, shows the f3 was not solved 
by any of the variants, for D = 100, 500 and 1000. In D=100, 
for DE variants, comparatively the best results were provided 
by DE/rand-to-best/1/exp with the MOV of 595.62, and the 
poorest performance was given by DE/best/2/bin with the 
MOV of 1587.85, but DDE/best/2/bin outperforms 
DE/best/2/bin. For DDE variants, the best performance was 
shown by DDE/best/1/bin with the MOV of 151.30 and the 
worst performance was given by DDE/current-to-rand/1/exp 
with 1360.12.   

In D=500, for the DE variants, comparatively the best 
results were provided by DE/best/1/bin with the MOV of 
607.87. The poorest performances were provided by 
DE/current-to-best/1/exp and DE/current-to-rand/1/exp with 
the MOV of 8338.84 and 8343.67, respectively. In DDE also 
the best and worst performance were provided by the same set 
of DE variants. The best performance was provided by 
DDE/best/1/bin with MOV of 578.48, ie., it has outperformed 
DE/best/1/bin. The worst performance were provided by 
DDE/current-to-best/1/exp and DDE/current-to-rand/1/exp 
with the MOV of 8321.75 and 8336.10. The superiority of 
DDE is evident in the case of worst performing variants also. 

In D=1000, for DE, comparatively the best results were 
provided by the variant DE/rand-to-best/1/exp with the MOV 
of 9107.64. The poorest performance was given by the variant 
DE/rand/2/exp with the MOV of 17741.80. For DDE, the best 
result was provided by DDE/best/1/bin with the MOV of 
1317.76 and the worst result was provided by DDE/current-to-
rand/1/exp with the MOV of 17302.01. 

The best performing DE variants for the dimension of 30, 
100, 500 and 1000 are (DE/rand/1/bin, DE/rand-to-best/1/bin) 
(0), DE/rand-to-best/1/exp (595.62), DE/best/1/bin (607.87) 
and DE/rand-to-best/1/exp (9197.64), respectively. The best 
performing DDE variants are (DDE/rand/1/bin, DDE/rand-to-
best/1/bin) (0), DDE/best/1/bin (151.30), DDE/best/1/bin 
(578.48) and DDE/best/1/bin (1317.86), respectively. At each 
dimension, DDE has given least MOV. 

On the other hand, the worst performing DE variants for 
the dimension of 30, 100, 500 and 1000 are DE/current-to-
rand/1/exp (249.82), DE/best/2/bin (1587.85), DE/current-to-
rand/1/exp (8343.67) and DE/rand/2/exp (17741.80), 

respectively. The worst performing DDE variants are 
DDE/rand/2/bin (401.20), DDE/current-to-rand/1/exp 
(1360.12), DDE/current-to-rand/1/exp (8336.10) and 
DDE/current-to-rand/1/exp (17302.01), respectively. For all 
the dimensions DDE has given comparatively least MOV than 
DE, except for D==30.  

In case of f3 , for the dimension 30, nine out of fourteen 
DDE variants are outperforming their DE counterparts. For the 
dimensions 100 seven, and for D=500 and 1000 only two, out 
of fourteen DDE variants have outperformed their classical 
DE variant.  

On analyzing scalability of the variants, we observed that, 
the DDE/best/1/bin demonstrates better scalability, it 
continued to be the best performing DDE variant for the 
dimensions of 100, 500 and 1000. DE/best/1/bin also showed 
its better performance for the dimension 500. Interestingly, the 
variant DE/rand-to-best/1/exp was the best performing DE 
variant for the dimension 100 and 1000.  

D. f4 : Multimodal Nonseparable(Ackely's Function) 

In dimension 100, 500 and 1000, the result, Table V and 
VI, shows that f4 was not solved by any of the variants. In 
D=100, for DE, comparatively the best results were provided 
by DE/best/2/bin and DE/rand/2/bin with the MOV of 0.03 
and 0.02, respectively. The poorest performance was provided 
by DE/current-to-rand/1/exp and DE/current-to-best/1/exp 
with the MOV of 20.42. For DDE, the best performance was 
provided by the DDE/rand/2/bin with the MOV of 1.24. The 
worst performance was provided by the variant DDE/current-
to-rand/1/exp.  

In D=500, for DE, comparatively the best result was 
provided by DE/best/2/bin with the MOV of 1.75.  The 
poorest performances were provided by DE/current-to-
best/1/exp and DE/current-to-rand/1/exp with the MOV of 
21.01. For DDE, the best performance was provided by 
DDE/best/1/bin with the MOV of 2.13. The worst 
performance was provided by DDE/current-to-best/exp and 
DDE/current-to-rand/1/exp with the MOV of 21.01.  

In dimension 1000, for DE, comparatively the best result 
was provided by DE/best/2/bin with the MOV of 1.52. The 
poorest performance was provided by DE/current-to-
rand/1/exp and DE/current-to-best/1/exp with the MOV of 
21.08. For DDE, the best performance was provided by 
DDE/best/1/bin with the MOV of 2.85. The worst 
performance was provided by DDE/current-to-rand/1/exp and 
DDE/current-to-best/1/exp with the MOV of 21.09.  

The best performing DE variants for the dimension of 
30,100,500 and 1000 are (DE/rand-to-best/1/exp, 
DE/rand/1/ep) (0), DE/rand/2/bin (0.02), DE/best/2/bin (1.75) 
and DE/best/2/bin (1.52), respectively. The best performing 
DDE variants are (DDE/rand-to-best/1/*, DE/rand/1/*, DDE/ 
rand/2/bin) (0) DDE/rand/2/bin (1.24), DDE/best/1/bin (2.13) 
and   DDE/best/1/bin   (2.85),  respectively.  For   f4,   the   DE     
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TABLE VII.  PC COMPARISON FOR DE AND DDE VARIANTS 

Variant 
Pc 

Variant 
Pc 

D=30 D=100 D=500 D=1000 D=30 D=100 D=500 D=1000
DE/rand/1/bin 34.25 0 0 0 DDE/rand/1/bin 50 0 0 0 
DE/rand/1/exp 4 0 0 0 DDE/rand/1/exp 6.5 0 0 0 
DE/best/1/bin 3.5 0 0 0 DDE/best/1/bin 39.75 0 0 0 
DE/best/1/exp 0 0 0 0 DDE/best/1/exp 25 0 0 0 
DE/rand/2/bin 0 1 0 0 DDE/rand/2/bin 25 0 0 0 
DE/rand/2/exp 0 0 0 0 DDE/rand/2/exp 0 0 0 0 
DE/best/2/bin 34.5 0 0 0 DDE/best/2/bin 36.75 0 0 0 
DE/best/2/exp 25 0 0 0 DDE/best/2/exp 38.75 0 0 0 
DE/current-to-rand/1/bin 0 0 0 0 DDE/current-to-rand/1/bin 0 0 0 0 
DE/current-to-rand/1/exp 0 0 0 0 DDE/current-to-rand/1/exp 0 0 0 0 
DE/current-to-best/1/bin 0 0 0 0 DDE/current-to-best/1/bin 0 0 0 0 
DE/current-to-best/1/exp 0 0 0 0 DDE/current-to-best/1/exp 0 0 0 0 
DE/rand-to-best/1/bin 35 0 0 0 DDE/rand-to-best/1/bin 0.25 0 0 0 
DE/rand-to-best/1/exp 2.25 0 0 0 DDE/rand-to-best/1/exp 7.5 0 0 0 

TABLE VIII.  THE BEST AND WORST PERFORMING DE AND DDE 
VARIANTS FOR EACH FUNCTION-DIMENSION COMBINATIONS 

D=30 

Function 
Best Variant Worst Variant 

DE DDE DE DDE 
f1 V13 V3 V12 V10 
f2 V7,V8 V4,V7,V8 V9 V11 
f3 V1,V13 V1,V13 V10 V7 
f4 V14,V2 V!,V2,V7,V13,V14 V10 V12 

D=100 

Function 
Best Variant Worst Variant 

DE DDE DE DDE 
f1 V7 V1 V10 V6 
f2 V7 V3 V9 V11 
f3 V14 V3 V7 V7 
f4 V5 V5 V12 V10 

D=500 

Function 
Best Variant Worst Variant 

DE DDE DE DDE 
f1 V4 V3 V5 V7 
f2 V1 V3 V9 V11 
f3 V3 V3 V10 V10 
f4 V7 V3 V10,V12 V10,V12

D=1000 

Function 
Best Variant Worst Variant 

DE DDE DE DDE 
f1 V4 V3 V13 V9 
f2 V13 V13 V4 V2 
f3 V14 V3 V6 V10 
f4 V7 V3 V10,V12 V10,V12

variants have achieved least MOV than the DDE variants. 

On the other hand, the worst performing DE variants for 
the dimension of 30, 100, 500 and 1000 are DE/current-to-
rand/1/exp (15.65), DE/current-to-best/1/exp (20.42), 
DE/current-to-best/1/exp (20.01) and DE/current-to-best/1/exp 
(21.08), respectively. The worst performing DDE variants are 
DDE/current-to-best/1/exp (15.67), DDE/current-to-
rand/1/exp (20.41), DDE/current-to-rand/1/exp (20.01) and 
DDE/current-to-best/1/exp (21.09), respectively. In the case of 
worst performing variants, both DE and DDE have shown 
almost similar performance.  

For f4, most of the DDE variants outperformed their DE 
counterpart only in the dimension 30. For the higher 
dimensions, the superiority of the DDE variants is not much 
evident. For the dimensions 500 and 1000 two, for the 
dimension 100 four, out of fourteen DDE variants have 
outperformed their classical DE variant. On analyzing 
scalability of the variants, once again DDE/best/1/bin 
demonstrates its scalability in the dimensions of 500 and 1000. 
Similarly, DE/best/2/bin performs well in the dimension 500 
and 1000. */rand/2/bin could show its competitiveness in the 
dimension of 100. 

The probability of convergence measured for all the 
variant-function-dimension combination is presented in Table 
VII, the results show than none of combination could provide 
any successful run for the dimension 100, 500 and 1000 
(except four successful runs provided by the combination 
DE/rand/2bin-f4-100). It shows, the Pc value of the variants is 
decreasing with the dimension of the chosen problem.  The 
best and worst performing DE and DDE variants for each of 
the function-dimension combinations are presented in Table 
VIII. It is observed from the results that even though 
DE/best/1/bin has not shown any superiority in high 
dimensional cases, the DDE/best/1/bin has given best 
performance in most of the combinations, in all the 
dimensions. But DE/best/2/bin has given competitive results in 
f4 for D=500 and 1000, in f1 and f2 for D=100.  

On the overall analysis for the functions f1, f2, f3 and f4 for 
the dimensions of 30, 100, 500 and 1000, we can highlight the 
following points: (1) The DDE variants are, comparatively, 
showing superior performance in reaching the global optimum  
with higher probability of convergence, for all the function-
dimension combination, except few cases. (2) The variants 
with binomial recombination type and “best” selection scheme 
are most competitive in solving the function at hand. (3) Most 
of the best performing variants are “bin” variants, and the 
worst performing variants are the “exp” variants, on each 
function-dimension combinations. (4) The */best/2/bin and 
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DDE/best/1/bin variants are found highly suitable for higher 
dimensional function optimization. 

VI. CONCLUSION  

An empirical comparative performance analysis of DE and 
DDE variants for various dimension are attempted. The results 
indeed identified that most of the DDE variants are 
outperforming their classical counterpart variants, irrespective 
of the dimension. The results obtained show that the variants 
with binomial recombination are relatively performing better 
than the variants with exponential crossover. With the 
scalability study of the variants, we found that DDE/best/1/bin 
and DE/best/2/bin are able to demonstrate their 
competitiveness, even in the higher dimensions, up to 1000. 
The other variants did not scale up to higher dimensions, this 
is due to the reason that the parameter setup (CR, NP and F) 
which is been used for 30 dimension is used for the other 
dimensions also. Our future work includes analyzing 
scalability of the variants with proper tuning of the control 
parameters, for each dimension, with more number of 
benchmark functions. 
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