
Mehedi Masud et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3053-3059

Relational Peer Data Sharing Settings and
Consistent Query Answers

Mehedi Masud

Department of Computer Science
College of Computers and Information Technology

Taif University, Taif, Saudi Arabia
Email: mmasud@tu.edu.sa

Sultan Aljahdali
Department of Computer Science

College of Computers and Information Technology
Taif University, Taif, Saudi Arabia

Email: aljahdali@tu.edu.sa

Abstract— In this paper, we study the problem of consistent
query answering in peer data sharing systems. In a peer data
sharing system, databases in peers are designed and administered
autonomously and acquaintances between peers are established
thorough data sharing constraints. Since data are managed in
peer databases autonomously, peers' data may be inconsistent
with respect to the data sharing constraints. Inconsistencies of
data may also result due to the change of constraints (e.g. adding,
modifying, and deleting constraints between peers). In order to
solve inconsistencies between peers, one possible solution could be
modify data physically in inconsistent peers by propagating
updates. However, it is not always feasible to change data
physically in peers since peers are autonomous and a peer may
not have permission to modify other peers' data. Considering the
possible inconsistent situations, this paper presents a semantics of
obtaining consistent answers in a peer data sharing system such
that the answers are consistent wrt to data sharing constraints.
Consistent answers are obtained at query time by avoiding the
inconsistent data. The paper also shows a method to achieve
consistent answers of a query.

Keywords-database; consistent query; data sharing;

I. INTRODUCTION

Typical data integration [5] and data exchange settings [12],
[14], [15], we are often dealing with one world, for example, a
set of sources all containing information about videos or music
files. Hence, data integration or data exchange between data
sources is provided mainly through the use of views or schema
mappings, i.e., queries that map and restructure data between
schemas. However, in data sharing systems [3], [4], [8]
sources may represent different worlds with different schemas
and data vocabularies, and the real world entities denoted by
different symbols in different sources may be semantically
related [7]. In order to share data between peers in a data
sharing system, semantic relationships are created. For
creating semantic relationships, a possible solution is to create
a domain relation [8] through value correspondences or value-
level mappings [1] between sources since data vocabularies
are different in peers. The value-level mappings map the data
elements of a source domain to the data elements of another
source domain. Once the semantic relationships are
established, answers to a query posed to a peer in the system is
obtained by translating the query in terms of the vocabularies

of the semantically related peers and propagating and
executing the query into the peers.

Authors in [3], [4] introduced a value-mapped peer data

sharing system, called Hyperion, considering the value-level
mappings between peers. The value-level mappings are
created by the use of mapping tables [1], which map
corresponding data values, logically tuples, that reside in
different peers. Mapping tables also bridge the differences of
data vocabularies as well as impose data sharing constraints
between peers. Query answering mechanism in such a system
specifies a query posed to a peer's instance is applied to the
peer's local database instance and the query is propagated to
all other related peers for accumulating related data. Authors
in [2] proposed a query translation mechanism between peers
in a value-mapped peer data sharing system, however, they did
not consider consistent query answering in the system.

In this paper, we investigate a consistent query answering
mechanism and present a semantics of obtaining consistent
answers in a value-mapped peer data sharing system. We also
present a technique for obtaining consistent answers. Note that
data in peers may be inconsistent wrt the mappings,
meanwhile, peers are consistent wrt their local integrity
constraints. Moreover, data and mappings may be updated in
peers in course of time which can make the data in related
peers inconsistent wrt the new mappings, although, peers were
consistent before the occurrence of the updates. Since peers
are autonomous in peer data sharing systems, it is not feasible
to modify the data and mappings physically in related peers to
solve inconsistencies between peers. Moreover, a peer may not
have permission to modify other peers' data. Considering these
inconsistent situations, we present a semantics of query
answering that characterize what are the intended and correct
answers to a query posed to and answered by a value-mapped
peer data sharing system. Basically, we adopt a semantics for
consistent query answering in consistent databases that was
originally introduced by Arenas et al. [9]. We extend the
semantics to be used in a peer data sharing system that is
characterized by defining a set of virtual global instances
called solutions for a peer where a query originates. A solution

ISSN : 0975-3397 3053

Mehedi Masud et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3053-3059

Figure 1. Instances of peers P1 and P2

Figure 2. Mapping tables

for a peer is an intended global instance that respects the
mappings with its acquainted peers. After having a definition
of the intended solutions for a peer, the consistent answers to a
query in a peer are those that are certain [10] in every possible
solution.

The paper is structured as follows. Section 2 presents the
technical preliminaries and presents a model of data sharing
systems. Section 3 explains the semantics of consistent
answering of queries in data sharing systems. In Section 4, we
show the process of obtaining consistent answers, and Section
5 discusses related work. Finally, the paper concludes with
some future directions.

II. TECHNICAL PRELIMINARIES AND SYSTEM MODEL

Attributes are symbols taken from a given finite set
U={A1,…,Aq} called the universe. We use the letters A, B, C,
… to denote single attributes and X, Y, … to denote sets of
attributes. Each attribute Aj is associated with a set of values
called the domain of Aj and is denoted by dom(Aj). If
X={A1,A2,…,Ak}U, then dom(X)
dom(A1)×dom(A2)×…×dom(Ak). A non-empty subset of U is
called a relation schema R. A database schema is a finite
collection R = (R1,…,Rm) of relation schemas. A tuple t with
attribute X is a X-value. A relation is a set of tuples. We shall
use ri to denote a relation that interpreters Ri. An instance I
over R is a function that associates to each relation schema Ri
a relation ri=I(Ri). For a tuple t and a set Y ⊆ U, we denote
the restriction of t to Y by t[Y].

Data sharing constraints in data sharing systems impose
constraints on data values by associating values between two
sources, where databases may use different vocabularies and
different domains. Intuitively, the associations of values create
a domain relation between two semantically related domains
and relate data objects (tuples) to be shared between peers.

Authors in [1] show how to create data sharing constraints by
using mapping tables. A mapping table, denoted m(X,Y),
simply is a relation over the attributes X and Y. A tuple (x, y)
in m(X,Y) indicates a mapping that the value x ∈ dom(X) is
associated with the value y ∈ dom(Y). Formally, a mapping
over a set of attributes U of X∪Y, alternatively called a tuple
t, in a mapping table represents that for each A ∈ U, t[A] is
either a constant in dom(A), a variable in V or an expression
of the form v−S, where v ∈ V and S is a finite subset of
dom(A) [1].

Note that a tuple in a mapping table may contain constants or
variables. The variables are used to increase expressiveness
power of mapping tables. Given the presence of variables in
mappings, it is necessary to introduce the notion of a
valuation. A valuation ρ over a mapping table m is a function
that maps each constant value in m to itself and each variable
v of m to the value in the intersection of the domains of the
attributes where v appears [1]. Furthermore, if v appears in an
expression of the form v-S, then ρ(v) ∉ S. In general, if there
are multiple mapping tables M={m1,m2,…,mk} then we can
combine the tables into a single mapping table using the ∧-
operator [1]. Therefore, we can apply the valuation ρ on M
which we represent as ρ(m1,m2,…,mk). Since a mapping table
m from X to Y associates values from dom(X) to dom(Y), we
can determine the set of Y−values with which a particular
value x ∈ dom(X) is associated by the following definition.

Definition 1 [Y−values] Let m be a mapping table from X to
Y. We define Y−values, denoted as Ym(x), with which a
particular value x ∈ dom(X) is associated as follows:
Ym(x)={y|∃t ∈ m and there exists valuation ρ over m such
that ρ(t[X])=x and ρ(t[Y])=y}

We now explain how a mapping table creates valid
associations of tuples between two relations. Consider
relations r1 and r2 with relation schemas R1[U1] and R2[U2],
respectively, and also consider a mapping table m(X,Y) from
X to Y, where X ⊆ U1 and Y ⊆ U2. Consider a relation r12,
where r12=r1×r2. We say that a tuple t12 in r12 associates a tuple
t1 ∈ r1 to a tuple t2 ∈ r2 if there is a valuation ρ over m such
that t12[X] ∈ πX(ρ(m)) and t12[Y] ∈ πY(σX=t12[X](ρ(m))). The
intuition behind this association of tuples is that a tuple t1 ∈ r1
such that t1[X]=x is associated with respect to the mapping
table m(X,Y), only the tuples t2 ∈ r2 for which t2[Y] ∈ Ym(x).
Therefore, we can consider the mapping table m as a condition
to filter relation r12 that is subset of r12 contains only the tuples
that m associates the tuples of relations r1 and r2.

Now we show how a mapping table associates data values
between two peers Pi and Pj. Assume two relations ri and rj in
peers Pi and Pj with schemas Ri[Ui] and Rj[Uj], respectively
and a mapping table m(X,Y) over the attributes X ⊆ Ui and Y
⊆ Uj. A mapping (x, y) in m indicates that a tuple t ∈ ri such

ISSN : 0975-3397 3054

Mehedi Masud et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3053-3059

that t[X]=x is associated with a tuple t′ ∈ rj such that t′[Y]=y.
Considering the existence of mapping tables between peers,
we now define the data sharing constraints between peers.

Definition 2 [Data Sharing Constraint] A data sharing
constraint Σij between two peers Pi and Pj in a value-mapped
peer data sharing system is a set of mapping tables {m1,m2,…,
mk}. Existence of a mapping table mi ∈ Σij between peers Pi
and Pj has the following logical implication:
∀XY (mi(X,Y)→ ∃ZR(X,Z)∧∃WQ(Y,W))
Here, R, Q are relations in Ri and Rj of Pi and Pj, respectively.

Example 1 Consider Figure where two peers P1 and P2
with relational schemas R1={R1(X′,Y′,W)}, R2={R2(X,Y,Z)}.
Assume that P1 is connected to peer P2 by the data sharing
constraint Σ12={m1(X′,X),m2(Y′,Y)}. The first mapping table
expresses that a tuple t′ in R2 is related to a particular tuple t in
R1 wrt m1 such that t[X′] ∈ πX′((m1)) and t′[X] ∈ Ym1(t[X′]).
Hence, from Figure 1, we observe that the tuple t=(a1′,b1′,d1) is
related to the tuple t′=(a1,b1,c1) wrt m1. Moreover, t=(a1′,b1′,d1)
is related to the tuples t′1=(a1,b1,c1) and t′2=(a2,b1,c2) wrt m2.
However, if we count both m1 and m2, tuple t is only related to
the tuple t′1 since only for t we have t[X′,Y′] ∈ πX′,Y′((m1,m2))
and t′[X] ∈ Ym1(t[X′]) and t′[Y] ∈ Ym2(t[Y′]).

A. Data Sharing System

A value-mapped peer data sharing system is a set P = {P1,
P2,…, Pn} of n peers with autonomous pre-existing local
database systems (LDBSs). Each peer Pi, 1 ≤ i ≤ n, has its own
database denoted Di with its own schema Ri. We assume that
each peer Pi is responsible for maintaining its database
consistent with respect to its local integrity constraints,
independently from other peers.

We now define the notions of a peer and a peer data sharing
system.

Definition 3 [Peer] A peer Pi in a peer data sharing system N
consists of:

 a database Di with its own schema Ri.

 a set of local integrity constraints ICi on Di.

 a finite set of data sharing constraints from Pi to its
neighbor Pj, denoted by Σij. The set of data sharing
constraints in Pi for all of its neighbors Pj ∈ P is
denoted by Σi, where Σi = ∪PjΣij.

Definition 4 [Peer Data Sharing System] A peer data sharing
system N= < P, Σ > consists of:

 a finite set P={P1,P2,…,Pn} of peers, and

 a set Σ = {Σ1,Σ2,…,Σn} of data sharing constraints.

Since mappings are created pairwise in a peer data sharing
system, logically, a semantic graph is created that we call an
acquaintance graph. Formally, an acquaintance graph is a
graph ΓN=(V, ACQ), where V is a set of vertices and ACQ ⊆
P ×P is a set of direct edges such that every edge (Pi, Pj) ∈
ACQ, i ≠ j, is associated with data sharing constraints Σij. A
peer Pj is called an acquaintee of a peer Pi in an acquaintance
graph N if there exists an edge from Pi to Pj in ΓN; N(Pi) denotes
the set of acquaintees of Pi. The notion of acquaintees
represents the direct links between two peers. However, two
peers in N may be linked indirectly by a path of peers.
Therefore, from a specific peer a request can propagate to a set
of peers that are related indirectly to that peer. The set of peers
that are linked directly or indirectly to a peer are called
accessible peers for that peer. Formally, a peer Pj is accessible
from a peer Pi in N if there is a path in ΓN from Pi to Pj; A(Pi)
denotes the set of accessible peers of Pi.

III. CONSISTENT QUERY ANSWERING

In a data sharing system, when a peer Pi receives a query from
its users it answers the query both from its own data and the
data stored at its acquaintees Pj ∈ N(Pi). The decision by Pi on
what data it receives from an acquaintee Pj depends on the
data sharing constraints Σij. When Pi receives data form an
acquaintee Pj, Pi repairs its own data for solving
inconsistencies wrt to the data sharing constraints Σij. The
formal definition of repair of a database D is the following.

Definition 5 [Repair [9]] Let D be a database with integrity
constraints IC. We say that a database D′ is a repair of D with
respect to IC if:

 D′╞ IC, and

 there is no repair database D" such that D"╞ IC and
(D,D") ⊂  (D,D′), where  (D,D′)=(D−D′) ∪
(D′−D) is the symmetric differences (also called
distance) between two databases D and D′.

This repair concept is originally developed in the area of
consistent query answering in an inconsistent database. The
repair of an inconsistent database D can produce multiple
solutions. The semantics of query answering is given in terms
of consistent answers, which we present next.

Definition 6 [Consistent Answers [9]] Let D be database and
IC be a set of integrity constraints. Let q be a query over D.
We say that a tuple t is a consistent answer to q wrt IC if t is
an answer to query q in every repair D′ of D wrt IC.

In a data sharing system, the repair of data at Pi with the data
of its acquaintees Pj ∈ N(Pi) creates a solution instance, called
acquaintee solution, that satisfies the data sharing constraint
Σij.

Definition 7 [Acquaintee Solution] Let P be a data sharing
system. Consider a peer Pi in P with a database Di and D′ is a

ISSN : 0975-3397 3055

Mehedi Masud et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3053-3059

database instance on schema ∪Pj ∈ N(Pi)Rj. Let D" is a repair
on database instance Di∪D′ wrt ∪ Pj ∈ N(Pi)Σij. D" is an
acquaintee solution for Pi if: (a) D"╞∪Pj ∈ N(Pi)Σij and (b)
there is no instance D"′ that satisfies (a) and such that D"′ ⊂
D".

Definition 8 [Consistent Answer] Given a query q to a peer
Pi, a ground tuple t is in consistent answer iff t is an answer to
q in every possible acquaintee solution r wrt Σi.

The definition of acquaintee solution for Pi may suggest that Pi
can physically change data of other peers and if required
modify its own data at query time, but this is not applicable in
a peer to peer context. First, because sources are
semiautomatic, and the cost in terms of human involvement
may become prohibitive. Second, because sources are
autonomous, and may therefore refuse to be modified the data.
Actually, the notion of solution is used as an auxiliary notion
to characterize the semantically correct answers from Pi's point
of view. Ideally, Pi should be able to obtain consistent answers
just by querying the already available local instance and
instances of acquaintees which may be inconsistent wrt data
sharing constraints.

There are mechanisms [11], [12], [13] for computing
consistent answers in peer data exchange settings that avoid or
minimize the physical generation of repairs. In this paper, we
show how to achieve consistent answers of queries in a value-
mapped data sharing system where peers are related with
value-level constraints. In particular, we propose an approach
such that, given a query q at a peer, it generates the consistent
answers directly from peer databases in the system that
possibly may be inconsistent wrt constraints.

Example 2 Consider the setting in Example 2. Assume a query
is posed to P1. Therefore, it has to return results from its
database instance and also from the instance of P2. Note that
the data that is received from P2 must satisfy Σ12. For checking
satisfaction, P1 will ask P2 for its data. If P2 has data sharing
constraints with any other peer then P2 will ask data from
those peers. In this example, since P2 has no data sharing
constraints with other peers, it will return to P1 its data. Now
P1 will resolve inconsistency wrt Σ12. Here, the data in P1
together with the data in P2 do not satisfy the first mapping
table. For instance, value a2 of attribute X in the second tuple
in R2 does not satisfy m1, although value b1 maps with a data
b1′ through mapping table m2. In general, such an
inconsistency could be solved by performing repairs. During
the repair a peer can generate multiple solutions. A consistent
answer is an answer that appears in every solution. Hence, in
this example, we could have two solutions using repairs for
making databases in P1 and P2 consistent wrt Σ12. First,
virtually adding < a2′, b1′,d2 > into R1 and inserting < a2′, a2 >
in m1. Note that a2′ is a value in dom(X′). There could be
another solution by removing < a2, b1,c2 > from R2. In this

case, there are two solutions (instance) wrt to P1. The
solutions are shown in Figure 3 and Figure 4.

Now consider a query q1(X′,Y′,W): R1(X′,b1′,W) that is posed to
P1. In usual case, the answers to the query will be { < a1′,b1′,d1
> }, { < a1,b1,c1 > , < a2,b1,c2 > }. The answer is produced
form the answer of P1 and P2. The answer returned by P2 is {
< a1,b1,c1 > , < a2,b1,c2 > }. Note that in order to execute the
query q1 at P2, it must be transformed in terms of the
vocabularies of P2, which is q2(X,Y,Z): R2(X,b1,Z). Authors
in [2] show an algorithm for such a translation. However, we
observe that the answer is not consistent wrt Σ12 since the
tuple < a2,b1,c2 > } does not satisfy m1 in Σ12. However, the
expected consistent answer to the query would be { < a1′,b1′,d1
> },{ < a1,b1,c1 > }, since both the tuples exit in the solutions 1
and 2.

Note that the results returned from peers are shown in different
set due to different data vocabularies of peers.

Figure 3. Solution 1

Figure 4. Solution 2

In static environments, data sources are populated only after
the schemas and mappings have already been designed.
Therefore, it is possible to guarantee that data remains
consistent. However, in a dynamic environment, e.g. peer data
sharing systems, data in sources are not static and mappings
can be changed. Therefore, two sources may be inconsistent
wrt the constraints between them. Hence, if a query is asked at
a peer then what should be the answer wrt inconsistent state?
In the following example, we describe the semantics of
consistent query answering during the change of mappings
between peers.

ISSN : 0975-3397 3056

Mehedi Masud et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3053-3059

Example 3 Consider a peer data sharing system with three
peers P1, P2, and P3 with schemas R1(A1,B1), R2(A2,B2), and
R3(A3,B3), respectively. Consider the instances of the peers as
follows:
P1: {R1(a1,b1), R1(a3,b3)},
P2:{R2(a1

2,b1
2), R2(a2

2,b1
2), R2(a5

2,b5
2)},

P3: {R3(a1
3,b3)}

Also assume that the system has the data sharing constraints
as follows:

Σ12={m1(A1,A2), m2(B1,B2)},Σ13 = {m3(A1,A3)}.
Assume that the mapping tables are populated as follows:
[{m1(a1,a1

2)}, {m2(b1,b1
2)}], [{m3(a1,a1

3)}]
Considering the acquaintances, the global instance from P1's
view is as follows:
r = [{R1(a1,b1), R1(a3,b3)}, {R2(a1

2,b1
2),

R2(a2
2,b1

2), R2(a5
2,b5

2)},{R3(a1
3,b3)}]

The solutions from P1's view are the solutions that satisfy Σ12
and Σ13. Note that solutions are obtained by repairing r wrt
the data sharing constraints Σ12 and Σ13. Considering Σ12, we
obtain following two repairs:
r1 = [{R1(a1,b1)}, {R2(a1

2,b1
2)},{R3(a1

3,b3)}] and
 r2 = [{R1(a1,b1),R1(a,b1)}, {R2(a1

2,b1
2),

R2(a2
2,b1

2)}, {R3(a1
3,b3)}]

In the first repair, tuples R1(a3,b3), R2(a5

2,b5
2) are removed

from r since they do violate Σ12. The tuple R2(a2
2,b1

2) is also
removed since it does not satisfy first constraint in Σ12.
However, in the second repair, tuple R2(a2

2,b1
2) is considered

since it satisfies the second constraint in Σ12. For considering
R2(a2

2,b1
2), we need to add a tuple R1(a, b1) in R1 and a

mapping (a,a2
2) in m1. Note a ∈ dom(A1).

Now, we need to do repairs r1 and r2 wrt Σ13 (but keeping Σ12
satisfied). From r1 we get only one repair as follows:
r3 = [{R1(a1,b1)}, {R2(a1

2,b1
2)}, {R3(a1

3,b3)}]

Similarly, from r2, we get the following repair
r4 = [{R1(a1,b1),R1(a,b1)}, {R2(a1

2,b1
2),

R2(a2
2,b1

2)},{R3(a1
3,b3)}]

Therefore, with respect to Σ12 and Σ13, we have two solutions
{r3, r4} for peer P1 considering its acquaintees.

Consider a query q(A1,B1): R1(A1,B1) at P1. The only consistent
answer to the query q is [{R1(a1,b1)}, {R2(a1

2,b1
2)},

{R3(a1
3,b3)}].

Now assume that a design decision has been made that the
information between P1 and P3 should be synchronized
corresponding to the attribute B1 and B3. Therefore, a new
identity mapping table m4(B1,B3) has been introduced and
added to Σ13. We can represent the new constraint with the
following formula.

m3(A1,A3)∧R1(A1,B1) ∧R3(A3,B3)→ B1=B3

Notice that P1 and P3 are now inconsistent wrt the new
constraint. For instance, before adding mapping table m4,
tuple < a1, b1 > in R1 and < a1

3, b3 > were related wrt m3
although the tuples have different values in attributes B1 and
B3. This is because, there is no constraint on the values of B1
and B3. But, after adding the new constraint, values of B1 and
B3 should be equal but they have different values. If the
previous query q is asked at P1, then what should be the
answer. The traditional approach to deal this situation is data
cleaning [6]. Data cleaning techniques are often not
applicable in our context. First, because sources are
semiautomatic, and the cost in terms of human involvement
may become prohibitive when the cleaning has to be done
every time the constraint changes. Second, because sources
are autonomous, and may therefore refuse to be "cleaned" just
because of changes in the mappings. However, we achieve
consistent answers without physically cleaning the sources
using the notion of repairs as discussed before.

For example, if the query q is applied to P1, q should return
[{R1(a1,b1)}, {R2(a1

2,b1
2)}, {R3(a1

3,b3)}]. Note that the tuples
{R1(a1,b1)}, {R3(a1

3,b3)} are inconsistent wrt the new
constraint. Now we have two solutions. Either we remove
{R1(a1,b1)} or {R3(a1

3,b3)} from the answer. However, we can
not remove {R1(a1,b1)} since Σ12 will be violated. Therefor, the
consistent answer is [{R1(a1,b1)}, {R2(a1

2,b1
2)}].

We can achieve the consistent answer considering the repair
concepts. Consider the repairs r1 and r2 that we obtained in
example 3 that already satisfy Σ12. Now, if we apply new Σ13
then we get the following two repairs.

From r1 we get only one repair which is r3 = [{R1(a1,b1)},
{R2(a1

2,b1
2)}].

Notice that only the tuple R3(a1

3,b3) violates Σ13. We could also
delete R1(a1,b1) but this leads to violation of Σ12. Similarly,
from r2, we get the repair
r4 = [{R1(a1,b1),R1(a,b1)}, {R2(a1

2,b1
2), R2(a2

2,b1
2)}].

This repair is obtained by deleting the tuple R2(a1

3,b3) since it
violates Σ13. Therefore, considering Σ12 and Σ13, we have two
solutions {r3, r4} for P1 wrt to its acquaintees.

Consider the last query q at P1. The only consistent answer
to the query q is [{R1(a1,b1)}, {R2(a1

2,b1
2)}].

IV. COMPUTING CONSISTENT ANSWERS

When a query is posed to a peer Pi (called initial peer), the
query should be processed appropriately in the system in order
to gather data distributed across different peers to build a
solution instance for Pi and return consistent answers. There
are two phases to return consistent answers to a query. First is
the query translation and propagation phase and second is the
solution building phase. In the first phase, the initial peer
executes the query in a straight forward fashion and
propagates the query to its acquainted peers after translation

ISSN : 0975-3397 3057

Mehedi Masud et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3053-3059

wrt the vocabularies of the acquainted peers. The query
translation is required since users submit queries wrt the
schema of the local peer. In translation, the query is defined
into a compatible form for the schema and data vocabularies
of acquaintees. For translating queries between peers, we can
use the query translation algorithm that is proposed in [2].
However, here we mainly discuss how to achieve consistent
answers. When an acquaintee receives the query it also
performs the same task, i.e., local execution, translation, and
propagation. The local execution of the query and its
translation and propagation to other peers goes on parallel.
Note that the solution instances for the initial peer will be
determined not only by its relationships with its acquaintees,
but also by the acquaintees of its acquaintees, etc. This is a
recursive process since the solutions for the acquaintees have
to be determined first. Base cases of the recursion are peers
those have no acquaintees to forward the query i.e., the peers
have no data sharing constraints with any other peer. We call
these peers terminate peers. Therefore, the query is propagated
from the initial peer to all accessible peers that are relevant to
the query until the query propagation ends at terminate peers.
The solution building phase starts at terminate peers and ends
at initial peer. In the solution building phase, each peer in a
query propagation path receives consistent answers from it's
acquaintees where the query is propagated. After receiving
consistent answers from all acquaintees, a peer builds its
solution, called acquaintee solution that satisfies the data
sharing constraints of the peer's acquaintees.

After building the solution, consistent answers are produced
and the result is propagated to the peer that has forwarded the
query. This back propagation of consistent answers continues
until the initial peer receives results from the acquaintees
where the query is initially forwarded. When the initial peer
receives data from the acquaintees it builds its own solution
instances and returns the consistent answers to the user who
initiated the query.

The solutions for a peer are used as a conceptual, auxiliary
tool to characterize the consistent answers of a query [12]
[13]. It is not practical to build a solution like this since peers
are autonomous and heterogeneous. A solution for a peer Pi is
a closest database that satisfies Pi′s data sharing constraints.
Solutions are virtual and the solution concept is used logically
to find consistent answers. In order to return consistent
answers, each peer follows the steps below.
1. When a peer receives results from peers then the peer
performs outer union of the results. Since data vocabularies of
peers are different, it is not feasible to merge the results in a
common format.
2. Applies the constraints on each of the results and filters the
results that satisfy the relevant mapping tables.
3. Passes the results to the sender of the query.
We illustrate the process with an example.

Example 4 Consider the peer data sharing setting in
example 3 and the query q(A1,B1): R1(A1,B1) at P1. According
the algorithm [2], the query will be translated for P2 and P3 as
q2(A2,B2): R2(A2,B2) and q3(A3,B3): R3(A3,B3), respectively. P1
now forwards q2 to P2 and q3 to P3. Since P2 and P3 have no
acquaintees then the propagation of q terminates. Now P2 and
P3 executes queries q2 and q3 in their local databases and send
results to P1. P1 receives the results r2 = {R2(a1

2,b1
2),

R2(a2
2,b1

2), R2(a5
2,b5

2)} from P2 and r3={R3(a1
3,b3)} from P3.

Moreover, the local results produced by P1 is r1={R1(a1,b1),
R1(a3,b3)}.

Now P1 applies the data sharing constraints over the results
in order to produce consistent answers. First P1 resolves
inconsistencies of the results between r1 and r2. The
inconsistencies are resolved by applying the value-level
constraints in the relevant mapping tables. A mapping table
m(X,Y) is relevant to q if X ⊆ att(q), where att(q) denotes the
set of attributes in query q. Hence, the relevant mapping tables
for the query q are m1 and m2 since A1 ⊆ att(q) and A2 ⊆
att(q). If the mapping tables are applied to filter results then we
obtain the consistent result r12=[{R1(a1,b1)}, {R2(a1

2,b1
2)}] from

P1 and P2. Now P1 resolves inconsistencies between the results
r1 and r3. The relevant mapping table is m3. P1 applies m3 on
the results r1 and r3 and obtains the consistent result
r13=[{R1(a1,b1)}, {R3(a1

3,b3)}] from P1 and P3. Therefore, the
final consistent answer is [{R1(a1,b1)}, {R2(a1

2,b1
2)},

{R3(a1
3,b1

3)}]. Now consider the case when a new mapping
table m4 between P1 and P3 is introduced. In this case, tuple
R3(a1

3,b3) is deleted from r3. Therefore, the consistent answer is
[{R1(a1,b1)}, {R2(a1

2,b1
2)}] considering the change of mappings.

V. RELATED WORK

There is an increasing interest in the creation of peer data
management systems [3], [16], [17] which includes
establishing and maintaining mappings between peers and
processing of queries using appropriate propagation
techniques. However, the systems do not consider the case of
obtaining consistent answers to queries in the presence of the
situations where peers may be inconsistent wrt mappings. The
inconsistent situations are very common in peer data
management systems since peers are autonomous and store
data independently. Moreover, mappings may be changed in
time. Therefore, it is necessary to find an approach to obtain
consistent answers of queries in the systems without changing
the physical data in peers to solve inconsistencies.

Authors in [12], [13] introduced a semantics for obtaining
consistent answers in peer data exchange systems. The
semantics utilize the concepts of repair [9] semantics that is
proposed to obtain consistent answers in inconsistent
databases. Our work also goes in this direction. However, we
consider a system where peers are related with value-level
constraints that are created by mapping tables [1]. Authors
in [2] proposed a query translation algorithm considering that
the peers are related with value-level constraints. However, the

ISSN : 0975-3397 3058

Mehedi Masud et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 3053-3059

authors do not consider the case of consistent query
answering.

VI. RELATED WORK

We have presented an approach for obtaining consistent
answers of queries in a peer data sharing system. In our
framework, each peer solves data inconsistencies at query
time. The inconsistency results when data in peers do not
satisfy mappings in mapping tables or when mapping are
changed. Therefore, our semantics allows inconsistencies
between peers. In our system, we consider that peers are
related with value level constraints. We assume that
acquaintance graph is acyclic. However, our future goal is to
analyze the approach in the presence of cycles in mappings.
Moreover, we like to implement and investigate our approach
in a large peer data sharing system.

REFERENCES
[1] A. Kementsietsidis, M. Arenas, and R.J. Miller. Mapping Data in Peer-

to-Peer Systems: Semantics and Algorithmic Issues. In SIGMOD, 2003.

[2] A. Kementsietsidis and M. Arenas. Data Sharing Through Query
Translation in Autonomous Sources. In VLDB, pages 468-479, 2004.

[3] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R.J. Miller, and J.
Mylopoulos. The Hyperion Project: From Data Integration to Data
Coordination. In SIGMOD RECORD, 2003.

[4] P. Rodriguez-Gianolli, M. Garzetti, L. Jiang, A. Kementsietsidis, I.
Kiringa, M. Masud, R. Miller, and J. Mylopoulos. Data Sharing in the
Hyperion Peer Database System. In VLDB, 2005.

[5] M. Lenzerini. Data Integration: A Theoretical Prespective. In PODS,
2001.

[6] M Bouzeghoub and M Lenzerini. Introduction to the special issue on
data extraction, cleaning, and reconciliation In Information Systems,
26(8):535-536, 2001.

[7] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, and J. Mylopulos. Data
management for peer-to-peer computing: A vision. In WebDB, 2002.

[8] L. Serafini, F. Giunchiglia, J. Molopoulos, and P. Bernstein. Local
Relational Model:A Logocal Formalization of Database Coordination.
Technical Report, Informatica e Telecomunicazioni, University of
Trento, 2003.

[9] M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query Ansers in
Inconsistent Databases. In PODC, 1999

[10] L. Bertossi and J. Chomicki. Query Answering in Inconsistent
Databases. In Logics for Emerging Applications of Databases., 2003.

[11] L. Bertossi and L. Bravo. Information Sharing Agents in a Peer Data
Exchange System. In Proc. First International Conference on Data
Management in Grid and P2P Systems (Globe), 2008

[12] L. Bertossi and L. Bravo. The Semantics of Consistency and Trust in
Peer Data Exchange Systems. In Proc. International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR),
2007.

[13] L. Bertossi and L. Bravo. Query Answering in Peer-to-Peer Data
Exchange Systems In Proc. International (EDBT) Workshop on Peer-to-
Peer Computing and DataBases (P2P&DB), 2004

[14] R. Fagin, P. Kolaitis, R. J. Miller, and L.Popa. Data exchange:
Semantics and query answering. In Theoretical Computer Science, 2005.

[15] A. Fuxman, P. Kolaitis, R. Miller, and W. Tan. Peer data exchange. In
PODS, 2005.

[16] I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi, and
X. Dong. The piazza peer data management project. In ICDE, 2003.

[17] W. S. Ng, B. C. Ooi, K. L. Tan, and A. Y. Zhou. PeerDB:A p2p-based
system for distributed data sharing. In Data Engineering, 2003.

ISSN : 0975-3397 3059

