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Abstract— In this paper, we study the problem of consistent 
query answering in peer data sharing systems. In a peer data 
sharing system, databases in peers are designed and administered 
autonomously and acquaintances between peers are established 
thorough data sharing constraints. Since data are managed in 
peer databases autonomously, peers' data may be inconsistent 
with respect to the data sharing constraints. Inconsistencies of 
data may also result due to the change of constraints (e.g. adding, 
modifying, and deleting constraints between peers). In order to 
solve inconsistencies between peers, one possible solution could be 
modify data physically in inconsistent peers by propagating 
updates. However, it is not always feasible to change data 
physically in peers since peers are autonomous and a peer may 
not have permission to modify other peers' data. Considering the 
possible inconsistent situations, this paper presents a semantics of 
obtaining consistent answers in a peer data sharing system such 
that the answers are consistent wrt to data sharing constraints. 
Consistent answers are obtained at query time by avoiding the 
inconsistent data. The paper also shows a method to achieve 
consistent answers of a query.  
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I.  INTRODUCTION 

Typical data integration [5] and data exchange settings [12], 
[14], [15], we are often dealing with one world, for example, a 
set of sources all containing information about videos or music 
files. Hence, data integration or data exchange between data 
sources is provided mainly through the use of views or schema 
mappings, i.e., queries that map and restructure data between 
schemas. However, in data sharing systems [3], [4], [8] 
sources may represent different worlds with different schemas 
and data vocabularies, and the real world entities denoted by 
different symbols in different sources may be semantically 
related [7]. In order to share data between peers in a data 
sharing system, semantic relationships are created. For 
creating semantic relationships, a possible solution is to create 
a domain relation [8] through value correspondences or value-
level mappings [1] between sources since data vocabularies 
are different in peers. The value-level mappings map the data 
elements of a source domain to the data elements of another 
source domain. Once the semantic relationships are 
established, answers to a query posed to a peer in the system is 
obtained by translating the query in terms of the vocabularies 

of the semantically related peers and propagating and 
executing the query into the peers.  

 
Authors in [3], [4] introduced a value-mapped peer data 

sharing system, called Hyperion, considering the value-level 
mappings between peers. The value-level mappings are 
created by the use of mapping tables [1], which map 
corresponding data values, logically tuples, that reside in 
different peers. Mapping tables also bridge the differences of 
data vocabularies as well as impose data sharing constraints 
between peers. Query answering mechanism in such a system 
specifies a query posed to a peer's instance is applied to the 
peer's local database instance and the query is propagated to 
all other related peers for accumulating related data. Authors 
in [2] proposed a query translation mechanism between peers 
in a value-mapped peer data sharing system, however, they did 
not consider consistent query answering in the system.  
 

In this paper, we investigate a consistent query answering 
mechanism and present a semantics of obtaining consistent 
answers in a value-mapped peer data sharing system. We also 
present a technique for obtaining consistent answers. Note that 
data in peers may be inconsistent wrt the mappings, 
meanwhile, peers are consistent wrt their local integrity 
constraints. Moreover, data and mappings may be updated in 
peers in course of time which can make the data in related 
peers inconsistent wrt the new mappings, although, peers were 
consistent before the occurrence of the updates. Since peers 
are autonomous in peer data sharing systems, it is not feasible 
to modify the data and mappings physically in related peers to 
solve inconsistencies between peers. Moreover, a peer may not 
have permission to modify other peers' data. Considering these 
inconsistent situations, we present a semantics of query 
answering that characterize what are the intended and correct 
answers to a query posed to and answered by a value-mapped 
peer data sharing system. Basically, we adopt a semantics for 
consistent query answering in consistent databases that was 
originally introduced by Arenas et al. [9]. We extend the 
semantics to be used in a peer data sharing system that is 
characterized by defining a set of virtual global instances 
called solutions for a peer where a query originates. A solution  
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Figure 1.  Instances of peers P1 and P2 

Figure 2.  Mapping tables 

for a peer is an intended global instance that respects the 
mappings with its acquainted peers. After having a definition 
of the intended solutions for a peer, the consistent answers to a 
query in a peer are those that are certain [10] in every possible 
solution.  

The paper is structured as follows. Section 2 presents the 
technical preliminaries and presents a model of data sharing 
systems. Section 3 explains the semantics of consistent 
answering of queries in data sharing systems. In Section 4, we 
show the process of obtaining consistent answers, and Section 
5 discusses related work. Finally, the paper concludes with 
some future directions. 

II. TECHNICAL PRELIMINARIES AND SYSTEM MODEL  

Attributes are symbols taken from a given finite set 
U={A1,…,Aq} called the universe. We use the letters A, B, C, 
… to denote single attributes and X, Y, … to denote sets of 
attributes. Each attribute Aj is associated with a set of values 
called the domain of Aj and is denoted by dom(Aj). If 
X={A1,A2,…,Ak}U, then dom(X) 
dom(A1)×dom(A2)×…×dom(Ak). A non-empty subset of U is 
called a relation schema R. A database schema is a finite 
collection R = (R1,…,Rm) of relation schemas. A tuple t with 
attribute X is a X-value. A relation is a set of tuples. We shall 
use ri to denote a relation that interpreters Ri. An instance I 
over R is a function that associates to each relation schema Ri 
a relation ri=I(Ri). For a tuple t and a set Y ⊆ U, we denote 
the restriction of t to Y by t[Y].  
 
Data sharing constraints in data sharing systems impose 
constraints on data values by associating values between two 
sources, where databases may use different vocabularies and 
different domains. Intuitively, the associations of values create 
a domain relation between two semantically related domains 
and relate data objects (tuples) to be shared between peers. 

Authors in [1] show how to create data sharing constraints by 
using mapping tables. A mapping table, denoted m(X,Y), 
simply is a relation over the attributes X and Y. A tuple (x, y) 
in m(X,Y) indicates a mapping that the value x ∈ dom(X) is 
associated with the value y ∈ dom(Y). Formally, a mapping 
over a set of attributes U of X∪Y, alternatively called a tuple 
t, in a mapping table represents that for each A ∈ U, t[A] is 
either a constant in dom(A), a variable in V or an expression 
of the form v−S, where v ∈ V and S is a finite subset of 
dom(A) [1].  
 
Note that a tuple in a mapping table may contain constants or 
variables. The variables are used to increase expressiveness 
power of mapping tables. Given the presence of variables in 
mappings, it is necessary to introduce the notion of a 
valuation. A valuation ρ over a mapping table m is a function 
that maps each constant value in m to itself and each variable 
v of m to the value in the intersection of the domains of the 
attributes where v appears [1]. Furthermore, if v appears in an 
expression of the form v-S, then ρ(v) ∉ S. In general, if there 
are multiple mapping tables M={m1,m2,…,mk} then we can 
combine the tables into a single mapping table using the ∧-
operator [1]. Therefore, we can apply the valuation ρ on M 
which we represent as ρ(m1,m2,…,mk). Since a mapping table 
m from X to Y associates values from dom(X) to dom(Y), we 
can determine the set of Y−values with which a particular 
value x ∈ dom(X) is associated by the following definition. 
  
Definition 1 [Y−values] Let m be a mapping table from X to 
Y. We define Y−values, denoted as Ym(x), with which a 
particular value x ∈  dom(X) is associated as follows: 
Ym(x)={y|∃t ∈ m and there exists valuation ρ over m such 
that ρ(t[X])=x and ρ(t[Y])=y} 
 
We now explain how a mapping table creates valid 
associations of tuples between two relations. Consider 
relations r1 and r2 with relation schemas R1[U1] and R2[U2], 
respectively, and also consider a mapping table m(X,Y) from 
X to Y, where X ⊆ U1 and Y ⊆ U2. Consider a relation r12, 
where r12=r1×r2. We say that a tuple t12 in r12 associates a tuple 
t1 ∈ r1 to a tuple t2 ∈ r2 if there is a valuation ρ over m such 
that t12[X] ∈ πX(ρ(m)) and t12[Y] ∈ πY(σX=t12[X](ρ(m))). The 
intuition behind this association of tuples is that a tuple t1 ∈ r1 
such that t1[X]=x is associated with respect to the mapping 
table m(X,Y), only the tuples t2 ∈ r2 for which t2[Y] ∈ Ym(x). 
Therefore, we can consider the mapping table m as a condition 
to filter relation r12 that is subset of r12 contains only the tuples 
that m associates the tuples of relations r1 and r2.  
 
Now we show how a mapping table associates data values 
between two peers Pi and Pj. Assume two relations ri and rj in 
peers Pi and Pj with schemas Ri[Ui] and Rj[Uj], respectively 
and a mapping table m(X,Y) over the attributes X ⊆ Ui and Y 
⊆ Uj. A mapping (x, y) in m indicates that a tuple t ∈ ri such 
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that t[X]=x is associated with a tuple t′ ∈ rj such that t′[Y]=y. 
Considering the existence of mapping tables between peers, 
we now define the data sharing constraints between peers.  
 
Definition 2 [Data Sharing Constraint] A data sharing 
constraint Σij between two peers Pi and Pj in a value-mapped 
peer data sharing system is a set of mapping tables {m1,m2,…, 
mk}. Existence of a mapping table mi ∈ Σij between peers Pi 
and Pj has the following logical implication:  
∀XY (mi(X,Y)→ ∃ZR(X,Z)∧∃WQ(Y,W)) 
Here, R, Q are relations in Ri and Rj of Pi and Pj, respectively. 

 

Example 1 Consider Figure  where two peers P1 and P2 
with relational schemas R1={R1(X′,Y′,W)}, R2={R2(X,Y,Z)}. 
Assume that P1 is connected to peer P2 by the data sharing 
constraint Σ12={m1(X′,X),m2(Y′,Y)}. The first mapping table 
expresses that a tuple t′ in R2 is related to a particular tuple t in 
R1 wrt m1 such that t[X′] ∈ πX′((m1)) and t′[X] ∈ Ym1(t[X′]). 
Hence, from Figure 1, we observe that the tuple t=(a1′,b1′,d1) is 
related to the tuple t′=(a1,b1,c1) wrt m1. Moreover, t=(a1′,b1′,d1) 
is related to the tuples t′1=(a1,b1,c1) and t′2=(a2,b1,c2) wrt m2. 
However, if we count both m1 and m2, tuple t is only related to 
the tuple t′1 since only for t we have t[X′,Y′] ∈ πX′,Y′((m1,m2)) 
and t′[X] ∈ Ym1(t[X′]) and t′[Y] ∈ Ym2(t[Y′]). 

A. Data Sharing System  

A value-mapped peer data sharing system is a set P = {P1, 
P2,…, Pn} of n peers with autonomous pre-existing local 
database systems (LDBSs). Each peer Pi, 1 ≤ i ≤ n, has its own 
database denoted Di with its own schema Ri. We assume that 
each peer Pi is responsible for maintaining its database 
consistent with respect to its local integrity constraints, 
independently from other peers.  
 
We now define the notions of a peer and a peer data sharing 
system.  
 
Definition 3 [Peer] A peer Pi in a peer data sharing system N 
consists of:  

 a database Di with its own schema Ri.  

 a set of local integrity constraints ICi on Di.  

 a finite set of data sharing constraints from Pi to its 
neighbor Pj, denoted by Σij. The set of data sharing 
constraints in Pi for all of its neighbors Pj ∈ P is 
denoted by Σi, where Σi = ∪PjΣij. 

 
Definition 4 [Peer Data Sharing System] A peer data sharing 
system N= < P, Σ > consists of:  

 a finite set P={P1,P2,…,Pn} of peers, and  

 a set Σ = {Σ1,Σ2,…,Σn} of data sharing constraints. 

Since mappings are created pairwise in a peer data sharing 
system, logically, a semantic graph is created that we call an 
acquaintance graph. Formally, an acquaintance graph is a 
graph ΓN=(V, ACQ), where V is a set of vertices and ACQ ⊆ 
P ×P is a set of direct edges such that every edge (Pi, Pj) ∈ 
ACQ, i ≠ j, is associated with data sharing constraints Σij. A 
peer Pj is called an acquaintee of a peer Pi in an acquaintance 
graph N if there exists an edge from Pi to Pj in ΓN; N(Pi) denotes 
the set of acquaintees of Pi. The notion of acquaintees 
represents the direct links between two peers. However, two 
peers in N may be linked indirectly by a path of peers. 
Therefore, from a specific peer a request can propagate to a set 
of peers that are related indirectly to that peer. The set of peers 
that are linked directly or indirectly to a peer are called 
accessible peers for that peer. Formally, a peer Pj is accessible 
from a peer Pi in N if there is a path in ΓN from Pi to Pj; A(Pi) 
denotes the set of accessible peers of Pi.  

III. CONSISTENT QUERY ANSWERING  

In a data sharing system, when a peer Pi receives a query from 
its users it answers the query both from its own data and the 
data stored at its acquaintees Pj ∈ N(Pi). The decision by Pi on 
what data it receives from an acquaintee Pj depends on the 
data sharing constraints Σij. When Pi receives data form an 
acquaintee Pj, Pi repairs its own data for solving 
inconsistencies wrt to the data sharing constraints Σij. The 
formal definition of repair of a database D is the following.  
 
Definition 5 [Repair [9]] Let D be a database with integrity 
constraints IC. We say that a database D′ is a repair of D with 
respect to IC if:  

 D′╞ IC, and  

 there is no repair database D" such that D"╞ IC and 
(D,D") ⊂  (D,D′), where  (D,D′)=(D−D′) ∪
(D′−D) is the symmetric differences (also called 
distance) between two databases D and D′. 

This repair concept is originally developed in the area of 
consistent query answering in an inconsistent database. The 
repair of an inconsistent database D can produce multiple 
solutions. The semantics of query answering is given in terms 
of consistent answers, which we present next.  
 
Definition 6 [Consistent Answers [9]] Let D be database and 
IC be a set of integrity constraints. Let q be a query over D. 
We say that a tuple t is a consistent answer to q wrt IC if t is 
an answer to query q in every repair D′ of D wrt IC. 
 
In a data sharing system, the repair of data at Pi with the data 
of its acquaintees Pj ∈ N(Pi) creates a solution instance, called 
acquaintee solution, that satisfies the data sharing constraint 
Σij.  
 
Definition 7 [Acquaintee Solution] Let P be a data sharing 
system. Consider a peer Pi in P with a database Di and D′ is a 
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database instance on schema ∪Pj ∈ N(Pi)Rj. Let D" is a repair 
on database instance Di∪D′ wrt ∪ Pj ∈  N(Pi)Σij. D" is an 
acquaintee solution for Pi if: (a) D"╞∪Pj ∈  N(Pi)Σij and (b) 
there is no instance D"′ that satisfies (a) and such that D"′ ⊂ 
D". 
 
Definition 8 [Consistent Answer] Given a query q to a peer 
Pi, a ground tuple t is in consistent answer iff t is an answer to 
q in every possible acquaintee solution r wrt Σi. 
 
The definition of acquaintee solution for Pi may suggest that Pi 
can physically change data of other peers and if required 
modify its own data at query time, but this is not applicable in 
a peer to peer context. First, because sources are 
semiautomatic, and the cost in terms of human involvement 
may become prohibitive. Second, because sources are 
autonomous, and may therefore refuse to be modified the data. 
Actually, the notion of solution is used as an auxiliary notion 
to characterize the semantically correct answers from Pi's point 
of view. Ideally, Pi should be able to obtain consistent answers 
just by querying the already available local instance and 
instances of acquaintees which may be inconsistent wrt data 
sharing constraints.  
 
There are mechanisms [11], [12], [13] for computing 
consistent answers in peer data exchange settings that avoid or 
minimize the physical generation of repairs. In this paper, we 
show how to achieve consistent answers of queries in a value-
mapped data sharing system where peers are related with 
value-level constraints. In particular, we propose an approach 
such that, given a query q at a peer, it generates the consistent 
answers directly from peer databases in the system that 
possibly may be inconsistent wrt constraints.  
 
Example 2 Consider the setting in Example 2. Assume a query 
is posed to P1. Therefore, it has to return results from its 
database instance and also from the instance of P2. Note that 
the data that is received from P2 must satisfy Σ12. For checking 
satisfaction, P1 will ask P2 for its data. If P2 has data sharing 
constraints with any other peer then P2 will ask data from 
those peers. In this example, since P2 has no data sharing 
constraints with other peers, it will return to P1 its data. Now 
P1 will resolve inconsistency wrt Σ12. Here, the data in P1 
together with the data in P2 do not satisfy the first mapping 
table. For instance, value a2 of attribute X in the second tuple 
in R2 does not satisfy m1, although value b1 maps with a data 
b1′ through mapping table m2. In general, such an 
inconsistency could be solved by performing repairs. During 
the repair a peer can generate multiple solutions. A consistent 
answer is an answer that appears in every solution. Hence, in 
this example, we could have two solutions using repairs for 
making databases in P1 and P2 consistent wrt Σ12. First, 
virtually adding < a2′, b1′,d2 > into R1 and inserting < a2′, a2 > 
in m1. Note that a2′ is a value in dom(X′). There could be 
another solution by removing < a2, b1,c2 > from R2. In this 

case, there are two solutions (instance) wrt to P1. The 
solutions are shown in Figure 3 and Figure 4.  
 
Now consider a query q1(X′,Y′,W): R1(X′,b1′,W) that is posed to 
P1. In usual case, the answers to the query will be { < a1′,b1′,d1 
> }, { < a1,b1,c1 > , < a2,b1,c2 > }. The answer is produced 
form the answer of P1 and P2. The answer returned by P2 is { 
< a1,b1,c1 > , < a2,b1,c2 > }. Note that in order to execute the 
query q1 at P2, it must be transformed in terms of the 
vocabularies of P2, which is q2(X,Y,Z): R2(X,b1,Z). Authors 
in  [2] show an algorithm for such a translation. However, we 
observe that the answer is not consistent wrt Σ12 since the 
tuple < a2,b1,c2 > } does not satisfy m1 in Σ12. However, the 
expected consistent answer to the query would be { < a1′,b1′,d1 
> },{ < a1,b1,c1 > }, since both the tuples exit in the solutions 1 
and 2. 
 
Note that the results returned from peers are shown in different 
set due to different data vocabularies of peers.  

 
Figure 3.  Solution 1 

Figure 4. Solution 2 
 
In static environments, data sources are populated only after 
the schemas and mappings have already been designed. 
Therefore, it is possible to guarantee that data remains 
consistent. However, in a dynamic environment, e.g. peer data 
sharing systems, data in sources are not static and mappings 
can be changed. Therefore, two sources may be inconsistent 
wrt the constraints between them. Hence, if a query is asked at 
a peer then what should be the answer wrt inconsistent state? 
In the following example, we describe the semantics of 
consistent query answering during the change of mappings 
between peers.  
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Example 3 Consider a peer data sharing system with three 
peers P1, P2, and P3 with schemas R1(A1,B1), R2(A2,B2), and 
R3(A3,B3), respectively. Consider the instances of the peers as 
follows: 
P1: {R1(a1,b1), R1(a3,b3)}, 
P2:{R2(a1

2,b1
2), R2(a2

2,b1
2), R2(a5

2,b5
2)}, 

P3: {R3(a1
3,b3)} 

Also assume that the system has the data sharing constraints 
as follows:  

Σ12={m1(A1,A2), m2(B1,B2)},Σ13 = {m3(A1,A3)}. 
Assume that the mapping tables are populated as follows: 
[{m1(a1,a1

2)}, {m2(b1,b1
2)}], [{m3(a1,a1

3)}]  
Considering the acquaintances, the global instance from P1's 
view is as follows: 
r = [{R1(a1,b1), R1(a3,b3)}, {R2(a1

2,b1
2), 

R2(a2
2,b1

2),         R2(a5
2,b5

2)},{R3(a1
3,b3)}] 

The solutions from P1's view are the solutions that satisfy Σ12 
and Σ13. Note that solutions are obtained by repairing r wrt 
the data sharing constraints Σ12 and Σ13. Considering Σ12, we 
obtain following two repairs: 
r1 = [{R1(a1,b1)}, {R2(a1

2,b1
2)},{R3(a1

3,b3)}] and 
 r2 = [{R1(a1,b1),R1(a,b1)}, {R2(a1

2,b1
2), 

R2(a2
2,b1

2)},  {R3(a1
3,b3)}] 

 
In the first repair, tuples R1(a3,b3), R2(a5

2,b5
2) are removed 

from r since they do violate Σ12. The tuple R2(a2
2,b1

2) is also 
removed since it does not satisfy first constraint in Σ12. 
However, in the second repair, tuple R2(a2

2,b1
2) is considered 

since it satisfies the second constraint in Σ12. For considering 
R2(a2

2,b1
2), we need to add a tuple R1(a, b1) in R1 and a 

mapping (a,a2
2) in m1. Note a ∈ dom(A1).  

 
Now, we need to do repairs r1 and r2 wrt Σ13 (but keeping Σ12 
satisfied). From r1 we get only one repair as follows: 
r3 = [{R1(a1,b1)}, {R2(a1

2,b1
2)}, {R3(a1

3,b3)}] 
 
Similarly, from r2, we get the following repair 
r4 = [{R1(a1,b1),R1(a,b1)}, {R2(a1

2,b1
2), 

R2(a2
2,b1

2)},{R3(a1
3,b3)}] 

 
Therefore, with respect to Σ12 and Σ13, we have two solutions 
{r3, r4} for peer P1 considering its acquaintees.  
 
Consider a query q(A1,B1): R1(A1,B1) at P1. The only consistent 
answer to the query q is [{R1(a1,b1)}, {R2(a1

2,b1
2)}, 

{R3(a1
3,b3)}].  

 
Now assume that a design decision has been made that the 
information between P1 and P3 should be synchronized 
corresponding to the attribute B1 and B3. Therefore, a new 
identity mapping table m4(B1,B3) has been introduced and 
added to Σ13. We can represent the new constraint with the 
following formula. 
 
m3(A1,A3)∧R1(A1,B1) ∧R3(A3,B3)→ B1=B3  
 

Notice that P1 and P3 are now inconsistent wrt the new 
constraint. For instance, before adding mapping table m4, 
tuple < a1, b1 > in R1 and < a1

3, b3 > were related wrt m3 
although the tuples have different values in attributes B1 and 
B3. This is because, there is no constraint on the values of B1 
and B3. But, after adding the new constraint, values of B1 and 
B3 should be equal but they have different values. If the 
previous query q is asked at P1, then what should be the 
answer. The traditional approach to deal this situation is data 
cleaning [6]. Data cleaning techniques are often not 
applicable in our context. First, because sources are 
semiautomatic, and the cost in terms of human involvement 
may become prohibitive when the cleaning has to be done 
every time the constraint changes. Second, because sources 
are autonomous, and may therefore refuse to be "cleaned" just 
because of changes in the mappings. However, we achieve 
consistent answers without physically cleaning the sources 
using the notion of repairs as discussed before.  
 
For example, if the query q is applied to P1, q should return 
[{R1(a1,b1)}, {R2(a1

2,b1
2)}, {R3(a1

3,b3)}]. Note that the tuples 
{R1(a1,b1)}, {R3(a1

3,b3)} are inconsistent wrt the new 
constraint. Now we have two solutions. Either we remove 
{R1(a1,b1)} or {R3(a1

3,b3)} from the answer. However, we can 
not remove {R1(a1,b1)} since Σ12 will be violated. Therefor, the 
consistent answer is [{R1(a1,b1)}, {R2(a1

2,b1
2)}].  

We can achieve the consistent answer considering the repair 
concepts. Consider the repairs r1 and r2 that we obtained in 
example  3 that already satisfy Σ12. Now, if we apply new Σ13 
then we get the following two repairs.  
 
From r1 we get only one repair which is r3 = [{R1(a1,b1)}, 
{R2(a1

2,b1
2)}].  

 
Notice that only the tuple R3(a1

3,b3) violates Σ13. We could also 
delete R1(a1,b1) but this leads to violation of Σ12. Similarly, 
from r2, we get the repair  
r4 = [{R1(a1,b1),R1(a,b1)}, {R2(a1

2,b1
2), R2(a2

2,b1
2)}].  

 
This repair is obtained by deleting the tuple R2(a1

3,b3) since it 
violates Σ13. Therefore, considering Σ12 and Σ13, we have two 
solutions {r3, r4} for P1 wrt to its acquaintees.  

Consider the last query q at P1. The only consistent answer 
to the query q is [{R1(a1,b1)}, {R2(a1

2,b1
2)}].  

IV. COMPUTING CONSISTENT ANSWERS  

When a query is posed to a peer Pi (called initial peer), the 
query should be processed appropriately in the system in order 
to gather data distributed across different peers to build a 
solution instance for Pi and return consistent answers. There 
are two phases to return consistent answers to a query. First is 
the query translation and propagation phase and second is the 
solution building phase. In the first phase, the initial peer 
executes the query in a straight forward fashion and 
propagates the query to its acquainted peers after translation 
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wrt the vocabularies of the acquainted peers. The query 
translation is required since users submit queries wrt the 
schema of the local peer. In translation, the query is defined 
into a compatible form for the schema and data vocabularies 
of acquaintees. For translating queries between peers, we can 
use the query translation algorithm that is proposed in [2]. 
However, here we mainly discuss how to achieve consistent 
answers. When an acquaintee receives the query it also 
performs the same task, i.e., local execution, translation, and 
propagation. The local execution of the query and its 
translation and propagation to other peers goes on parallel. 
Note that the solution instances for the initial peer will be 
determined not only by its relationships with its acquaintees, 
but also by the acquaintees of its acquaintees, etc. This is a 
recursive process since the solutions for the acquaintees have 
to be determined first. Base cases of the recursion are peers 
those have no acquaintees to forward the query i.e., the peers 
have no data sharing constraints with any other peer. We call 
these peers terminate peers. Therefore, the query is propagated 
from the initial peer to all accessible peers that are relevant to 
the query until the query propagation ends at terminate peers.  
The solution building phase starts at terminate peers and ends 
at initial peer. In the solution building phase, each peer in a 
query propagation path receives consistent answers from it's 
acquaintees where the query is propagated. After receiving 
consistent answers from all acquaintees, a peer builds its 
solution, called acquaintee solution that satisfies the data 
sharing constraints of the peer's acquaintees.  
 
After building the solution, consistent answers are produced 
and the result is propagated to the peer that has forwarded the 
query. This back propagation of consistent answers continues 
until the initial peer receives results from the acquaintees 
where the query is initially forwarded. When the initial peer 
receives data from the acquaintees it builds its own solution 
instances and returns the consistent answers to the user who 
initiated the query.  
 
The solutions for a peer are used as a conceptual, auxiliary 
tool to characterize the consistent answers of a query [12] 
[13]. It is not practical to build a solution like this since peers 
are autonomous and heterogeneous. A solution for a peer Pi is 
a closest database that satisfies Pi′s data sharing constraints. 
Solutions are virtual and the solution concept is used logically 
to find consistent answers. In order to return consistent 
answers, each peer follows the steps below.  
1. When a peer receives results from peers then the peer 
performs outer union of the results. Since data vocabularies of 
peers are different, it is not feasible to merge the results in a 
common format.  
2. Applies the constraints on each of the results and filters the 
results that satisfy the relevant mapping tables.  
3. Passes the results to the sender of the query.  
We illustrate the process with an example.  
 

Example 4 Consider the peer data sharing setting in 
example 3 and the query q(A1,B1): R1(A1,B1) at P1. According 
the algorithm [2], the query will be translated for P2 and P3 as 
q2(A2,B2): R2(A2,B2) and q3(A3,B3): R3(A3,B3), respectively. P1 
now forwards q2 to P2 and q3 to P3. Since P2 and P3 have no 
acquaintees then the propagation of q terminates. Now P2 and 
P3 executes queries q2 and q3 in their local databases and send 
results to P1. P1 receives the results r2 = {R2(a1

2,b1
2), 

R2(a2
2,b1

2), R2(a5
2,b5

2)} from P2 and r3={R3(a1
3,b3)} from P3. 

Moreover, the local results produced by P1 is r1={R1(a1,b1), 
R1(a3,b3)}.  

Now P1 applies the data sharing constraints over the results 
in order to produce consistent answers. First P1 resolves 
inconsistencies of the results between r1 and r2. The 
inconsistencies are resolved by applying the value-level 
constraints in the relevant mapping tables. A mapping table 
m(X,Y) is relevant to q if X ⊆  att(q), where att(q) denotes the 
set of attributes in query q. Hence, the relevant mapping tables 
for the query q are m1 and m2 since A1 ⊆ att(q) and A2 ⊆ 
att(q). If the mapping tables are applied to filter results then we 
obtain the consistent result r12=[{R1(a1,b1)}, {R2(a1

2,b1
2)}] from 

P1 and P2. Now P1 resolves inconsistencies between the results 
r1 and r3. The relevant mapping table is m3. P1 applies m3 on 
the results r1 and r3 and obtains the consistent result 
r13=[{R1(a1,b1)}, {R3(a1

3,b3)}] from P1 and P3. Therefore, the 
final consistent answer is [{R1(a1,b1)}, {R2(a1

2,b1
2)}, 

{R3(a1
3,b1

3)}]. Now consider the case when a new mapping 
table m4 between P1 and P3 is introduced. In this case, tuple 
R3(a1

3,b3) is deleted from r3. Therefore, the consistent answer is 
[{R1(a1,b1)}, {R2(a1

2,b1
2)}] considering the change of mappings. 

V. RELATED WORK  

There is an increasing interest in the creation of peer data 
management systems [3], [16], [17] which includes 
establishing and maintaining mappings between peers and 
processing of queries using appropriate propagation 
techniques. However, the systems do not consider the case of 
obtaining consistent answers to queries in the presence of the 
situations where peers may be inconsistent wrt mappings. The 
inconsistent situations are very common in peer data 
management systems since peers are autonomous and store 
data independently. Moreover, mappings may be changed in 
time. Therefore, it is necessary to find an approach to obtain 
consistent answers of queries in the systems without changing 
the physical data in peers to solve inconsistencies.  
 
Authors in [12], [13] introduced a semantics for obtaining 
consistent answers in peer data exchange systems. The 
semantics utilize the concepts of repair [9] semantics that is 
proposed to obtain consistent answers in inconsistent 
databases. Our work also goes in this direction. However, we 
consider a system where peers are related with value-level 
constraints that are created by mapping tables [1]. Authors 
in  [2] proposed a query translation algorithm considering that 
the peers are related with value-level constraints. However, the 
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authors do not consider the case of consistent query 
answering. 

VI. RELATED WORK  

We have presented an approach for obtaining consistent 
answers of queries in a peer data sharing system. In our 
framework, each peer solves data inconsistencies at query 
time. The inconsistency results when data in peers do not 
satisfy mappings in mapping tables or when mapping are 
changed. Therefore, our semantics allows inconsistencies 
between peers. In our system, we consider that peers are 
related with value level constraints. We assume that 
acquaintance graph is acyclic. However, our future goal is to 
analyze the approach in the presence of cycles in mappings. 
Moreover, we like to implement and investigate our approach 
in a large peer data sharing system. 
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