
Abhijit Banubakode et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2883-2889

Query Optimization on Compressed and
Decompressed Object-Oriented Database Using

Operators
Abhijit Banubakode

Symbiosis International University (SIU)
Pune, India

Haridasa Acharya

SICSR, Pune
 Pune, India

Abstract- In this paper, we present an approach using
various database operators that permits to enrich
technique of query optimization existing in the object-
oriented databases and the comparative analysis of
query optimization of compressed and uncompressed
object oriented database based on cost, cardinality and
no of bytes. Focus is on query optimization using
relational operator, logical operator and special
operators. Our experimental study shows that the
improvement in the quality of plans is significant only
with decrease in cost, cardinality and no of bytes after
database compression. Looking at the success of query
optimization in the relational model, our approach
inspires itself of these optimization techniques and
enriched it so that they can support the new concepts
introduced by the object oriented databases.

Keywords: Query Optimization, Relational Databases,
Object-Oriented Databases, Cost, Cardinality and Bytes

I. INTRODUCTION

Oracle allows arithmetic operators to be used while viewing
records from a table or while performing data manipulation
operation such as Insert, Update and Delete, addition,
subtraction, division, Multiplication, Exponentiation and
Enclosed operation. Oracle also uses Logical operator i.e.
AND operator allows creating an SQL statement based on
two or more conditions being met. It can be used in any
valid SQL statement such as select, insert, update or delete.
The AND operator requires that each condition must be
meet for the record to be included in the result set. The OR
condition allows creating an SQL statement where records
are returned when any one of the condition are meet. The
OR condition requires that any of the conditions must be
meet for the record to be included in the result set. The
oracle engine will process all rows in a table and display
those records that do not satisfy the condition specified. In
order to select data that is within a range of values, the
BETWEEN operator is used. The BETWEEN operator
allows the selection of rows that contain values within a

specified lower and upper limit. NOT BETWEEN operator
is used to select the values that are outside the range of
values.

The comparison operator discussed above compared one
value, exactly to one other value. Such precision may not
always be desired or necessary for this LIKE predicate is
use. The LIKE predicate allows comparison of one string
value with another string value, which is not identical. This
is achieved by using wildcard characters. The wildcard
characters that are available are % and _ (underscore), %
allows to match any string of any length (including zero
length), _ (underscore) allows to match on a single
character. The IN operator can be used to select rows that
match one of the values included in the list in contrast NOT
IN operator use to select only those rows that have a value
not in the list. The query execution engine implements a set
of physical operators. An operator takes execution engine as
input one or more data streams and produces an output data
stream. Examples of physical operators are (external) sort,
sequential scan, index scan, nested loop join, and sort-merge
join. We refer to such operators as physical operators since
they are not necessarily tied one-to-one with relational
operators. The simplest way to think of physical operators is
pieces of code that are used as building blocks to make
possible the execution of SQL queries. An abstract
representation of such an execution is a physical operator
tree, as illustrated in Fig.1. The edges in an operator tree
represent the data flow among the physical operators. We
use the terms physical operator tree and execution plan (or,
simply plan) interchangeably. The responsible for the
execution of the plan that results in generating answers to
the query. Therefore, the capabilities of the query execution
engine determine the structure of the operator trees that are
feasible. We refer the reader to [7] for an overview of query
evaluation techniques.

ISSN : 0975-3397 2883

Abhijit Banubakode et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2883-2889

Index Nested Loop
(A.x = C.x)

Merge-Join Index Scan C
 (A.x=B.x)

 Sort Sort

Table Scan A Table Scan B

Fig 1: Operator Tree

The query optimizer is responsible for generating the input
for the execution engine. It takes a parsed representation of
a SQL query as input and is responsible for generating an
efficient execution plan for the given SQL query from the
space of possible execution plans.
The task of an optimizer is nontrivial since for a given SQL
query; there can be a large number of possible operator
trees:

 The algebraic representation of the given query can
be transformed into many other logically
equivalent algebraic representations: e.g.,
Join (Join (A, B), C) =Join (Join (B, C), A)

 For a given algebraic representation, there may be

many operator trees that implement the algebraic
expression, e.g. typically there are several join
algorithms supported in a database system.[6]

In this paper we consider compressed and decompressed
object oriented database of retail banking system
constructed various query plans for the same and presented
query performance analysis. This paper is organized as
follows. Next two sections describe Application and
Preliminaries Notation. Section IV reviews the table
compression technique. Section V establishes the
Experimental setup. Section VI includes the table
compression aspects. Section V discusses about query
optimization process. Section VI presents analysis and result
Finally, Section VIII concludes the paper.

II. APPLICATION

Fig1.shows an example of retail banking system. The bank
is organized into various branches and each branch located
in a particular city and monitors the assets. Bank customers
are identified by their cust-id values. Bank offers two type
of accounts i.e. saving account & checking account with
loan facility thus the relation and attributes in the schema
are [8]:

TRANS_DET (Trans_no, Inst_no, inst_dept, Inst_clr_dt,….)

 FDSLAB_MAST (Fdslab_No, Minperiod, Maxperiod…….)

TRANS_MAST (Trans_no, Acct_Mo, Dt, Type, Dr_cr, Amt….)

FD_DET (Fd_ser_no, Fd_no, Type, Payto_acctno, Period…)

ACCT_MAST (Acct_no, Sf_no, Lf_no, Branch_no,………)

ACCT_FD_CUST_DET(Acct_fd_no, Cust_no)

FD_MAST (Fd_Ser_No, Sf_No, Branch_No, Intro_Cust_No…)

CUST_MAST(Cust_No, Fname, Mname, Lname, Dob_Inc…..)

NOMINEE_MAST (Noinee_No, Acct_Fd_No, Name………)

BRANCH_MAST (Branch_No, Name………)

SPRT_DOC (Acct_Code, Type, Docs…………)

ADDR_DET (Addr_No, Code_No, Addr_Type, Area_1, …)

CNCT_DET(Addr_No, Code_No, Cntc_Type, Cntc_Data……..)

EMP_MAST(Emp_No, Branch_No, Fname, Mname, Dept…….)

Fig 2: Object considered for Banking System

III. PRELIMINARIES AND NOTATION

Operators are used in condition that compares one
expression to another value or Expression [10]. They are
used in the WHERE clause in the following format:

 Syntax:
 WHERE expr operator value

 For Example
 WHERE hire_date = ’01-JAN-95’
 WHERE salary >= 6000

 WHERE last_name = ’Smith’

Fig 3: The typical query under consideration

IV. TABLE COMPRESSION

In today's environment, data warehouses of hundreds of
terabytes have become increasingly common. To manage
disk capacity, the table compression feature introduced in
Oracle9i Release 2 can significantly reduce the amount of
disk space used by database tables and improve query
performance in some cases. The Oracle9i Release 2 table
compression feature works by eliminating duplicate data
values found in database tables. Compression works at the
database block level. When a table is defined as
compressed, the database reserves space in each database
block to store single copies of data that appear in multiple
places within that block. This reserved space is called the
symbol table. Data tagged for compression is stored only in
the symbol table and not in the database rows themselves.
As data tagged for compression appears in a database row,
the row stores a pointer to the relevant data in the symbol

ISSN : 0975-3397 2884

Abhijit Banubakode et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2883-2889

table, instead of the data itself. The space savings come
from eliminating redundant copies of data values in the
table. The effects of table compression are transparent to a
user or an application developer. We did table compression
and obtained the different query plans which are discuss in
next section. [9] To illustrate the regular RDBMS and the
object oriented query optimizations, we consider schema of
typical Retail Banking System, as the database

FD_DTLS

FD_SER_NO

FD_NO

TYPE

PAYTO_ACCTNO

PERIOD

OPENDT

DUEDT

AMT

DUEAMT

INTRATE

STATUS

AUTO_RENEWAL

FD_MSTR

FD_SER_NO

SF_NO

BRANCH_NO

INTRO_CUST_NO

INTRO_ACCT_NO

INTRO_SIGN

ACCT_NO

TITLE

CORP_CUST_NO

CORP_CNST_TYPE

VERI_EMP_NO

VERI_SIFN

MANAGER_SIGN

FDSLAB_MSTR

FDSLAB_NO

MINPERIOD

MAXPERIOD

INTRATE

SPRT_DOC

ACCT_CODE

TYPE

DOCS

ACCT_MSTR

ACCT_NO

SF_NO

LF_NO

BRANCH_NO

INTRO_CUST_NO

INTRO_ACCT_NO

INTRO_SIGN

TYPE

OPR_MODE

CUR_ACCT_TYPE

TITLE

CORP_CUST_NO

APLNDT

OPNDT

VERI_EMP_NO

VERI_SIGN

MANAGER_SIGN

CURBAL

STATUS

ADDR_DTLS

ADDR_NO

CODE_NO

ADDR_TYPE

AREA_1

ARERA_1

CITY

STATE

PHON_NO

PINCODE

BRANCH_MSTR

BRANCH_NO

NAME

NOMINEE_MSTR

NOINEE_NO

ACCT_FD_NO

NAME

DOB

RELATIONSHIP

CUST_MSTR

CUST_NO

FNAME

MNAME

LNAME

DOB_INC

OCCUP

PHOTOGRAPH

SIGNATURE

PANCOY

FORM60 CNCT_DTLS

ADDR_NO

CODE_NO

CNTC_TYPE

CNTC_DATA

EMP_MSTR

EMP_NO

BRANCH_NO

FNAME

MNAME

LNAME

DEPT

DESIGN

MNGR_NO

ACCT_FD_CUST_DTLS

ACCT_FD_NO

CUST_NO

TRANS_DTLS

TRANS_NO

INST_NO

INST_DEPT

INST_CLR_DT

BANK_NAME

BRANCH_NAME

PAIDFORM

PAYTO

TRANS_MSTR

TRANS_NO

ACCT_MO

DT

TYPE

DR_CR

AMT

PARTICULAR

ACCT_NO

Fig 4: Object Oriented Schema for Banking System

V. OPTIMIZATION

A. Optimizer Hints

Hints make decisions usually made by the optimizer. As an
application designer, user might know information about
data that the optimizer does not know. Hints provide a
mechanism to the optimizer to choose a certain query
execution plan based on the specific criteria. [14]
Type of Hints

Hints falls into the following general classifications:

-Single-table

Single-table hints are specified on one table or view.
INDEX and USE_NL are examples of single-table hints.

Multi-table

Multi-table hints are like single-table hints, except that the

hint can specify one or more tables or views. LEADING is
an example of a multi-table hint. Note that USE_NL (table1
table2) is not considered a multi-table hint because it is
actually a shortcut for USE_NL (table1) and USE_NL
(table2).

Query block

Query block hints operate on single query blocks.
STAR_TRANSFORMATION and UNNEST are examples
of query block hints.

-Statement

Statement hints apply to the entire SQL statement.
ALL_ROWS is an example of a statement hint

Hint Syntax

User can send hints for a SQL statement to the optimizer by
enclosing them in a comment within the statement. A block
in a statement can have only one comment containing hints
following the SELECT, UPDATE, MERGE, or DELETE
keyword.

The following syntax shows hints contained in both styles of
comments that Oracle supports within a statement block.

{DELETE|INSERT|MERGE|SELECT|UPDATE}/*+ hint
[text] [hint [text]]... */ or

{DELETE|INSERT|MERGE|SELECT|UPDATE}--+ hint
[text] [hint [text]]...

Where: DELETE, INSERT, SELECT, MERGE, and UPDATE are
keywords that begin a statement block. Comments
containing hints can appear only after these keywords.

+ causes Oracle to interpret the comment as a list of hints.
The plus sign must immediately follow the comment
delimiter; no space is permitted.

hint is one of the hints discussed in this section. If the

The --+ hint format requires that the hint be on only one
line.

The PARALLEL hint

The PARALLEL hints specify the desired number of
concurrent servers that can be used for a parallel operation.
The hint applies to the SELECT, INSERT, UPDATE, and
DELETE portions of a statement, as well as to the table scan
portion

ISSN : 0975-3397 2885

Abhijit Banubakode et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2883-2889

 TABLE1: QUERY PERFORMANCE COMPARISON OF COMPRESSED AND DECOMPRESSED OBJECT ORIENTED DATABASE

INDEX_FFS

The INDEX_FFS hint causes a fast full index scan to be
performed rather than a full table scan.

INDEX

The INDEX hint explicitly chooses an index scan for the
specified table. You can use the INDEX hint for domain, B-
tree, bitmap, and bitmap join indexes. However, Oracle
recommends using INDEX_COMBINE rather than INDEX
for the combination of multiple indexes, because it is a more
versatile hint.

NO_CPU_COSTING hint

This hint turns CPU costing off for the SQL statement. The
optimizer uses the I/O cost model which measures
everything in single block reads and ignores CPU cost.

INDEX_DESC

The INDEX_DESC hint explicitly chooses an index scan for
the specified table. If the statement uses an

index range scan, then Oracle scans the index entries in
descending order of their indexed values

FIRST_ROWS (n)

The hints FIRST_ROWS (n) (where n is any positive
integer) or FIRST_ROWS instruct Oracle to optimize an
individual SQL statement for fast response. FIRST_ROWS
(n) affords greater precision, because it instructs Oracle to
choose the plan that returns the first n rows most efficiently.
The FIRST_ROWS hint, which optimizes for the best plan
to return the first single row, is retained for backward
compatibility and plan stability.

USE_CONCAT

The USE_CONCAT hint forces combined OR conditions in
the WHERE clause of a query to be transformed into a
compound query using the UNION ALL set operator.
Generally, this transformation occurs only if the cost of the
query using the concatenations is cheaper than the cost
without them.

Query Performance on Decompressed Object Oriented Database Query Performance on Compressed Object Oriented Database
Query Analysis Using OR & LIKE Operator Query Analysis Using OR & LIKE Operator

Plans Indexing Hint Cost Card Bytes Plans Indexing Hint Cost Card Bytes

Plan 1 - 4 2 67 Plan 1 - 4 2 130

Plan 2 /*+ NO_CPU_COSTING */ 4 2 67 Plan 2 /*+ NO_CPU_COSTING */ 4 4 152

Plan 3 -- 4 2 67 Plan 3 -- 4 2 130

Plan 4 /*+ PARALLEL (CLIENT, 2) */ 4 4 152 Plan 4 /*+ PARALLEL (CLIENT, 2) */ 4 4 152

Plan 5 /*+ NO_CPU_COSTING */ 4 2 67 Plan 5 /*+ NO_CPU_COSTING */ 4 8 304

Query Analysis Using BETWEEN &NOT BETWEEN Operator Query Analysis Using BETWEEN &NOT BETWEEN Operator

Plans Indexing Hint Cost Card Bytes Plans Indexing Hint Cost Card Bytes

Plan 1 -- 4 20 500 Plan 1 -- 4 2 102

Plan 2 /*+ PARALLEL (CLIENT, 2) */ 4 40 1000 Plan 2 /*+ PARALLEL (CLIENT, 2) */ 4 28 700

Plan 3 /*+ NO_CPU_COSTING */ 4 20 500 Plan 3 /*+ NO_CPU_COSTING */ 4 14 250

Plan 4 -- 4 12 300 Plan 4 -- 4 2 102

Plan 5 /*+ PARALLEL (CLIENT, 2) */ 4 24 600 Plan 5 /*+ PARALLEL (CLIENT, 2) */ 4 28 700

Plan 6 /*+ NO_CPU_COSTING */ 4 12 300 Plan 6 /*+ NO_CPU_COSTING */ 4 14 250

Query Analysis Using IN &NOT IN Operator Query Analysis Using IN &NOT IN Operator

Plans Indexing Hint Cost Card Bytes Plans Indexing Hint Cost Card Bytes
Plan 1 -- 4 4 280 Plan 1 -- 4 4 424

Plan 2 /*+ PARALLEL (CLIENT, 2) */ 4 8 560 Plan 2 /*+ PARALLEL (CLIENT, 2) */ 4 4 28

Plan 3 /*+ NO_CPU_COSTING */ 4 4 280 Plan 3 /*+ NO_CPU_COSTING */ 4 2 140

Plan 4 /*+ PARALLEL (CLIENT, 2) */ 33 09 282 Plan 4 /*+ PARALLEL (CLIENT, 2) */ 31 12 381

Plan 5 -- 39 9 282 Plan 5 -- 39 9 282

ISSN : 0975-3397 2886

Abhijit Banubakode et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2883-2889

VI. ANALYSIS: RESULT COMPARISON

We did an experimental study and achieved statistically
significant improvement in the quality of some of query plans
with a modest decrease in the optimization Cardinality and no
Bytes. The experiments were conducted using oracle10g
Table: 1 shows the Query Comparisons of decompressed and
compressed Object Oriented Database Management System
Based on Cost, Cardinality & No of Bytes using various
operators. From experimental setup we observed that there is
significant improvement after query optimization in object
oriented database. Fig.5 shows Query performance histogram
for OR & LIKE operator (Decompress OODB) and Fig.6
shows Query performance histogram for OR & LIKE operator
(Compressed OODB). A histogram divides the values on a
column into k buckets. In many cases, k is a constant and
determines the degree of accuracy of the histogram. However,
k also determines the memory usage, since while optimizing a
query; relevant columns of the histogram are loaded in
memory. There are several choices for “bucketization” of
values. In many database systems, equi-depth (also called
equi-height) histograms are used to represent the data
distribution on a column. If the table has n records and the
histogram has k buckets, then an equi-depth histogram divides
the set of values on that column into k ranges such that each
range has the same number of values, i.e., n/k. compressed
histograms place frequently occurring values in singleton
buckets. The number of such singleton buckets may be tuned.
It has been shown in [13] that such histograms are effective for
either high or low skew data. One aspect of histograms
relevant to optimization is the assumption made about values
within a bucket. For example, in an equi-depth histogram,
values within the endpoints of a bucket may be assumed to
occur with uniform spread. A discussion of the above
assumption as well as a broad taxonomy of histograms and
ramifications of the histogram structures on accuracy appears
in [11]. In the absence of histograms, information such as the
min and max of the values in a column may be used. However,
in practice, the second lowest and the second highest values
are used since the min and max have a high probability of
being outlying values. Histogram information is
complemented by information on parameters such as number
of distinct values on that column although histograms provide
information on a single column; they do not provide
information on the correlations among columns. In order to
capture correlations, we need the joint distribution of values.
One option is to consider 2-dimensional histograms [12,13].
Unfortunately, the space of possibilities is quite large. In many
systems, instead of providing detailed joint distribution, only
summary information such as the number of distinct pairs of
values is used. For example, the statistical information
associated with a multi-column index may consist of a
histogram on the leading column and the total count of distinct
combinations of column values present in the data. If we
compare between fig 5 and fig 6 we observed that cost and
cardinality is same but the no of bytes required for query

execution is doubled in compressed object oriented database.
Plan 2 uses /*+ NO_CPU_COSTING */ hint. This hint turns
CPU costing off for the SQL statement. The optimizer uses the
I/O cost model which measures everything in single block
reads and ignores CPU cost. In plan2 cost is same but
cardinality and no of bytes is approximately doubled. In Plan 3
cost and cardinality is same but no of bytes required for query
execution is doubled. Plan 4 uses /*+ PARALLEL (CLIENT,
2) */ hint. The PARALLEL hint specify the desired number of
concurrent servers that can be used for a parallel operation.
The hint applies to the SELECT, INSERT, UPDATE, and
DELETE portions of a statement, as well as to the table scan
portion. Plan 5 uses /*+ NO_CPU_COSTING */ hint here the
cost is same but the cardinality and no of bytes are
approximately doubled. Fig 7 shows Query performance
histogram for BETWEEN & NOT BETWEEN Operator
(Decompressed OODB) and Fig 8 shows Query performance
histogram for BETWEEN & NOT BETWEEN Operator
(Compressed OODB).If we compare between two histogram
we observed that in Plan 1 cost is same but there is
tremendous change in cardinality and no of bytes required for
query execution as compare to compressed object oriented
database. Plan 2 uses /*+ PARALLEL (CLIENT, 2) */ hint
here cost is same but there is change in Cardinality and no of
bytes required more for query execution .Plan 3 uses /*+
NO_CPU_COSTING */ hint here the cost is same but
cardinality and no of bytes increased .In Plan 4 cost is same
but there is change in Cardinality and no of bytes required
more for query execution .Plan 5 uses /*+ PARALLEL
(CLIENT, 2) */ hint. In plan5 cost is same but there is little
change in cardinality and No of Bytes .Plan 6 uses /*+
NO_CPU_COSTING */ hint here the cost is same but the
cardinality and no of bytes are also approximately equal. Fig 9
shows Query performance histogram Using IN & NOT IN
Operator (Decompressed OODB) and Fig 10 shows Query
performance histogram Using IN & NOT IN Operator
(Compressed OODB).If we compare between Fig 9 and Fig 10
we observed that in Plan 1 cost and Cardinality is same but
there is change in no of bytes required for query execution as
compare to compressed object oriented database. Plan 2 uses
/*+ PARALLEL (CLIENT, 2) */ hint. Here cost is same but
Cardinality is doubled and there is tremendous change in no of
bytes required more for query execution .Plan 3 uses /*+
NO_CPU_COSTING */ hint. Here the cost is same but
cardinality and no of bytes required for query execution is
doubled. Plan 4 uses /*+ PARALLEL (CLIENT, 2) */ hint. In
plan4 cost is slightly change cardinality is decreased and No of
Bytes increased as compare to compressed object oriented
database. In Plan 5 cost, cardinality and no of Bytes required
for execution are same. From the result we could conclude
that after object oriented database compression cost is not
affected but cardinality and no of bytes are affected but it is
not with all the cases in some of queries there is no major
change in all three attributes.

ISSN : 0975-3397 2887

Abhijit Banubakode et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2883-2889

Fig. 5: Query performance histogram for OR & LIKE operator
(Decompress OODB)

Fig. 7: Query performance histogram for BETWEEN & NOT BETWEEN
Operator (Decompressed OODB)

Fig. 9: Query performance histogram Using
IN & NOT IN Operator (Decompressed OODB)

Fig. 6: Query performance histogram for OR & LIKE operator
(Compressed OODB)

Fig. 8: Query performance histogram for BETWEEN & NOT BETWEEN
Operator (Compressed OODB)

 Fig. 10: Query performance histogram Using
 IN & NOT IN Operator (Compressed OODB)

0
20
40
60
80
100
120
140
160

P
lan

 1
P
lan

 2
P
lan

 3
P
lan

 4
P
lan

 5

Q
u
e
ry
 P
e
rf
o
rm

an
ce

No of Plans

Cost

Card

Bytes

0

200

400

600

800

1000

1200

P
la
n
 1

P
la
n
 2

P
la
n
 3

P
la
n
 4

P
la
n
 5

P
la
n
 6

P
la
n
 7

P
la
n
 8

P
la
n
 9

P
la
n
 …

P
la
n
 …

Q
u
e
ry
 P
e
rf
o
rm

an
ce

No of Plans

Cost

Card

Bytes

0
500

1000
1500
2000
2500
3000
3500
4000

P
la
n
 1

P
la
n
 2

P
la
n
 3

P
la
n
 4

P
la
n
 5

P
la
n
 6

P
la
n
 7

P
la
n
 8

P
la
n
 9

P
la
n
 1
0

P
la
n
 1
1

Q
u
e
ry
 P
e
rf
o
rm

an
ce

No of Plans

Cost

Card

Bytes

0

50

100

150

200

250

300

350

P
lan

 1
P
lan

 2
P
lan

 3
P
lan

 4
P
lan

 5

Q
u
e
ry
 P
e
rf
o
rm

an
ce

No of Plans

Cost

Card

Bytes

0

200

400

600

800

1000

1200

1400

1600

P
la
n
 1

P
la
n
 2

P
la
n
 3

P
la
n
 4

P
la
n
 5

P
la
n
 6

P
la
n
 7

P
la
n
 8

P
la
n
 9

P
la
n
 1
0

P
la
n
 1
1

Q
u
e
ry
 p
e
rf
o
rm

an
ce

No of Plans

Cost

Card

Bytes

0

2000

4000

6000

8000

10000

P
lan

 1
P
lan

 2
P
lan

 3
P
lan

 4
P
lan

 5
P
lan

 6
P
lan

 7
P
lan

 8
P
lan

 9
P
lan

 1
0

P
lan

 1
1

Q
u
e
ry
 P
e
rf
o
rm

an
ce

No of Plans

Cost

Card

Bytes

ISSN : 0975-3397 2888

Abhijit Banubakode et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2883-2889

VII. FUTURE WORKS

In this paper we have considered very few operators. Our
work is so far has opened up a number of interesting future
research directions such as Query Optimization on
Compressed and Decompress Object-Oriented Database
Using Union, Intersect, Minus and All operators that we are
planning to pursue in future.

VIII. CONCLUSIONS

One of the biggest problems in Object Oriented Database is
the optimization of queries. Due to these problems
optimization of object-oriented queries is extremely hard to
solve and is still in the research stage. This work is expected
to be a significant contribution to the object database
management area which will not only reduce time or efforts
but will also improve the quality. From above results we
could conclude that first in object oriented database
management system there is no significant cost reduction
after query optimization using operators and second
cardinality and no of bytes in the object oriented database
does affected after query optimization when the indexing
methods are change.

REFERENCES

[1] PL/SQL User's Guide and Reference 10g Release 1 (10.1) Part
Number B10807-01

[2] Oracle ® Database Performance Tuning Guide10g Release 1 (10.1)
Part No. B10752-01 December 2003

[3] Abhijit Banubakode and Haridasa Acharya, “Query Optimization in
the Object Oriented Database Using Nested Query”, Proc. 3rd
International Conference on Computer Modeling and Simulation
ICCMS 2011 January 7 - 9, 2011, Mumbai, India

[4] Abhijit Banubakode and Haridasa Acharya, “Query Optimization in
the Object-Oriented Database Using Views”, Proc. International
Conference On Computing ICC 2010,New Delhi 27-28 December
2010

[5] Abhijit Banubakode and Seema Kedar “Query Optimization in
Compressed Database System” International Conference on Advance
Computing (ICAC- 2008)” ACM Students Chapter Department of
Computer Science and Engineering Anuradha Engineering College
Chikhli-443 201, Maharashtra, India

[6] Surajit Chaudhuri, “An Overview of Query Optimization in
Relational Systems” Microsoft Research One Microsoft Way
Redmond, WA 98052

[7] Graefe G. “Query Evaluation Techniques for Large Databases” In
ACM Computing Surveys: Vol 25, No 2. June 1993.

[8] Ivan Bayross,SQL,PL/SQL The programming language of
oracle,BPB Publication

[9] http://shaharear.blogspot.com/2008/10/table- compression.html
[10] Oracle ® Database Performance Tuning Guide10g Release 1 (10.1)

Part No. B10752-01 December 2003
[11] Poosala, V., Ioannidis, Y.E., Haas, P.J., Shekita, E.J. Improved

Histograms for Selectivity Estimation of Range Predicates In Proc. of
ACM SIGMOD, Montreal, 1996.

[12] Muralikrishna M., Dewitt D.J. Equi-Depth Histograms for Estimating
Selectivity Factors for Multi-Dimensional Queries, Proc. of ACM
SIGMOD, Chicago, 1988.

[13] Poosala, V., Ioannidis, Y.E. Selectivity Estimation without the
Attribute Value Independence Assumption. In Proc. of VLDB,
Athens, 1997.

[14] “Understanding Optimizer hints”, Oracle database Performance
Tuning Guide

Abhijit Banubakode received ME degree in
Computer Engineering from Pune Institute of
Computer Technology (PICT), University of Pune,
India in 2005 and BE degree in Computer Science
and Engineering from Amravati University, India, in
1997. Presently he is perusing his Ph.D. from
Symbiosis Institute of Research and Innovation
(SIRI), a constituent of Symbiosis International
University (SIU), Pune, India. His current research
area is Query Optimization in Compressed Object-

Oriented Database Management Systems (OODBMS). Currently he is
working as Assistant Professor in Department of Information Technology,
Rajarshi Shahu College of Engineering, Pune, India .He is having 13 years
of teaching experience. He is a member of International Association of
Computer Science and Information Technology (IACSIT), ISTE, CSI and
presented six papers in International and National conference.

 Dr. Haridasa Acharya received MSc degree
in Applied Mathematics from University of
PUNE, India in the year 1970 and the PhD
degree in Mathematics from Indian Institute of
Technology (IIT), Kanpur, India in 1975. He
is an Associate Professor at Symbiosis
Institute of Computer Studies and Research, a
constituent of Symbiosis International
University (SIU), Pune, India. Was a National

Fellow of Biotechnology (Dept of Science and Tech.) in the year 1990 at
IASRI, New Delhi. He has worked as principal investigator in research
projects funded by ICAR, UGC. He worked as a co-investigator in many
ICAR research projects and the advisor for Design of Experiments and
Research Analysis. Had opportunity to guide research scholars working in
diversified areas like Food Technology, Veterinary Medicine and Sciences,
Soil Science and Farm Engineering apart from students in Computer
Science and Mathematics. His current area of research is fuzzy protocols,
query optimization, and analytics. He was the head of the Dept. of Basic
Sciences and Computers at College of Agric. Engg., under the Marathwada
Agric. University for period of twenty years, and has been a faculty and
Program Head (MSc) at SICSR for the past three years. He has more than
30 scientific research papers, in national and international journals to his
credit; in addition he presented papers at National and International
conferences. He was awarded Shiksha Ratna by India International
Friendship Society, in Nov 2008, for his significant contribution to
Education.

ISSN : 0975-3397 2889

