
Ankur Pandit / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2874-2879

A FRAMEWORK-BASED APPROACH FOR
RELIABILITY & QUALITY ASSURANCE OF

SAFETY-CRITICAL SOFTWARE
Ankur Pandit

M.Tech, Final Year, Computer Science & Engineering
Lakshmi Narain College of Technology

Bhopal, India

Abstract- With in the complex system development throughout
the industries, Software has taken on a new, enhanced role and
now directly impacts not only product success, but also the safety.
Software Reliability & Quality Assurance (SRQA) for Safety-
Critical Software (SCS) having the key role in mission success.
The term Safety-Critical Software means software systems whose
failure may lead to loss of life or severe injury like software used
for missile, satellite, cancer radiation therapy machine etc. Every
country now a day’s emphasize on faster approach for developing
mission. SCS involves high risk in design, development and
installation. Also it is responsible for controlling, monitoring
number of hardware systems inside a system. Thereby making it
more important than ever to ensure the reliability and quality of
software products. SRQA covers all stages of the software
development process, with specific activities to assure both the
processes used and the product development. In this paper a
framework-based approach based on standards of reliability and
quality is proposed for SRQA of SCS.

Keywords- Safety-Critical Software, quality and reliability
assurance, high risk, framework-based approach.

I. INTRODUCTION

Within the mission critical system development, software
is encountered as crucial element in mission success. SRQA
for SCS are designed and implementing differently from those
of other, more tangible, physical system elements. The
methods need to be developing and implement well by the
program managers. In such cases the, ignorance is far from
bliss; it is dangerous. As famous proverb says “Prevention is
better than cure” looking better related to Reliability &
Quality Assurance. SRQA linked to mission success in the
long term.

Safety-Critical Software is software whose use in a

system can result in unacceptable risk (for Criteria of SCS,
Ref Section C. Safety, pg. 4). SCS includes software whose
operation or failure to operate can lead to a hazardous state,
software intended to recover from hazardous states, and
software intended to mitigate the severity of an accident
(IEEE) [1].

Many more examples in which the system cause loss of
man and material due to poor Reliability & Quality Assurance
of the software.

In this paper a framework-based approach based on

standards of Reliability & Quality Assurance for SCS is
proposed. This framework-based approach provides Software
Reliability and Quality activities that should conduct
throughout the project life cycle to come out with the quality
product.

Note- This paper is only concern with Software Safety not
with System Safety.

II. DEFINATIONS

A. Software Defined
The IEEE definition of software, which is almost identical

to the ISO definition (ISO, 1997, Sec. 3.11 and ISO/IEC 9000-
3 Sec. 3.14) “Computer programs, procedures, and possibly
associated documentation and data pertaining to the operation
of a computer system.”

B. Software Safety Defined

Software Safety [3] is defined as “The discipline of
software assurance that is a systematic approach to
identifying, analyzing, tracking, mitigating, and controlling
software hazards and hazardous functions (data and
commands) to ensure safe operation within a system”.

C. Software Reliability Defined

Software reliability as a discipline of software assurance
defines that "Software reliability is the probability that
software will not cause the failure of a system for a specified
time under specified conditions. The probability is a function
of the inputs to and use of the system as well as a function of
the existence of faults in the software. The inputs to the system
determine whether existing faults, if any, are encountered"
(ANSI/IEEE Std 729-1983.1).

ISSN : 0975-3397 2874

Ankur Pandit / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2874-2879

D. Software Quality Defined
Software quality [3] is defined as “Quality is the degree to

which an object (entity) (e.g., process, product, or service)
satisfies a specified set of attributes or requirements”.

E. Software Quality Assurance

 Software Quality Assurance [3] defined as “The function
of software quality that assures that the Standards, Processes,
and Procedures are appropriate for the project and are
correctly implemented”.

III. DIMENSIONS OF QUALITY

A quality framework looking at an eight dimension product
quality developed by Garvin [4] and a five dimension model
of service quality derived by Parasuraman [5] as shown in
Table 1. The framework is design by taking these dimensions
of quality into an account.

TABLE 1. DIMENSIONS OF QUALITY

Frame
Work

Dimension Definition

P
ro

du
ct

 q
ua

lit
y

(G
ar

vi
n

 (
19

87
))

1.Performance
Master controlling
characteristics

2. Feature
Accessories to basic working
characteristics.

3.Reliability
Probability of product failure
within particular time period.

4.Conformance
Product meets constituted
standards.

5.Durability A measure of product life.

6.Serviceability
The fastness and easiness of
repair.

7.Aesthetics
How a product looks, feels,
tastes and smells.

8.Perceived
Quality

Comprehended by a
customer.

S
er

vi
ce

 Q
u

al
it

y
(P

ar
as

u
ra

m
an

 e
t a

l.
(1

99
1)

)

1.Tangibility
The quality of equipment
being perceivable by touch
and appearance.

2.Reliability
Perform the predicted
service constantly with no
mistakes.

3.Responsiveness
Temperament to look after
the customers and give
immediate service.

4.Assurance
Freedom of doubt that the
firm giving to its client to
inquire trust and confidence.

5.Empathy
Personalized attention that
the service provider gives its
client.

IV. QUALITY PROGRAM STRUCTURES IN LARGE
PROJECTS

The Handbook of Software Quality Assurance [6] gives

the organizational structure (shown in Fig. 1), which exists in
larger organization producing engineering or scientific
applications. This organization chart taken from the actual
project.

The framework is design by Quality Program Structure for
Larger Projects into an account.

APM- Assistant Project Manager.
PQM- Project Quality Manager.

Figure 1: Structure for Larger Project Organization

V. SOFTWARE FAILURE LEVEL

Radio Technical Commission for Aeronautics (RTCA)
safety critical working group RTCA SC-167 and the European
Organization for Civil Aviation Equipment EUROCAE WG-
12 jointly prepared a standard called DO-178B for developing
avionics software-intensive systems. The purpose of D0-178B
[7] is “to provide guidelines for the production of software for
airborne systems and equipment that performs its intended
function with a level of confidence in safety that complies with
airworthiness requirements.” DO-178B defines levels of
safety criticality. These are shown in Table 2:

ISSN : 0975-3397 2875

Ankur Pandit / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2874-2879

TABLE 2: SOFTWARE FAILURE LEVEL

Level Failure Description

A Catastrophic

Fulminate and entire failure
of system where recovery is
unimaginable.

B Hazardous
Failure has a large veto affect
on performance or safety.

C Major

Failure is substantial, but has
a lesser impact than a
Hazardous failure.

D Minor

Failure is noticeable, but has
a lesser impact than a Major
failure.

E No Effect
Failure has no affect on
safety.

VI. FRAMEWORK FOR RELIABILITY & QUALITY
ASSURANCE PRACTICES APPLIED TO SCS

The framework is divided into different sections and
description regarding each section is given below (Refer
Page7, Figure 2 for each section):

6.1 Software Reliability

Reliability [8] is defined as a “Characteristic of software,
express by the probability that the item (software) will
performed its required function under given condition for a
time interval”. From qualitative point of view, reliability can
be defined as “the ability of an item to remain functional”.

6.1.1 Software Reliability Modeling

Various statistical models and techniques have been
developed in software reliability engineering for forecasting
and predicting reliability of software and number of remainder
error in software [10].

Mainly software reliability models are of two types:

a) Deterministic: It examines the number of discrete operators
and operands in code as well as the number of machine
instructions and errors occur in the program.

Well-known models are: McCabe’s cyclomatic complexity
metric and Halstead’s software metric.

b) Probabilistic: It represents the failure happenings and the
fault removals as probabilistic events. It can be separated into
different groups

 Error seeding
 Failure occurrence rate
 Curve fitting

 Markov structure
 Reliability growth
 Non homogeneous Poisson process.
 Time-series

6.1.2 Software Reliability Metrics

Failure occurrence expressions and data are use to derived
Reliability metrics [9].

Generally used reliability metrics are-

a) ROCOF (Rate of Occurrence of Failures) related to
the intensity of failure.

b) Availability is the probability that the system will be
functioning at a committed time.

c) MTTF (Mean Time to Failure) is the anticipation of
the expecting time of the first failure.

6.1.3 Basic Mathematical Concepts

Reliability is one of the quality features that user require
from the product manufacturer.

Mathematically, we called reliability R (t) as the

probability that a system will be successful in the time interval
0 to t. It is given as:

R (t) =P (T > t) Where t ≥0 (1)

Where T is a random variable denoting the time-to-failure

or failure time. Unreliability F (t), a measure of failure, is
defined as the probability that the system will fail by time t:

F (t) = P (T ≤ t) for t ≥ 0 (2)

F (t) is the failure distribution function. If the time-to-

failure random variable T has a density function f(t), then
 ∞

R (t) = ∫ f(s) ds (3)
 t

6.2 Software Quality Assurance (SQA)

6.2.1 Software Quality Assurance Policy & Objectives

Throughout the project lifecycle, Software Quality
activities are conducted with the aim to provide the deep
perception into the maturity level and quality of the software
processes and related work products. Software Assurance
Group (SAG) Software Quality personnel enforce work
instructions, standard procedures, tools and techniques to
objectively evaluate processes and work products, draw the
inferences based on those evaluations, and providing effective
communication to ensure resolution of all disobedience issues
with managers and stakeholders.

Following are the objectives for SRQA [11]

ISSN : 0975-3397 2876

Ankur Pandit / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2874-2879

a) Establish a common framework for the SRQA
processes.

b) Setup and affirm the involvement of different groups
involve in SRQA process.

c) Support and utilize the independent reporting
structure.

d) Define SRQA activities, actions and jobs to assemble
the goals of software assurance.

6.2.2 Procedures and Guidelines
 For developing and implementing Software Quality
programs Software Quality (SQ) personnel is responsible who
provides applicable procedures, step-by-step instructions, and
checklists for doing SQA process and product judgments
throughout the life cycle of the software.

a) Procedure for Developing and Implementing Software

Quality Programs.
b) Software Quality Activity Matrix: Activities of Software

Quality that should be performed during each development
phase (i.e., concept formation, requirements analysis,
designing, development, integration, testing, user trails,
operation and maintenance).

c) SQA Data Management Plan: A database should be setup
for collection and storage of the different types of data
related with the software quality activities and its artifacts.

6.2.3 Work Instructions

Work instructions are the standard procedures and
instructions for performing Software Quality process and
product assessments gradually throughout the software
development life cycle.

a) Software Quality Assessment Process.
b) Software Quality Assurance Engineering Peer Review

Assessment.
c) Software Quality Reporting Process.

6.2.4 CHECKLIST

Numbers of checklists are provided to aid Software Quality
department in assessing procedures and products linked with
software quality assurance.

6.2.4.1 Systems Review Checklists
6.2.4.2 Documentation Checklist
6.2.4.3 Other Assessment Checklists

6.2.5 Centralist Quality Repository Database (CQRD)

A centralized database containing information that can be
accessed to produce regular reports and metrics. The database
maintains the records regarding quality assurance procedure,
process assessment checklists, findings, observations and
standards that can be easily sharable.

6.2.6 Forms and Templates

The different SQA plans are developed in early stages of,
and in parallel with project planning which defines the ways
that will use for monitoring and assessing software
development process and products. The templates are based on
IEEE 730-2002 Standards:

a) Software Quality Assurance Plan
b) Software Quality Assessment Plan
c) Software Quality Assessment Report
d) SQE learning and Experience Log: documentation of

SQ learning and work experience gained during
project.

e) SQ Stakeholder role table: documentation of project
stakeholder’s role and involvement by software
development life cycle phase.

6.2.7 Motivation & Training

Software Quality personnel should have basic idea in the
following disciplines through prior experience, training, or
certification in methodologies, processes, and standards.

a) Software Quality Assurance
b) Software Safety
c) Quality Audits and Reviews
d) Risk Management
e) Configuration Management
f) ISO 9001 and other Standards
g) IEEE Standard for quality and reliability assurance.
h) CMMI.

6.3 Safety

Software safety involves the systematic approach to
determining, analyzing, and chasing software moderateness
and to ensure software safety, control of hazards and
hazardous functions (e.g., data and methods) within a system.
Software is called Safety-Critical if it is fulfill at least one of
the following criteria:

1. Make hazard or leads to a hazard.
2. Provides control for hazards.
3. Operates Safety-Critical methods.
4. Notice and report, or takes disciplinary action, if the

system moves towards hazardous state.
5. Processes Safety-Critical data or commands.
6. Cause destruction if error occurs in the software.

 7. Reside in a system as Safety-Critical software.

Software Safety program commences from Requirement

phase and carries out throughout the software development life
cycle including hazard analysis in each phase.

ISSN : 0975-3397 2877

Ankur Pandit / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2874-2879

6.4 Software V&V
Software verification and validation (V&V) [13] procedure

decides whether the development of each activity is exactly
same as per the requirements throughout the product
development and whether the software fulfills the user needs.

Objectives of Performing V&V are to-

1) Alleviate former detection and rectification of
software bugs.

2) Deep perception of management risk involve into
process and product development.

3) Ensure throughout the life cycle that the software
development should be in specified schedule and
budget.

V&V activities that are carrying out during the software
development phases-

 User’s requirements analysis and traceability.

 Design and code explanations and/or reviews.

 Conventional reviews.

 Software fault analysis.

 Documented test programs and process.

 Test planning, execution, and reporting.

 Audits and assessments.

6.5 Software IV&V

Independent Verification and Validation (IV&V) is
carrying out by an establishment that is independent of the
development organization in all respect and governing
program/project management.

IV&V activities involves:

 Software design validation to match system requirements.
 Safety-Critical requirements traceability.
 Critical algorithm’s design analysis.
 Coding analysis.

VII. CONCLUSION AND RECOMMENDATION

As every day, we are facing new challenges in software
development for Safety-Critical Systems; SQA is a very
complex and its ultimate goal is to deliver successful project.
Also software safety and reliability playing key role in success
of critical mission.

Software is a vital part of most systems. It controls
hardware and provides mission-critical data. Software must be
safe. Safety is not the sole responsibility of the System Safety
engineer. Creating a safe system is a team effort and safety is
everyone’s responsibility.

The SQA applied from requirements analysis to software

configuration to Critical Systems may be executed with the
formation of a framework based on organization procedures
and standards for SRQA of SCS which results the high-quality
software.

ACKNOWLEDGMENT

The author is thankful to Professor Alka Gulati,
Department of Computer Science & Engineering, for giving
valuable suggestions and support on the paper.

REFERENCES

[1] Rodriguez-Dapena, “Software Safety Certification: A Multinational

Problem,” IEEE Software, July/August 1999, p. 31, © 1999 IEEE.
[2] G. Gordon Schulmeyer “Handbook of Software Quality Assurance”,

Fourth Edition, ARTECH HOUSE, INC. 2008, pp. 212-213.
[3] The NASA Software Assurance Standard, NASA-STD-8739.8.
[4] Garvin A., “Competing on the Eight dimensions of Quality” Havard

Business Review Nov-Dec 101–109, 1987.
[5] Parasuraman A., Berry L., Zeithaml V., “Refinement and Reassessment of

the SERQUAL scale”, Journal of Retailing 67(4), pp. 420–450, 1991.
[6] G. Gordon Schulmeyer “Handbook of Software Quality Assurance”,

Fourth Edition, ARTECH HOUSE, INC. 2008, pp. 28.
[7] DO-178B, “Software Considerations in Airborne Systems and Equipment

Certification”, RTCA publication.
[8] Reliability Engineering, Alessandro Birolini, Fourth Edition, pp 2-3.
[9] Reliability Engineering, Alessandro Birolini, Fourth Edition, pp 248.
[10] System software reliability, Hoang Pham, Series Edition, pp 153-176.
[11] Software safety standard, NASA Technical Standards, NASA-STD-

8719.13B
[12] IEEE 730-2002 Standard for Software Quality Assurance Plans.
[13] IEEE Standard for Software Verification and Validation, IEEE Std

1012-1998.
[14] Software Quality Assurance, from theory to implementation, Daniel

Galin, Pearson Education Limited 2004.
[15] Al-Qutaish R., “Measuring the Software Product Quality during the

Software Development Life-Cycle: An International Organization for
Standardization Standards Perspective”, Journal of Computer Science 5
(5), pp. 392-397, 2009.

[16] ISO, International Organization for Standardization, "ISO 9004:2000,
Quality Management Systems-Guidelines for performance
improvements", 2000.

ISSN : 0975-3397 2878

Ankur Pandit / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 09, 2010, 2874-2879

6. APPROACH FOR RELIABILITY & QUALITY ASSURANCE OF SAFETY-CRITICAL SOFTWARE

6.1 Software Reliability 6.2 Software Quality Assurance (SQA)

6.1.1 Software Reliability
Modelling

a) Deterministic
b) Probabilistic

6.2.1 Software Quality
Policy & Objectives

6.
2.

2
P

ro
ce

du
re

 &

G
u

id
el

in
es

1.

 P
ro

ce
du

re
 f

or

D
ev

el
op

in
g

an
d

Im
pl

em
en

ti
ng

 S
of

tw
ar

e
Q

ua
li

ty
 P

ro
gr

am
s,

2.

 S
of

tw
ar

e
Q

ua
li

ty

A
ct

iv
it

y
M

at
ri

x,

3.
 S

of
tw

ar
e

S
af

et
y

as
su

ra
nc

e
bo

dy
’s

 S
Q

A

D
at

a
M

an
ag

em
en

t P
la

n

6.1.2 Software Reliability
Metrics

a) Static Code Metrics.

i) Line Count
1.1.1 LOC (1), 1.1.2 SLOC

(2).
1.2 Complexity and

Structure
1.2.1 CC (3), 1.2.2 Number
of Modules, 1.2.3 GOTO

(4).
1.3 Object-Oriented

1.3.1 Number of Classes,
1.3.2 WMC (5), 1.3.3 CBO

(6), 1.3.4 RFC(7), 1.3.5
NOC(8),DIT(9)

b) Dynamic Metrics

1. Failure Rate Data, 2.
Problem Reports

6.2.3 Work
Instructions

1. Software Quality
Assessment Process,
2. Software Quality

Assurance Engineering
Peer Review
Assessment,

3. Software Quality
Reporting Process

6.2.4 Checklist

6.
2.

4.
1

S
ys

te
m

s
R

ev
ie

w
 C

he
ck

li
st

s
1.

 F
ul

l S
ys

te
m

C

on
ce

pt
 R

ev
ie

w
, 2

.
S

of
tw

ar
e

R
eq

ui
re

m
en

ts
 in

si
de

sy

st
em

 R
ev

ie
w

, 3
.

P
re

li
m

in
ar

y
D

es
ig

n
R

ev
ie

w
, 4

. C
ri

tic
al

D

es
ig

n
R

ev
ie

w
, 5

.
T

es
t R

ea
di

ne
ss

R

ev
ie

w
, 6

. S
of

tw
ar

e
Q

ua
li

ty
 A

cc
ep

ta
nc

e
R

ev
ie

w
, 7

.
O

pe
ra

ti
on

al

R
ea

di
ne

ss
 R

ev
ie

w
,

8.
 S

ys
te

m

O
pe

ra
ti

on
s

R
ev

ie
w

,
9.

 M
is

si
on

O

pe
ra

ti
on

s
R

ev
ie

w

6.
2.

4.
2

D
oc

u
m

en
ta

ti
on

C

h
ec

kl
is

ts

1.
 C

on
fi

gu
ra

ti
on

M

an
ag

em
en

t P
la

n,
 2

. R
is

k
M

an
ag

em
en

t P
la

n,
 3

.
S

of
tw

ar
e

D
ev

el
op

m
en

t
F

ol
de

r,
 4

. S
of

tw
ar

e
In

te
rf

ac
e

C
on

tr
ol

D

oc
um

en
t,

 5
. S

of
tw

ar
e

M
ai

nt
en

an
ce

 P
la

n,
 6

.
So

ft
w

ar
e

M
an

ag
em

en
t

P
la

n,
 7

. S
of

tw
ar

e
Q

ua
lit

y
A

ss
ur

an
ce

 P
la

n,
 8

.
S

of
tw

ar
e

R
eq

ui
re

m
en

ts

Sp
ec

if
ic

at
io

n,
 9

. S
of

tw
ar

e
R

eq
ui

re
m

en
ts

 T
ra

ce
ab

ili
ty

M

at
ri

x,
 1

0.
 S

of
tw

ar
e

T
es

t
Pl

an
, 1

1.
 S

of
tw

ar
e

T
es

t
R

ep
or

t,
12

. S
of

tw
ar

e
U

se
r's

 G
ui

de
, 1

3.
 V

er
si

on

D
es

cr
ip

ti
on

 D
oc

um
en

t

6.
2.

4.
3

O
th

er
 A

ss
es

sm
en

t
C

h
ec

kl
is

ts

1.
 C

od
e

In
sp

ec
ti

on
, 2

.
E

ng
in

ee
ri

ng
 P

ee
r

R
ev

ie
w

, 3
. F

un
ct

io
na

l
C

on
fi

gu
ra

ti
on

 A
ud

it
, 4

.
L

es
so

ns
 L

ea
rn

ed
, 5

.
M

ea
su

re
m

en
t &

A

na
ly

si
s

Pr
oc

es
s,

 6
.

P
P

Q
A

 E
xt

er
na

l
A

ss
es

sm
en

t,
7.

 P
ro

je
ct

M

on
it

or
in

g,
 8

. P
ro

je
ct

P

la
nn

in
g,

 9
.

R
eq

ui
re

m
en

ts

M
an

ag
em

en
t,

10
.

S
of

tw
ar

e
C

on
fi

gu
ra

ti
on

M

an
ag

em
en

t,
11

.
S

of
tw

ar
e

P
ro

bl
em

R

ep
or

ti
ng

, 1
2.

 S
of

tw
ar

e
R

is
k

M
an

ag
em

en
t

P
ro

ce
ss

, 1
3.

 S
of

tw
ar

e
U

ni
t T

es
t P

ro
ce

ss

6.1.3 Basic Mathematical
Concept

6.2.5 Centralist
Quality Repository
Database (CQRD)

6.2.6 Forms & Templates
1. Software Quality Assurance Plan, 2. Software Quality Assessment Plan, 3.
Software Quality Assessment Report, 4. SQE Learning and Experience Log,
5. SQ Stakeholder role table

6.2.7 Motivation & Training
1. Software Quality Assurance, 2. Audits and Reviews, 3. Risk Management, 4. Configuration
Management, 5. ISO 9001, 6. Software Safety, 7. Contracts/Contractor Surveillance, 8. CMMI.

6.3 Safety 6.4 V&V 6.5 IV&V

Acronyms
1. Lines of code 2. Source lines of code, 3. Cyclomatic Complexity, 4. Number of Go To Statements, 5. Weighted Methods per Class, 6.
Coupling Between Objects, 7. Response for a Class, 8. Number of Child Classes, 9. Depth of Inheritance Tree.

Figure 2: A Framework for Reliability & Quality Assurance of Safety-Critical Software

ISSN : 0975-3397 2879

