
Sanjay Kumar Dubey et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2726-2730

A Comprehensive Assessment of Object-Oriented
Software Systems Using Metrics Approach

Sanjay Kumar Dubey
Department of Computer Science and Engineering

Amity School of Engineering and Technology
Amity University, Sec-125, NOIDA, India

Prof. (Dr.) Ajay Rana
Department of Computer Science and Engineering

Amity School of Engineering and Technology
Amity University, Sec-125, NOIDA, India

Abstract—Demand for efficient software is increasing day by day
and object-oriented design technique became able to fulfill this
demand because it is the most powerful mechanism to develop
efficient software systems. It can not only help in reducing the
cost but also helps in the development of high quality software
systems. Software developers need appropriate metrics to
develop efficient software system. Object-oriented metrics can
play important role in this aspect due to their importance in the
development of successful software applications. This paper
assesses the object-oriented software system using metrics
approach to precisely define the qualitative characteristics of the
software system.

Keywords-System, Metrics, Model, Software, Object-oriented

I. INTRODUCTION

Object-oriented design and development is very popular
approach in today’s scenario of software development
environment. This approach improves software productivity,
reusability and flexibility of software systems. Object-oriented
systems are gaining popularity as efficient software systems
day by day because object-oriented techniques reduce the size
of system and number of logical constructs. Object-oriented
software usually contains large number of attributes, which can
provide more comprehensive descriptions of software’s
internal nature and structure. These software systems made up
of interacting objects that remains in their own local state and
operate on their own information. The various concepts like
complexity, usability, reusability, testability, understandability
etc. are used to enhance the quality of software system, which
are also very much related with object-oriented features and
can be used to increase the efficiency of object-oriented
systems.

Software metrics have become essential in some disciplines
of software engineering, because they are used to measure
software quality and to estimate the cost and effort of software
projects [29]. Generally the metrics are used to indicate the
software quality in early stage of software development life
cycle (SDLC) to monitor the cost impact of modification and
improvement in software system but most of metrics, available
for object-oriented software analysis normally be used in later
phase of SDLC [10]. Since object-oriented metrics require
through understanding of object-oriented concepts and there is

no single metric that shows all the features of object-oriented
software system, so this paper studies various object-oriented
metrics available in various literatures and presents
comprehensive scenario of them. It also addresses the
following questions: (i) what are the concepts behind object-
oriented design methodology (ii) what are various metrics
found in the literature for object-oriented software system?

II. OBJECT-ORIENTED DESIGN METHODOLOGY

The design methods provide a set of techniques for
analyzing, decomposing, and modularizing software system
architectures. There is wide applicability of object-oriented
design in today’s scenario of software development
environment because it promotes better design and view a
software system as a set of interacting objects. Object-oriented
design must exhibit four features: inheritance, data abstraction,
dynamic binding, and information hiding [13]. The components
of various object-oriented software are given in Table1.

TABLE I. THE COMPONENTS OF OBJECT-ORIENTED SOFTWARE [8]

Objects Build Classes
Objects Have (are composed of) Attributes
Objects Inherit Attributes
Objects Have (are composed of) Methods
Objects Inherit Methods

Objects Send Messages
Objects Receive Messages
Messages Are Data
Messages Are Relations

It is necessary to establish some basic standards and

guiding principles that application developer should follow to
achieve expected benefits and advantages of object-oriented
technology. This technology may be use in measurement of the
metrics of object-oriented software. There are several design
methodologies that suggested the guiding principle for many
ways to develop object-oriented system.

The Booch method [5] describes the analysis and design
phases of an object-oriented system implementation. This
method offers a path from requirements to implementation by
using object-oriented analysis and design and emphasizes the
distinction between logical view and physical view of a system.
Jacobson’s Object Oriented Software Engineering (OOSE)

ISSN : 0975-3397 2726

Sanjay Kumar Dubey et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2726-2730

method [9] proposed pyramid model for the process of
developing object-oriented design, in which tools provide
support for the activities in three categories: architecture,
method and process. Object Modeling Technique (OMT)
approach described by Rumbaugh et al. [14], allows system
designers to conceptualize the overall system architecture.
OMT leads to three different models: object model, dynamic
model and functional model of the system. Delatte et al. [1]
developed Hierarchical Object Oriented Design (HOOD)
method. The main process in HOOD, called the Basic Design
Step, is based on the identification of objects by means of
object-oriented design techniques. The purpose of HOOD is to
develop the design as a set of objects, which together provide
functionality to the program. Coad-Yourdon [30, 31] proposed
object-oriented analysis and design method, which is a step by
step method for developing object-oriented models. These
steps are: finding class & object, identifying structures,
defining subjects, defining attributes, and defining services.
Reenskaug et al. [39] developed an analysis and design method
which emphasizes the role played by objects in the system.
This role is dependent on the requirements of the system rather
than the properties of the object, thus a single object may
perform different roles at different stages of the system. Wirfs-
Brock [36] developed the object-oriented approach called
Responsibility-Driven Design. They suggested that for each
class, different responsibilities are defined and to fulfill the
responsibilities of the classes, they need to demonstrate
collaboration with other classes. The object agency [40]
developed a set of validation measures for various object-
oriented design approaches. These measures include concepts,
notations, processes and pragmatics. Several other different
measures for object oriented designs have been validated by [6,
33, 41]. For software system, Design-Level Cohesion is
proposed by [12]. To describe the quality of software system,
more structures related to the design properties of object-
oriented system is given by [17, 18, 19, 20].

III. OBJECT-ORIENTED METRICS

The concept of object oriented programming, which is
based on object-oriented metrics, is closely links the design and
implementation phases of software system. Various object-
oriented metrics have been proposed in literature [26]. Metrics
proposed by Abreau [3, 4], J. Bansiya et al. [10], Briand et al.
[17], Chidamber and Kemerer [37], Lorenz et al.[27], W. Li et
al. [42, 43] are some of the metrics suit that are mostly
referenced in various literatures.

Chidamber and Kemerer (CK) [37] are the mostly
referenced researchers. They defined six metrics viz. Weighted
Methods per Class (WMC), Response sets for Class (RFC),
Lack of Cohesion in Methods (LCOM), Coupling Between
Object Classes (CBO), Depth of Inheritance Tree of a class
(DIT) and Number of Children of a class (NOC). CK metrics
were defined to measure design complexity in relation to their
impact on quality attributes such as usability, maintainability,
functionality, reliability etc. Several studies have been
conducted to validate CK metrics. For example Basili et al.
[41] investigated the CK metrics and validated that five metrics
of them appear to be useful to predict class fault proneness.

Theoretical validation of CK metrics is given by [6, 15] and
several experimental studies have been carried out to validate
CK metrics for e.g. [2, 7, 11, 16, 18, 19, 22, 23, 24, 28, 33, 38,
40, 41, 43]. Table 2 shows the summary of CK metrics.

TABLE II. THE METRICS SUITE OF CHIDAMBER AND KEMERER [37]

CK metrics are aimed at assessing the design of object-

oriented system rather than implementation. This make them
more suited to object-oriented paradigm as object-oriented
design put great emphasis on the design phase of software
system. The relation between important object-oriented
software quality concepts, CK metrics and object-oriented
(OO) features is given in Table 3 [21].

TABLE III. RELATIONSHIP AMONG CK METRICS, OBJECT-ORIENTED
SOFTWARE QUALITY CONCEPTS AND OBJECT-ORIENTED FEATURES

CK
Metric

Concept OO Feature

WMC Complexity, Usability, Reusability Class/Method

RFC Design, Usability, Testability Class/Method
LCOM Design, Reusability Class/Method
CBO Design, Reusability Coupling
DIT Reusability, Understandability, Testability Inheritance
NOC Design Inheritance

Lorenz et al. [27] defined metrics to measure the static
characteristics of software design. These metrics divided in the
categories of class size, class inheritance and class internal.
Size-oriented metrics for the object-oriented classes focus on
counts of attributes and operations. Inheritance-oriented
metrics focus on the manner in which operations are reused in
hierarchy class. Internal class-oriented metrics look at cohesion
and code-oriented issues.

MOOD metric set model, proposed by Abreu [3] is another
basic structural method of the object-oriented paradigm. They
were defined to measure the use of object-oriented design
methods such as inheritance (MIF (Method Inheritance Factor),
AIF (Attribute Inheritance Factor)) metrics, information hiding
(MHF (Method Hiding Factor), AHF (Attribute Hiding
Factor)) metrics, and polymorphism (POF (Polymorphism
Factor), COF (Coupling Factor)) metrics. Abreu firmly
suggested that metrics definitions and dimensions should be
justified as they play important role in designing the object-
oriented metrics.

CK Metric Definition
 WMC

 Number of methods of a certain class without
 inherited methods

 RFC

 Number of methods that can be performed by a
 certain class regarding a received message

 LCOM

 Number of disjunctive method pairs of a certain class

 CBO

 Number of couplings between a certain class and all
 other classes

 DIT

 Maximal depth of a certain class in an inheritance
 structure

 NOC

 Number of direct subclasses of a certain class

ISSN : 0975-3397 2727

Sanjay Kumar Dubey et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2726-2730

Within the framework that, many metrics that are applied to
traditional functional development are also applicable to
object-oriented development, Rosenberg et al. [21] developed
nine metrics for object-oriented system, from which three were
traditional metrics viz. Cyclomatic Complexity (CC), Lines of
Code (LOC), Comment Percentage (CP) and rest six metrics
were same as CK metrics. They validated the six CK metrics at
SATC and gave the relation between important object oriented
software quality concepts, quality metrics and object oriented
features as shown in Table 2 [21].

TABLE IV. OBJECT ORIENTED SOFTWARE QUALITY CONCEPTS, QUALITY
METRICS AND OBJECT ORIENTED FEATURES

Metric OO Feature Concept

CC Method Complexity
LOC Method Complexity
CP Method Usability, Reusability

WMC Class/Method Complexity, Usability, Reusability
RFC Class/Method Design, Usability, Testability
LCOM Class/Method Design, Reusability

CBO Coupling Design, Reusability
DIT Inheritance Reusability, understandability, Testability
NOC Inheritance Design

W. Li et al. [43] proposed a new metric suite which include

Number of Ancestor Classes (NAC), Number of Local
Methods (NLM), Class Method Complexity (CMC), Number
of Descendent Classes (NDC), Coupling Through Abstract data
type (CTA), and Coupling Through Message passing (CTM).
These metrics measure different internal attributes such as
coupling, complexity and size.

J. Bansiya et al. [10] defined Quality Model for Object
Oriented Design (QMOOD) metrics. The metrics in QMOOD
were given as Average Number of Ancestors (ANA), Cohesion
Among Methods of class (CAM), Class Interface Size (CIS),
Data Access Metric (DAM), Direct Class Coupling (DCC),
Measure Of Aggregation (MOA), Measure of Functional
Abstraction (MFA), Number Of Polymorphic methods (NOP),
Design Size of Class (DSC), Number Of class Hierarchies
(NOH), Number of Methods (NOM). Like MOOD metrics,
the QMOOD metrics are defined to be computable early in the
design process. The summary of above reviewed metrics is
represented in Table 4.

TABLE V. OBJECT-ORIENTED METRICS FROM VARIOUS SOURCES

Source Metrics

Chidamber et al. [37] WMC, RFC, LCOM, CBO, DIT, NOC
Lorenz et al [27] Class size, Class inheritance, Class internal
Abreu [4] MIF, AIF, MHF, AHF, POF, COF

Rosenberg et al. [21] CC, LOC, CP, WMC, RFC, LCOM, CBO, DIT,
NOC

Li W. et al.[43] NAC, NLM, CMC, CMC, NDC, CTA, CTM
Bansiya et al. [10] ANA, CAM, CIS, DAM, DCC, MOA, MFA,

NOP, DSC, NOH, NOM

M. El. Wakil et al. compared four metric suits. Their findings
showed that how various suits stack up against their standards.
Their comparison is showing in following Table 6 [25].

TABLE VI. COMPARISON OF FOUR METRICS BY M. EL WAKIL ET AL. [25]

IV. CONCLUSION AND FUTURE WOTK

This paper assessed various metrics suit for object-oriented
software system. Assessment shows that metrics provide
guidelines to indicate the progress that a software system has
made and the quality of design. Using these guidelines, we can
develop more usable and maintainable software system to
fulfill the demand of efficient system for software applications.
By observing the growing popularity of object-oriented
software, we are going to develop a model, which will predict
the usability and maintainability of object-oriented software
system in efficient manner. Since collecting and analyzing the
data, design quality of software can predict easily, so after

Metric Models
Should

Metric Suite

CK [37]

M.
Lore
nz

and
J.

Kidd
[27]

 F.B. Abreu
[4]

J. Bansiya &
C.G. Davis

[10]

depend on high
level design features
only, such as
abstract class
diagrams which
allows assessment
in the early stages
of design.

No Yes Yes Yes

state model
objectives explicitly
(state how they
assess quality).

No No

Error
Density,
Fault
Density &
Normalized
Rework

Reusability,
Flexibility,
Understandabil
ity,
Extendibility
&
Effectiveness

be precisely
defined. Ambiguity
in metrics
definitions allows
many
interpretations for
the same metric.

Yes
(except
WMC)

Yes Yes Yes

provide a clearly
stated, formal
expression
describing how
metrics coincide
with the assessed
characteristic.

No No Yes

Yes

provide an
interpretation of the
results. Till the
values produced by
a model are given
interpretations that
could be used in
making decisions…
no extra
understanding is
gained.

No No Yes Yes

be validated
empirically

Validated No Validated Validated

ISSN : 0975-3397 2728

Sanjay Kumar Dubey et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2726-2730

developing the model it will be test for suitability to fit in
object-oriented scenario, on the basis of analysis of the data.

REFERENCES
[1] B. Delatte, M. Heitz, and J. F. Muller, HOOD Reference Manual 3.1,

Masson, Paris, 1993.

[2] B. Unger and L. Prechelt, The impact of inheritance depth on
maintenance tasks – Detailed description and evaluation of two
experimental replications, Technical Report, Karlsruhe University:
Karlsruhe, Germany, 1998.

[3] F. B. Abreu and R. Carapua, “Candidate Metric for OOS within
taxonomy framework, Journal of System & Softwrae, Vol. 26, No. 1,
July 1994.

[4] F. B. Abreu, “The MOOD Metrics Set”, In Proc. ECOOP’95, Workshop
on Metrics, 1995.

[5] G. Booch, Object-oriented analysis and design, Benjamin-Cummings,
U.S.A, pp.107-215, 1994.

[6] G. Poels and G. Dedene, DISTANCE: A Framework for Software
Measure Construction, Research Report DTEW9937, Dept. Applied
Economics, Katholieke Universiteit Leuven, Belgium, 1999, pp 46.

[7] G. Poelsand and G. Dedene, “Evaluating the Effect of Inheritance on the
Modifiability of Object-Oriented Business Domain Models”, 5th
European Conference on Software Maintenance and Reengineering
(CSMR 2001), Lisbon, Portugal, 2001, pp. 20-29.

[8] H. Sneed, Encapsulating Legacy Software for Reuse in Client/Server
Sstem, In proceedings of WCRE-96, IEEE press, 1996, Monterey.

[9] I. Jacobson, Object-Oriented Software Engineering, Addison-Wesley,
1992 .

[10] J. Bansiya and C.G. Davis, “A Hierarchical Model for Object-Oriented
Design Quality Assessment”, IEEE Transactions on Software
Engineering, Vol. 28, No. 1, 2002.

[11] J. Daly, A. Brooks, J. Miller, M. Roper and M. Wood, “An Empirical
Study Evaluating Depth of Inheritance on Maintainability of Object-
Oriented Software”, Empirical Software Engineering, Vol. 1, No. 2,
1996, pp. 109-132.

[12] J. M. Bieman, and B. K. Kang, “Measuring Design-Level Cohesion”,
IEEE Transactions on Software Engineering, Vol. 24, No. 2, pp. 111-
124, 1998.

[13] J. Pinson Lewis and Richard S. Wiener, An Introduction to Object-
oriented Programming and Smalltalk, Addison- Wesley pp 49-60, 1988.

[14] J. Rumbaugh, M. Blaha, W. Lorensen, F. Eddy, and W. Premerlani,
Object-Oriented Modeling and Design, Prentice-Hall, 1991

[15] L. C. Briand, S. Morasca and V. Basili, “Property-Based Software
Engineering Measurement”, IEEE Transactions on Software
Engineering, Vol. 22, No. 6, pp. 68-86, 1996.

[16] L. C. Briand, J. W. Daly, V. Porter, and J. Wust, A Comprehensive
Empirical Validation of Product Measures for Object-Oriented Systems.
Technical Report, ISERN-98-07, 1998.

[17] L. C. Briand, J. W. Daly and J. Wust, “A Unified Framework for
Coupling Measurement in Object-Oriented Systems”, IEEE Transactions
on Software Engineering, Vol. 25, No. 1, pp. 91–121, 1999.

[18] L. C. Briand, J. W. Daly, V. Porter, and J. Wust, “Exploring the
Relationships Between Design Measures and Software Quality in Object
Oriented Systems”, Journal of Systems and Software, Vol. 51, No. 3, pp.
245-273, 2000.

[19] L. C. Briand and J. Wust, “The Impact of Design Properties on
Development Cost in Object-Oriented Systems”, Proc. 7th Int’l Software
Metrics Symposium (METRICS 01), IEEE CS Press, 2001.

[20] L. C. Briand, W. L. Melo and J. Wust, “Assessing the Applicability of
Fault Proneness Models Across Object-Oriented Software Projects”,
IEEE transactions on Software Engineering, Vol. 28, No. 7, 2002.

[21] L. H. Rosenberg and L. Hyatt, “Software Quality Metrics for Object-
Oriented Environments”, Crosstalk Jounal, 1997.

[22] L. Prechelt, B. Unger, M. Philippsen and W. Tichy, “A controlled
experiment on inheritance depth as a cost factor for code maintenance”,
The Journal of Systems and Software, Vol. 65, 2003, pp. 115-126.

[23] M. Alshayeb, and M. Li, “An Empirical Validation of Object-Oriented
Metrics in Two Different Iterative Software Processes”, IEEE
Transactions on Software Engineering archive, Vol. 29, 2003, pp.1043 –
1049.

[24] M. Cartwright, An Empirical view of inheritance, Information and
Software Technology, Vol. 40, No. 4, 1998, pp. 795-799.

[25] M. El Wakil, A. El Bastawissi, M. Boshra and A. Fahmy, Object-
Oriented Design Quality Models – A Survey and Comparison. 2nd
International Conference on Informatics and Systems, 2004.

[26] M. G. Bocco, M. Piattini and C. Calero, “A Survey of Metrics for UML
Class Diagrams”, Journal of Object Technology, Vol. 4, 2005, pp. 59-
92.

[27] M. Lorenz and J. Kidd, Object-Oriented Software Metrics, Prentice Hall,
1994.

[28] M. Tang, M. Kao and M. Chen, An Empirical Study on Object-Oriented
Metrics, 6th IEEE International Symposium on Software Metrics, 1998.

[29] N. E. Fenton and S. L. Peeger, Software Metrics: A Rigorous and
Practical Approach, PWS Publishing Company, Boston, Massachusetts,
USA, 1997.

[30] P. Coad and E. Yourdon, Object-Oriented Analysis, Yourdon Press,
Prentice Hall, New Jersey, 1990.

[31] P. Coad and E. Yourdon, Object-Oriented Design, Yourdon Press,
Prentice Hall, New Jersey, 1991.

[32] R. Harrison, S. Counsell and R. Nithi, “Experimental Assessment of the
Effect of Inheritance on the Maintainability of Object-Oriented
Systems”, The Journal of Systems and Software, Vol. 52, 2000, pp. 173-
179.

[33] R. Harrison, S. Counsell and V. Reuben, “An Evaluation of the MOOD
Set of Object-Oriented Software Metrics”, IEEE Transactions on
Software Engineering, Vol. 24, No. 6, pp. 491-496, 1998.

[34] R. Subramanya and M. S. Krishnan, “Empirical of CK Metrics for
Object-Oriented Design Complexity: Implication for Software Defects”,
IEEE Transaction on Software Engineering, Vol. 29, 2003, pp. 297-310.

[35] R. W. Selby and V. R. Vasili, “Analyzing Error-Prone Systems
Structure”, IEEE Transactions on Software Engineering, Vol. 17, 1991,
pp. 141-152.

[36] R. Wirfs-brock, B. Wilkerson, and L. Weiner, Designing Object-
Oriented Software, Prentice-Hall, 1990.

[37] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Transactions on Software Engineering, Vol. 20,
No. 6, pp. 476–493, 1994.

[38] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, “Managerial Use of
Metrics for Object-Oriented Software: An Exploratory Analysis”, IEEE
Transactions on Software Engineering, Vol. 24, No. 8, pp. 629-637,
1998.

[39] T. Reenskaug, E. Andersen A. Berre, A. Hurlen, A. Landmark, O.
Lehne, E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A. Skaar, and P.
Stenslet , “OORASS: seamless support for the creation and maintenance
of object oriented systems”, Journal of Object Oriented Programming,
Vol. 5, No. 6, 1992, pp. 7-41.

[40] The Object Agency, A comparison of Object–Oriented Development
Methodologies, 1996. http://www.toa.com.

[41] V. R. Basili, L. C. Briand, and W.L. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators”. IEEE Transactions on
Software Engineering, Vol. 22, No. 10, pp. 751-761, 1996.

[42] W. Li, and S. Henry, “Object-Oriented Metrics that Predict
Maintainability”. Journal ofSystems and Software, Vol. 23, No. 2, pp.
111-122, 1993.

[43] W. Li, “Another Metric Suite for Object Oriented Programming”, The
Journal of Systems and Software, Vol. 44, No. 2, pp. 155-162, 1998.

ISSN : 0975-3397 2729

Sanjay Kumar Dubey et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2726-2730

AUTHORS PROFILE

Sanjay Kumar Dubey is
Assistant Professor in the
Department of Computer
Science and Engineering in
Amity University Uttar Pradesh,
India. His research area includes
Software Engineering and
Usability Engineering. He is
pursuing his Ph. D. in Computer
Science and Engineering from
Amity University, since July,
2008.

Prof. (Dr.) Ajay Rana is Professor and Director, ATPC,
Amity University Uttar Pradesh, India. He is Ph. D. (2005)
in Computer Science and Engineering from Uttar Pradesh
Technical University, India. His research area includes
Software Engineering and Software Testing. He has
published more than 40 research papers in reputed National
& International Journals. He is the author of several books
in the area of computer science. He has received numbers of
best papers/case studies medals and prizes for his work.

ISSN : 0975-3397 2730

