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Abstract – In this paper, we have analysed i) the 
relationship between the checkpoint cost and the optimal 
checkpoint interval and  ii) the relationship between the 
checkpoint cost and the number of processors (processes) 
and we have also determined  the optimal number of 
processors (processes) required for executing the fault 
tolerant MPI applications. 

     We have presented an experimental study in which, we 
have used an optimal checkpoint restart model [1] with 
Weibull’s and Exponential distributions to determine the 
optimal checkpoint interval. 

     We have observed that, the optimal checkpoint intervals 
obtained using Weibull’s distribution, produce minimal 
average completion time; as compared with the optimal 
checkpoint intervals obtained using Exponential 
distribution. 

     The optimal checkpoint interval is approximately directly 
proportional to the checkpoint cost and inversely 
proportional to shape parameter. 

     The study indicates that, the checkpoint cost of MPI 
applications increases with the number of processors 
(processes) used for execution. 

     We have determined the optimal number of processes 
(processors) required to execute the MPI applications 
considered in this paper, as 4. 

Keywords: OPEN MPI, Fault Tolerance, Optimal 
Checkpoint Interval, Checkpoint Cost, Speedup, 
Efficiency.  

I. Introduction 
 

     As the complexity of the program increases, the number 
of processors to be added to the cluster / HPC / Super 
Computer also increases, which in turn decreases the MTBF 
(mean time between failures) of the processors or the 
machines [2]. When a processor fails or aborts before the 
completion of execution of the MPI application, the MPI 
application is restarted from the beginning. Hence, it is 
required to provide the fault tolerance to all the MPI 

applications which run on multiple processors or processes 
[1][3]-[7].  

     Fault tolerant MPI applications are checkpointed 
periodically and the checkpoints are stored either locally or 
sent to a remote server. When a fault tolerant MPI 
application fails/aborts, it is restarted from the most recently 
saved checkpoint on a local disk. Hence, it is not required to 
restart the application from the beginning [1][3]-[7].  

   

     The rollback recovery protocols such as uncoordinated, 
coordinated, communication induced checkpointing and 
message logging protocols [5] can be used to achieve the 
fault tolerance. We have used the coordinated checkpointing 
protocol [5][7] to provide the fault tolerance to MPI 
applications considered in this paper.  

     MPI collective communications are used to develop the 
MPI applications [7]. The optimal checkpoint restart model 
(OCRM) developed by M. Shastry et al. [1] has been used in 
this paper, to determine the optimal checkpoint interval, 
when the scale parameter and shape parameter of Weibull’s 
distribution are known along with checkpoint cost.  

     Fixed checkpoint interval is used to checkpoint the MPI 
applications considered in this paper [8]. The checkpointing 
of MPI applications includes different costs like, checkpoint 
cost, rollback cost, and restart cost [1][8][9]. These costs are 
collectively called the checkpoint overheads. The average 
completion time of an MPI application is obtained by 
adding the checkpoint overheads to the execution time of 
MPI application [1][8][9].  

     We would like to determine i) the optimal number of 
processes (processors) required to execute the MPI 
applications of different size, so that the average completion 
time of these MPI applications with checkpointing would be 
minimal, ii) the relationship between the checkpoint cost 
and the optimal checkpoint interval, and iii) the relationship 
between checkpoint cost and number of processes used to 
execute the MPI applications considered in this paper.  
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     Rest of the paper is organized as follows. In section 2, 
the related works carried out on the study of relationship 
between checkpoint cost and checkpoint interval, 
checkpoint / restart models used to determine checkpoint 
intervals are discussed.  

     In section 3, the different parameters used and the 
assumptions made in this paper are presented. In section 4, 
determination of the optimal checkpoint interval using 
Weibull’s and Exponential distributions is discussed briefly. 

     In section 5, the equations used for determining the 
average completion time of the MPI applications are 
presented. In section 6, the results of the case studies 
considered in this paper are presented.  In section 7, the 
experimental setup used in the analysis is discussed and in 
section 8, conclusions are presented. 

 

II. Related Works 

     An excellent survey on rollback recovery protocols has 
been carried out by Elnozahy et al.[5]. Chandy[10][11] and 
Treaster[12] have presented a survey on rollback and 
recovery strategies used in fault tolerant MPI applications.  

     M. Shastry et al. [8] have shown that the fixed 
checkpoint interval reduces the checkpoint overheads of 
fault tolerant MPI applications as compared with the 
incremental or varying checkpoint interval. Hence, we have 
used the fixed checkpoint interval in our experiment to 
checkpoint the MPI applications. 

     Geff et al. [9] have used a simulator to determine the 
relationship between the checkpoint interval and the various 
checkpoint overheads.  

     The OCRM discussed by M.Shastry et al. [1] have shown 
the significant improvement with regard to the total wastage 
time as compared with the checkpoint restart models 
developed by Yudun liu et al. [13][14] and Bouguerra  
Mohammed Slim et al. [15], 

     The checkpoint interval obtained by OCRM [1] using 
Weibull’s and Exponential distributions, produces minimal 
checkpoint overheads as compared with Yudun liu et al. 
[13][14] and Bouguerra  Mohammed Slim et al. [15].  

     Hoda El-Sayed et al. [16] and Xin Wang [17] have 
discussed about the speedup and the efficiency of MPI 
applications. 

 

 

 

 

 

 

 

III. Parameters/ Notations Used and Assumptions Made.  

A. Parameters and Notations Used. 

     The parameters/notations used in this paper are presented 
in the table 1. 

Table 1.  Parameters/Notations used. 

 
Parameter
/Notation 

Meaning 

TC 
 

Optimal Checkpoint interval. 
 

TS 
Time required to save the checkpoint on 
a local disk (Checkpoint Cost). 

β 
Shape Parameter of  Weibull’s 
distribution. 

α 
Scale Parameter of  Weibull’s 
distribution. 

Ti 
Execution time till a failure occurs in ith 
cycle. 

Ni 
Number of checkpoints taken till a 
failure occurs in ith  cycle. 

RBi 
 

Rollback cost due to a failure in ith cycle 
 

CCi 
 

Checkpoint cost in ith cycle 
 

R 
Restart cost(time  required to resume the 
execution of the application after a 
failure). 

TLi 
 

Total time lost in ith cycle. 
 

F 
 

Number of failures. 
 

TL 
Total time lost due to F failures during 
the execution of  MPI application. 

ET 
Execution Time of MPI application 
without checkpointing. 

ACT 
Average Completion Time of MPI 
Application. 

T1 
Time required to execute the application 
sequentially (using a single processor) 
without checkpointing. 

TP 
Time required for parallel execution of 
the same application using p processors 
without checkpointing. 

Mat4k 
MPI Application, which multiplies two 
matrices of  size 4000 * 4000 integers. 

Mat5k 
MPI Application, which multiplies two 
matrices of  size 5000 * 5000 integers. 

Prime4L 
MPI Application, which generates 4 
lakh prime numbers on each 
process(processor). 

Prime5L 
MPI Application, which generates 5 
lakh prime numbers on each process 
(processor). 
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B.   Assumptions Made 

     We have made the following assumptions, which are 
similar to the assumptions made in [1] to checkpoint the 
MPI applications considered in this paper.  

1. A series of random failures Fi (i = 1, 2, 3,..N) may 
interrupt the execution of  MPI application. 

2. A separate monitoring software system is used to 
monitor continuously the failure of a fault tolerant MPI 
application. 

3. Checkpoint interval (TC) is fixed and a checkpoint is 
taken periodically after the time TC. 

4. When a failure occurs during the execution of MPI 
application, MPI application is rolled back to the most 
recent checkpoint using locally stored checkpoint file. 

5. Time required for writing a checkpoint (TS) onto a 
local disk is a constant and only one copy of the most 
recent checkpoint is stored on a local disk. 

6. Time required for resuming/restarting (restart cost, R) 
the MPI application from the most recent checkpoint is a 
constant.  

 

IV. Determination of Optimal Checkpoint Interval 

A. Using Weibull’s Distribution  

     The optimal checkpoint interval TC is obtained by using 
the optimal checkpoint restart model (OCRM) developed by 
[1] using Weibull’s distribution. The algorithm Estimate-TC 

( ) of [1] is used with the shape parameter β and the scale 
parameter α for the given checkpoint cost, TS. The shape 
parameter β is set to 0.5. 

B. Using Exponential Distribution. 

     The optimal checkpoint interval TC is obtained by using 
the optimal checkpoint restart model (OCRM) developed by 
[1] using Exponential distribution. The algorithm Estimate-
TC ( ) of [1] is used with the shape parameter β and the scale 
parameter α for the given checkpoint cost, TS. The shape 
parameter β is set to 1.0. 

 

V. Determination of Total Time Lost 

     The number of checkpoints to be taken in a cycle before 
the occurrence of a failure can be determined by [1][8] 

       )1()(/ SCii TTTN   

     Then, the cost of checkpoint in ith cycle is computed as 
follows [1][8]. 

     )2(Sii TNCC   

     The cost of rollback in ith cycle is then computed as 
follows [1][8]. 

     )3())(( SCiii TTNTRb   

     The time lost in ith cycle TLi due to a failure can be 
obtained by adding checkpoint cost, rollback cost and restart 
cost together as follows[1][8]. 

     )4(RRbCCTL iii   

     The time lost in ith cycle can also be computed [1] as 
follows by substituting (2) and (3) in (4). 

     )5(RTNTTL Ciii   

     The total time lost during the execution of a fault tolerant 
MPI application is determined using the following equation 
[1][8]. 

     )6(
1





F

i
iTLTL  

 
     The average completion time of a MPI application is 
computed as follows 
 

      )7(TLETACT   

 
VI. Case Studies 

 
A. Variation in Execution Time (ET) with Number of   
      Processors (Processes). 

      Variation in execution time of Mat4k and Mat5k with  
number of processes is represented in figure 1 a). Figure 1a) 
shows that, the execution time of Mat4k and Mat5k is very 
high, when number of processes is 1. When number of 
processes is increased to 2, the execution time of both  
applications is reduced to almost 50%. When the number of 
processes is increased to 4 and 8, the execution time of 
Mat5k increases linearly, but, the execution time of Mat4k 
remains almost constant. When the number of processes is 
increased to 16 and 32, the execution time remains almost 
constant for  both applications as shown in figure 1a). 

     Variation in execution time of  Prime4L and Prime5L  
with  number of processes is represented in figure 1 b). 
Figure 1b) shows that, the execution time of Prime4L and 
Prime5L is very high when number of processes is 1. When 
number of processes is increased to 2, 4 and 8 the execution 
time of both applications is reduced by 26% to 40%.  

 The execution time of both applications remains almost 
constant, when the number of processes is increased to 16 
and 32 as shown in figure 1b).  
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When P processors (processes) are used to execute the MPI 
applications, the speed up and the efficiency [16][17] are 
computed as follows. 

     Speed up = T1   / TP. 

     Efficiency =  Speed up / P.   

     Variation in speed up with the number of processes used 
for executing the MPI applications considered in this paper, 
is represented in the figure 1c).  

The figure 1c) shows that, when the number of processes is 
between 1 and 4, the speed up is between 1 and 2 in all the 4 
cases. Speedup remains same in case of Mat4k and Mat5k, 
when the number of processes is between 1 and 32. But the 
speedup increases gradually in case of Prime4L and 
Prime5L, when the number of processes is between 1 and 16 
and remains constant, when the number of processes is 
between 16 and 32.  

     It is clear from the figure 1c) that, the speedup remains 
same in all the four cases, when the number of processes is 
4. 

    Variation in efficiency with the number of processes used 
for executing the MPI applications considered in this paper, 
is represented in the figure 1d).  

The figure 1d) shows that,  when the number of processes is 
between 1 and 4, efficiency is between 0.5 and 1 in all the 4 
cases. Efficiency reduces  gradually in all the 4 cases, as the 
number of processes is increased from 4 to 16 and reaches 
almost zero, when number of processes is 32.  

When the number of processors (processes) used for 
executing the MPI applications is P,  speedup is above 2 and 
the efficiency is between 0.5 and 1, the optimal number of 
processors (processes), PO, to be used for executing MPI 
applications is, PO = P. 

Since the speedup is 2 and the efficiency is above 0.5 as 
shown in figures 1c) and 1d) respectively, in all the 4 cases,  
we conclude that, the optimal number of processors 
(processes) to be used for executing all the 4 MPI 
applications considered in this paper, is, 4 (PO = 4). 

 
 

 

Fig 1 a). Variation in Execution Time of  Mat4k and Mat5k. 
 

 
 

Fig 1 b). Variation in Execution Time of Prime4L and Prime5L. 

 

 
 

Fig 1c). Variation in Speedup. 
 

 
 

Fig 1d). Variation in Efficiency.  
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B. Variation in Checkpoint Cost with Number of  
       Processes (Processors). 
 
     Figures 2a) and 2b) present the variation in checkpoint 
cost of Mat4K, Mat5K and Prime4L, Prime5L MPI 
applications with the number of processes respectively. 

     It is clear from the figures 2a) and 2b) that, the 
checkpoint cost of MPI applications increases linearly as the 
number of processes increases from 1 to 32.  

Thus, the checkpoint cost is directly proportional to the 
number of processes used for executing the MPI 
applications. 

    
 

Fig 2 a). Variation in Checkpoint Cost of Mat4k and Mat5k. 

 

 
 

Fig 2 b). Variation in Checkpoint Cost of Prime4L and Prime5L. 

 
C. Variation in Optimal Checkpoint Interval with    
       Checkpoint Cost. 
 

     Figure 3 represents the optimal checkpoint intervals 
obtained from OCRM [1] using Weibull’s distribution with 
shape parameter, β = 0.5 and Exponential distribution with 
shape parameter, β = 1.0  for the different values of 
checkpoint cost, TS of MPI applications considered in this 
paper. The scale parameter α, is set to 4.8 minutes (λ = 300 
failures per day). 
 
     In figure 3, when β = 0.5, the TC remains 1.5 minutes, 
when TS is less than 8 seconds and TC increases to 2 
minutes, when TS is between 9 and 16 seconds. The TC 
value increases gradually when TS is between 16 and 30 
seconds. The value of TC decreases gradually further when 
TS is above 30 seconds.  
 
When β = 1.0, the optimal TC remains 0.5 minutes, when TS 

is less than 5 seconds and TC increases to 1 minute when TS 
is between 5 and 6 seconds. The TC value increases 
gradually when TS  is between 10 and 42 seconds. The value 
of TC remains almost constant, when TS is above 42 seconds. 
 
     Thus, it is clear from the figure 3 that, the optimal 
checkpoint intervals obtained from OCRM [1] using 
Exponential distribution with β = 1.0 are low as compared to 
the optimal checkpoint intervals obtained from OCRM [1] 
using Weibull’s distribution with β = 0.5. This clearly 
indicates that, the number of checkpoints to be taken for an 
MPI application is more in the case of Exponential 
distribution (β = 1.0) as compared with the Weibull’s 
distribution(β = 0.5). It is also clear from the figure 3 that, 
the optimal checkpoint interval is approximately directly 
proportional to the checkpoint cost, TS. of MPI application 
and inversely proportional to the shape parameter, β of 
Weibull’s distribution. 

 
 

Fig 3. Variation in Optimal Checkpoint Interval 
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D. Variation in Average Completion time with Number         
       of Processors (Processes). 
 
      Figures 4 and 5 represent the variation in the average 
completion time of Mat4k and Mat5k with number of 
processes respectively. Figures 6 and 7 represent the 
variation in average completion time of Prime4L and 
Prime5L with number of processes, respectively. The 
average completion time of all 4 MPI applications is 
computed using the equation (7).  
 
The average completion time of Mat4k, as shown in the 
figure 4, is almost same for β = 0.5 and β = 1.0, when the 
number of processes is between 1 and 16. Similarly, the 
average completion time of Mat5k, as shown in figure 5, is 
almost same for β = 0.5 and β = 1.0, when the number of 
processes is between 1 and 16 
 
     Since, the optimal checkpoint intervals obtained from 
OCRM [1] using exponential distribution with β = 1.0 are 
low as compared with the optimal checkpoint intervals 
obtained from OCRM [1] using Weibull’s distribution with 
β = 0.5 as shown in figure 3, the average completion time of 
Mat4k is 9% less and Mat5k is 7% less, when β = 0.5, as 
shown in the figures 4 and 5 respectively, when the number 
of processes is above 16. This result is as expected from 
OCRM[1], because, the number of checkpoints to be taken 
will be more in the case of Exponential distribution with     
β = 1.0 as compared to the Weibull’s distribution with          
β = 0.5. 
 
     The average completion time of the Prime4L, as shown 
in figure 6, is almost same for both β = 0.5 and β = 1.0, 
when the number of processes is between 1 and 32. 
Similarly, the average completion time of the Prime5L, as 
shown in figure 7, is almost same for both β = 0.5 and         
β = 1.0, when the number of processes is between 1 and 32. 
But, still the average completion time of these applications 
is 3 % less, when β = 0.5, as shown in figures 6 and 7. 

 
     Thus, it is clear from the figures 4, 5, 6 and 7 that, the 
optimal checkpoint intervals obtained from OCRM [1] using 
Weibull’s distribution with β = 0.5, yield minimal average 
completion time as compared to the optimal checkpoint 
intervals obtained from OCRM [1] using Exponential 
distribution with β = 1.0, irrespective of the number of 
processes used to execute the MPI applications considered 
in this paper. 
 
 

 
 

Fig 4. Average Completion Time of Mat4k 

 
 

 
 

Fig 5. Average Completion Time of Mat5k 
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Fig 6. Average Completion Time of Prime4L 

 

 
 

Fig 7. Average Completion Time of Prime5L 

 
VII. Experimental Setup 

 
     An AMD Athlon ™ II X4 630 (Quad Core) processor 
with 4 GB of RAM is used to execute the MPI applications.  

     We have implemented 4 MPI applications, Mat4k, 
Mat5k, Prime4L and Prime5L in “C” programming by using 
OPEN MPI [18] on a standalone system. OPEN MPI [18] 
allows the execution and checkpointing of MPI applications 
on standalone systems also.  MPI collective communication 
methods like MPI_Scatter() and MPI_Bcast() are used to 
distribute the data to different processes involved in the 
cluster[7]. 

     Berkeley Lab’s Checkpoint restart (BLCR) technique 
along with OPEN MPI is used to checkpoint the above MPI 

applications. BLCR is a LINUX based coordinated 
checkpointing protocol [19]. We have used fixed checkpoint 
interval to checkpoint the MPI applications [8], as it reduces 
the total waste time due to the checkpointing of MPI 
applications.  

     The above mentioned MPI applications are executed and 
checkpointed periodically after the time TC. We have 
generated λ = 300 failures per day (α = 4.8 minutes) during 
the execution of above MPI applications. 

     Weibull’s distribution with β = 0.5 and Exponential 
distribution with β = 1.0 are used to determine the optimal 
checkpoint intervals using OCRM [1], when α = 4.8 
minutes.   
 
     The monitor program is developed in a shell script. This 
program runs at the background and monitors continuously 
the execution of the MPI applications. Once, the monitor 
program learns that the MPI application has failed due to an 
interruption; it uses the most recent checkpoint stored 
locally and resumes the execution of the MPI application 
from the most recent checkpoint. 
 

VIII. Conclusions. 

     Execution time of the MPI applications as shown in 
figures 1a) and 1b), reduces to more than 30% to 50% when 
the number of processes is increased from 1 to 8 and the 
execution time almost remains constant when the number of 
processes is increased from 8 to 32. 
 
     Since, when the number of processes is 4, for all the 4 
applications, the speedup is 2 and the efficiency is above 0.5 
as shown in figures 1c) and 1d) respectively, we conclude 
that, the optimal number of processes to be used for 
executing all the 4 MPI applications considered in this 
paper, is 4. 

     Figures 2a) and 2b) show that, the checkpoint cost of 
MPI applications increases gradually as the number of 
processes increases from 1 to 32. Thus, the checkpoint cost 
is directly proportional to the number of processes used to 
execute an MPI application. 

     Figure 3 shows that, the optimal checkpoint intervals 
obtained using Exponential distribution with β = 1.0 are low 
as compared to the optimal checkpoint intervals obtained 
using Weibull’s distribution with β = 0.5. This clearly 
indicates that, the number of checkpoints to be taken for an 
MPI application is more in the case of Exponential 
distribution (β = 1.0) as compared with the Weibull’s 
distribution (β = 0.5). 
 
     It is also clear from the figure 3 that, the optimal 
checkpoint interval is approximately directly proportional to 
the checkpoint cost, TS. of MPI application and inversely 
proportional the shape parameter, β of Weibull’s 
distribution. 
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     It is quite clear from the figures 4, 5, 6 and 7 that, the 
optimal checkpoint intervals obtained from OCRM [1] using 
Weibull’s distribution with β = 0.5, yield minimal average 
completion time as compared with the optimal checkpoint 
intervals obtained from [1] using Exponential distribution 
with β = 1.0.  This is because; the number of checkpoints to 
be taken is more in case of Exponential distribution as 
compared with Weibull’s distribution.  
 
     Our results discussed in this paper again emphasis that, 
when the scale parameter α and the checkpoint cost, TS of 
MPI applications are known, the Weibull’s distribution can 
be used to determine optimal checkpoint intervals from 
OCRM [1] for any given value of shape parameter, β.  
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