
Mallikarjuna Shastry P M et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2690-2697

Analysis of Dependencies of Checkpoint Cost and
Checkpoint Interval of Fault Tolerant MPI

Applications

Mallikarjuna Shastry P.M.#1 and K. Venkatesh #2

#1Sapthagiri College of Engineering, #2M. S. Ramaiah Institute of Technology,
#Affiliated to Vishweshwaraya Technological University,

Bangalore, Karnataka, India.,

Abstract – In this paper, we have analysed i) the
relationship between the checkpoint cost and the optimal
checkpoint interval and ii) the relationship between the
checkpoint cost and the number of processors (processes)
and we have also determined the optimal number of
processors (processes) required for executing the fault
tolerant MPI applications.

 We have presented an experimental study in which, we
have used an optimal checkpoint restart model [1] with
Weibull’s and Exponential distributions to determine the
optimal checkpoint interval.

 We have observed that, the optimal checkpoint intervals
obtained using Weibull’s distribution, produce minimal
average completion time; as compared with the optimal
checkpoint intervals obtained using Exponential
distribution.

 The optimal checkpoint interval is approximately directly
proportional to the checkpoint cost and inversely
proportional to shape parameter.

 The study indicates that, the checkpoint cost of MPI
applications increases with the number of processors
(processes) used for execution.

 We have determined the optimal number of processes
(processors) required to execute the MPI applications
considered in this paper, as 4.

Keywords: OPEN MPI, Fault Tolerance, Optimal
Checkpoint Interval, Checkpoint Cost, Speedup,
Efficiency.

I. Introduction

 As the complexity of the program increases, the number
of processors to be added to the cluster / HPC / Super
Computer also increases, which in turn decreases the MTBF
(mean time between failures) of the processors or the
machines [2]. When a processor fails or aborts before the
completion of execution of the MPI application, the MPI
application is restarted from the beginning. Hence, it is
required to provide the fault tolerance to all the MPI

applications which run on multiple processors or processes
[1][3]-[7].

 Fault tolerant MPI applications are checkpointed
periodically and the checkpoints are stored either locally or
sent to a remote server. When a fault tolerant MPI
application fails/aborts, it is restarted from the most recently
saved checkpoint on a local disk. Hence, it is not required to
restart the application from the beginning [1][3]-[7].

 The rollback recovery protocols such as uncoordinated,
coordinated, communication induced checkpointing and
message logging protocols [5] can be used to achieve the
fault tolerance. We have used the coordinated checkpointing
protocol [5][7] to provide the fault tolerance to MPI
applications considered in this paper.

 MPI collective communications are used to develop the
MPI applications [7]. The optimal checkpoint restart model
(OCRM) developed by M. Shastry et al. [1] has been used in
this paper, to determine the optimal checkpoint interval,
when the scale parameter and shape parameter of Weibull’s
distribution are known along with checkpoint cost.

 Fixed checkpoint interval is used to checkpoint the MPI
applications considered in this paper [8]. The checkpointing
of MPI applications includes different costs like, checkpoint
cost, rollback cost, and restart cost [1][8][9]. These costs are
collectively called the checkpoint overheads. The average
completion time of an MPI application is obtained by
adding the checkpoint overheads to the execution time of
MPI application [1][8][9].

 We would like to determine i) the optimal number of
processes (processors) required to execute the MPI
applications of different size, so that the average completion
time of these MPI applications with checkpointing would be
minimal, ii) the relationship between the checkpoint cost
and the optimal checkpoint interval, and iii) the relationship
between checkpoint cost and number of processes used to
execute the MPI applications considered in this paper.

ISSN : 0975-3397 2690

Mallikarjuna Shastry P M et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2690-2697

 Rest of the paper is organized as follows. In section 2,
the related works carried out on the study of relationship
between checkpoint cost and checkpoint interval,
checkpoint / restart models used to determine checkpoint
intervals are discussed.

 In section 3, the different parameters used and the
assumptions made in this paper are presented. In section 4,
determination of the optimal checkpoint interval using
Weibull’s and Exponential distributions is discussed briefly.

 In section 5, the equations used for determining the
average completion time of the MPI applications are
presented. In section 6, the results of the case studies
considered in this paper are presented. In section 7, the
experimental setup used in the analysis is discussed and in
section 8, conclusions are presented.

II. Related Works

 An excellent survey on rollback recovery protocols has
been carried out by Elnozahy et al.[5]. Chandy[10][11] and
Treaster[12] have presented a survey on rollback and
recovery strategies used in fault tolerant MPI applications.

 M. Shastry et al. [8] have shown that the fixed
checkpoint interval reduces the checkpoint overheads of
fault tolerant MPI applications as compared with the
incremental or varying checkpoint interval. Hence, we have
used the fixed checkpoint interval in our experiment to
checkpoint the MPI applications.

 Geff et al. [9] have used a simulator to determine the
relationship between the checkpoint interval and the various
checkpoint overheads.

 The OCRM discussed by M.Shastry et al. [1] have shown
the significant improvement with regard to the total wastage
time as compared with the checkpoint restart models
developed by Yudun liu et al. [13][14] and Bouguerra
Mohammed Slim et al. [15],

 The checkpoint interval obtained by OCRM [1] using
Weibull’s and Exponential distributions, produces minimal
checkpoint overheads as compared with Yudun liu et al.
[13][14] and Bouguerra Mohammed Slim et al. [15].

 Hoda El-Sayed et al. [16] and Xin Wang [17] have
discussed about the speedup and the efficiency of MPI
applications.

III. Parameters/ Notations Used and Assumptions Made.

A. Parameters and Notations Used.

 The parameters/notations used in this paper are presented
in the table 1.

Table 1. Parameters/Notations used.

Parameter
/Notation

Meaning

TC

Optimal Checkpoint interval.

TS
Time required to save the checkpoint on
a local disk (Checkpoint Cost).

β
Shape Parameter of Weibull’s
distribution.

α
Scale Parameter of Weibull’s
distribution.

Ti
Execution time till a failure occurs in ith
cycle.

Ni
Number of checkpoints taken till a
failure occurs in ith cycle.

RBi

Rollback cost due to a failure in ith cycle

CCi

Checkpoint cost in ith cycle

R
Restart cost(time required to resume the
execution of the application after a
failure).

TLi

Total time lost in ith cycle.

F

Number of failures.

TL
Total time lost due to F failures during
the execution of MPI application.

ET
Execution Time of MPI application
without checkpointing.

ACT
Average Completion Time of MPI
Application.

T1
Time required to execute the application
sequentially (using a single processor)
without checkpointing.

TP
Time required for parallel execution of
the same application using p processors
without checkpointing.

Mat4k
MPI Application, which multiplies two
matrices of size 4000 * 4000 integers.

Mat5k
MPI Application, which multiplies two
matrices of size 5000 * 5000 integers.

Prime4L
MPI Application, which generates 4
lakh prime numbers on each
process(processor).

Prime5L
MPI Application, which generates 5
lakh prime numbers on each process
(processor).

ISSN : 0975-3397 2691

Mallikarjuna Shastry P M et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2690-2697

B. Assumptions Made

 We have made the following assumptions, which are
similar to the assumptions made in [1] to checkpoint the
MPI applications considered in this paper.

1. A series of random failures Fi (i = 1, 2, 3,..N) may
interrupt the execution of MPI application.

2. A separate monitoring software system is used to
monitor continuously the failure of a fault tolerant MPI
application.

3. Checkpoint interval (TC) is fixed and a checkpoint is
taken periodically after the time TC.

4. When a failure occurs during the execution of MPI
application, MPI application is rolled back to the most
recent checkpoint using locally stored checkpoint file.

5. Time required for writing a checkpoint (TS) onto a
local disk is a constant and only one copy of the most
recent checkpoint is stored on a local disk.

6. Time required for resuming/restarting (restart cost, R)
the MPI application from the most recent checkpoint is a
constant.

IV. Determination of Optimal Checkpoint Interval

A. Using Weibull’s Distribution

 The optimal checkpoint interval TC is obtained by using
the optimal checkpoint restart model (OCRM) developed by
[1] using Weibull’s distribution. The algorithm Estimate-TC

() of [1] is used with the shape parameter β and the scale
parameter α for the given checkpoint cost, TS. The shape
parameter β is set to 0.5.

B. Using Exponential Distribution.

 The optimal checkpoint interval TC is obtained by using
the optimal checkpoint restart model (OCRM) developed by
[1] using Exponential distribution. The algorithm Estimate-
TC () of [1] is used with the shape parameter β and the scale
parameter α for the given checkpoint cost, TS. The shape
parameter β is set to 1.0.

V. Determination of Total Time Lost

 The number of checkpoints to be taken in a cycle before
the occurrence of a failure can be determined by [1][8]

  )1()(/ SCii TTTN 

 Then, the cost of checkpoint in ith cycle is computed as
follows [1][8].

)2(Sii TNCC 

 The cost of rollback in ith cycle is then computed as
follows [1][8].

)3())((SCiii TTNTRb 

 The time lost in ith cycle TLi due to a failure can be
obtained by adding checkpoint cost, rollback cost and restart
cost together as follows[1][8].

)4(RRbCCTL iii 

 The time lost in ith cycle can also be computed [1] as
follows by substituting (2) and (3) in (4).

)5(RTNTTL Ciii 

 The total time lost during the execution of a fault tolerant
MPI application is determined using the following equation
[1][8].

)6(
1





F

i
iTLTL

 The average completion time of a MPI application is
computed as follows

)7(TLETACT 

VI. Case Studies

A. Variation in Execution Time (ET) with Number of
 Processors (Processes).

 Variation in execution time of Mat4k and Mat5k with
number of processes is represented in figure 1 a). Figure 1a)
shows that, the execution time of Mat4k and Mat5k is very
high, when number of processes is 1. When number of
processes is increased to 2, the execution time of both
applications is reduced to almost 50%. When the number of
processes is increased to 4 and 8, the execution time of
Mat5k increases linearly, but, the execution time of Mat4k
remains almost constant. When the number of processes is
increased to 16 and 32, the execution time remains almost
constant for both applications as shown in figure 1a).

 Variation in execution time of Prime4L and Prime5L
with number of processes is represented in figure 1 b).
Figure 1b) shows that, the execution time of Prime4L and
Prime5L is very high when number of processes is 1. When
number of processes is increased to 2, 4 and 8 the execution
time of both applications is reduced by 26% to 40%.

 The execution time of both applications remains almost
constant, when the number of processes is increased to 16
and 32 as shown in figure 1b).

ISSN : 0975-3397 2692

Mallikarjuna Shastry P M et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2690-2697

When P processors (processes) are used to execute the MPI
applications, the speed up and the efficiency [16][17] are
computed as follows.

 Speed up = T1 / TP.

 Efficiency = Speed up / P.

 Variation in speed up with the number of processes used
for executing the MPI applications considered in this paper,
is represented in the figure 1c).

The figure 1c) shows that, when the number of processes is
between 1 and 4, the speed up is between 1 and 2 in all the 4
cases. Speedup remains same in case of Mat4k and Mat5k,
when the number of processes is between 1 and 32. But the
speedup increases gradually in case of Prime4L and
Prime5L, when the number of processes is between 1 and 16
and remains constant, when the number of processes is
between 16 and 32.

 It is clear from the figure 1c) that, the speedup remains
same in all the four cases, when the number of processes is
4.

 Variation in efficiency with the number of processes used
for executing the MPI applications considered in this paper,
is represented in the figure 1d).

The figure 1d) shows that, when the number of processes is
between 1 and 4, efficiency is between 0.5 and 1 in all the 4
cases. Efficiency reduces gradually in all the 4 cases, as the
number of processes is increased from 4 to 16 and reaches
almost zero, when number of processes is 32.

When the number of processors (processes) used for
executing the MPI applications is P, speedup is above 2 and
the efficiency is between 0.5 and 1, the optimal number of
processors (processes), PO, to be used for executing MPI
applications is, PO = P.

Since the speedup is 2 and the efficiency is above 0.5 as
shown in figures 1c) and 1d) respectively, in all the 4 cases,
we conclude that, the optimal number of processors
(processes) to be used for executing all the 4 MPI
applications considered in this paper, is, 4 (PO = 4).

Fig 1 a). Variation in Execution Time of Mat4k and Mat5k.

Fig 1 b). Variation in Execution Time of Prime4L and Prime5L.

Fig 1c). Variation in Speedup.

Fig 1d). Variation in Efficiency.

ISSN : 0975-3397 2693

Mallikarjuna Shastry P M et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2690-2697

B. Variation in Checkpoint Cost with Number of
 Processes (Processors).

 Figures 2a) and 2b) present the variation in checkpoint
cost of Mat4K, Mat5K and Prime4L, Prime5L MPI
applications with the number of processes respectively.

 It is clear from the figures 2a) and 2b) that, the
checkpoint cost of MPI applications increases linearly as the
number of processes increases from 1 to 32.

Thus, the checkpoint cost is directly proportional to the
number of processes used for executing the MPI
applications.

Fig 2 a). Variation in Checkpoint Cost of Mat4k and Mat5k.

Fig 2 b). Variation in Checkpoint Cost of Prime4L and Prime5L.

C. Variation in Optimal Checkpoint Interval with
 Checkpoint Cost.

 Figure 3 represents the optimal checkpoint intervals
obtained from OCRM [1] using Weibull’s distribution with
shape parameter, β = 0.5 and Exponential distribution with
shape parameter, β = 1.0 for the different values of
checkpoint cost, TS of MPI applications considered in this
paper. The scale parameter α, is set to 4.8 minutes (λ = 300
failures per day).

 In figure 3, when β = 0.5, the TC remains 1.5 minutes,
when TS is less than 8 seconds and TC increases to 2
minutes, when TS is between 9 and 16 seconds. The TC
value increases gradually when TS is between 16 and 30
seconds. The value of TC decreases gradually further when
TS is above 30 seconds.

When β = 1.0, the optimal TC remains 0.5 minutes, when TS

is less than 5 seconds and TC increases to 1 minute when TS
is between 5 and 6 seconds. The TC value increases
gradually when TS is between 10 and 42 seconds. The value
of TC remains almost constant, when TS is above 42 seconds.

 Thus, it is clear from the figure 3 that, the optimal
checkpoint intervals obtained from OCRM [1] using
Exponential distribution with β = 1.0 are low as compared to
the optimal checkpoint intervals obtained from OCRM [1]
using Weibull’s distribution with β = 0.5. This clearly
indicates that, the number of checkpoints to be taken for an
MPI application is more in the case of Exponential
distribution (β = 1.0) as compared with the Weibull’s
distribution(β = 0.5). It is also clear from the figure 3 that,
the optimal checkpoint interval is approximately directly
proportional to the checkpoint cost, TS. of MPI application
and inversely proportional to the shape parameter, β of
Weibull’s distribution.

Fig 3. Variation in Optimal Checkpoint Interval

ISSN : 0975-3397 2694

Mallikarjuna Shastry P M et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2690-2697

D. Variation in Average Completion time with Number
 of Processors (Processes).

 Figures 4 and 5 represent the variation in the average
completion time of Mat4k and Mat5k with number of
processes respectively. Figures 6 and 7 represent the
variation in average completion time of Prime4L and
Prime5L with number of processes, respectively. The
average completion time of all 4 MPI applications is
computed using the equation (7).

The average completion time of Mat4k, as shown in the
figure 4, is almost same for β = 0.5 and β = 1.0, when the
number of processes is between 1 and 16. Similarly, the
average completion time of Mat5k, as shown in figure 5, is
almost same for β = 0.5 and β = 1.0, when the number of
processes is between 1 and 16

 Since, the optimal checkpoint intervals obtained from
OCRM [1] using exponential distribution with β = 1.0 are
low as compared with the optimal checkpoint intervals
obtained from OCRM [1] using Weibull’s distribution with
β = 0.5 as shown in figure 3, the average completion time of
Mat4k is 9% less and Mat5k is 7% less, when β = 0.5, as
shown in the figures 4 and 5 respectively, when the number
of processes is above 16. This result is as expected from
OCRM[1], because, the number of checkpoints to be taken
will be more in the case of Exponential distribution with
β = 1.0 as compared to the Weibull’s distribution with
β = 0.5.

 The average completion time of the Prime4L, as shown
in figure 6, is almost same for both β = 0.5 and β = 1.0,
when the number of processes is between 1 and 32.
Similarly, the average completion time of the Prime5L, as
shown in figure 7, is almost same for both β = 0.5 and
β = 1.0, when the number of processes is between 1 and 32.
But, still the average completion time of these applications
is 3 % less, when β = 0.5, as shown in figures 6 and 7.

 Thus, it is clear from the figures 4, 5, 6 and 7 that, the
optimal checkpoint intervals obtained from OCRM [1] using
Weibull’s distribution with β = 0.5, yield minimal average
completion time as compared to the optimal checkpoint
intervals obtained from OCRM [1] using Exponential
distribution with β = 1.0, irrespective of the number of
processes used to execute the MPI applications considered
in this paper.

Fig 4. Average Completion Time of Mat4k

Fig 5. Average Completion Time of Mat5k

ISSN : 0975-3397 2695

Mallikarjuna Shastry P M et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2690-2697

Fig 6. Average Completion Time of Prime4L

Fig 7. Average Completion Time of Prime5L

VII. Experimental Setup

 An AMD Athlon ™ II X4 630 (Quad Core) processor
with 4 GB of RAM is used to execute the MPI applications.

 We have implemented 4 MPI applications, Mat4k,
Mat5k, Prime4L and Prime5L in “C” programming by using
OPEN MPI [18] on a standalone system. OPEN MPI [18]
allows the execution and checkpointing of MPI applications
on standalone systems also. MPI collective communication
methods like MPI_Scatter() and MPI_Bcast() are used to
distribute the data to different processes involved in the
cluster[7].

 Berkeley Lab’s Checkpoint restart (BLCR) technique
along with OPEN MPI is used to checkpoint the above MPI

applications. BLCR is a LINUX based coordinated
checkpointing protocol [19]. We have used fixed checkpoint
interval to checkpoint the MPI applications [8], as it reduces
the total waste time due to the checkpointing of MPI
applications.

 The above mentioned MPI applications are executed and
checkpointed periodically after the time TC. We have
generated λ = 300 failures per day (α = 4.8 minutes) during
the execution of above MPI applications.

 Weibull’s distribution with β = 0.5 and Exponential
distribution with β = 1.0 are used to determine the optimal
checkpoint intervals using OCRM [1], when α = 4.8
minutes.

 The monitor program is developed in a shell script. This
program runs at the background and monitors continuously
the execution of the MPI applications. Once, the monitor
program learns that the MPI application has failed due to an
interruption; it uses the most recent checkpoint stored
locally and resumes the execution of the MPI application
from the most recent checkpoint.

VIII. Conclusions.

 Execution time of the MPI applications as shown in
figures 1a) and 1b), reduces to more than 30% to 50% when
the number of processes is increased from 1 to 8 and the
execution time almost remains constant when the number of
processes is increased from 8 to 32.

 Since, when the number of processes is 4, for all the 4
applications, the speedup is 2 and the efficiency is above 0.5
as shown in figures 1c) and 1d) respectively, we conclude
that, the optimal number of processes to be used for
executing all the 4 MPI applications considered in this
paper, is 4.

 Figures 2a) and 2b) show that, the checkpoint cost of
MPI applications increases gradually as the number of
processes increases from 1 to 32. Thus, the checkpoint cost
is directly proportional to the number of processes used to
execute an MPI application.

 Figure 3 shows that, the optimal checkpoint intervals
obtained using Exponential distribution with β = 1.0 are low
as compared to the optimal checkpoint intervals obtained
using Weibull’s distribution with β = 0.5. This clearly
indicates that, the number of checkpoints to be taken for an
MPI application is more in the case of Exponential
distribution (β = 1.0) as compared with the Weibull’s
distribution (β = 0.5).

 It is also clear from the figure 3 that, the optimal
checkpoint interval is approximately directly proportional to
the checkpoint cost, TS. of MPI application and inversely
proportional the shape parameter, β of Weibull’s
distribution.

ISSN : 0975-3397 2696

Mallikarjuna Shastry P M et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2690-2697

 It is quite clear from the figures 4, 5, 6 and 7 that, the
optimal checkpoint intervals obtained from OCRM [1] using
Weibull’s distribution with β = 0.5, yield minimal average
completion time as compared with the optimal checkpoint
intervals obtained from [1] using Exponential distribution
with β = 1.0. This is because; the number of checkpoints to
be taken is more in case of Exponential distribution as
compared with Weibull’s distribution.

 Our results discussed in this paper again emphasis that,
when the scale parameter α and the checkpoint cost, TS of
MPI applications are known, the Weibull’s distribution can
be used to determine optimal checkpoint intervals from
OCRM [1] for any given value of shape parameter, β.

REFERENCES

[1] Mallikarjuna Shastry P.M and K.Venkatesh,” An Optimal Checkpoint

Restart Model using Weibull’s and Exponential distributions for
Fault Tolerant Large Scale MPI applications”, Being processed by
JPDC, Elsevier, Un Published.

[2] A.R. Adiga, G.almasi, and et al., ”An Overview of the BlueGene/L
Supercomputer,” In Proceedings of Supercomputing, IEEE/ACM
Conference, pp60-60,2002.

[3] Luis Moura Silva and Joao Gabriel Silva, “The Performance of
Coordinated and Independent Checkpointing”, IEEE Trans, 1999.

[4] G.E. Fagg, A. Bukovsky and J.J. Dongarra, “Harness and Fault
Tolerant MPI”, Parallel Computing, 27(11):1479-1495, 2001.

[5] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and B. David
Johnson, “ A Survey of Rollback-Recovery Protocols in Message-
Passing Systems”, ACM Computing Surveys, Vol. 34, No. 3 , pp.
375-408, Sep-2002.

[6] M.Treaster, “A survey of fault-tolerance and fault-recovery
techniques in parallel systems, “Technical Report cs.DC / 0501002,
ACM computing Research Repository (CoRR), January 2005.

[7] Mallikarjuna Shastry P.M, K.Venkatesh,” Performance Evaluation of
Coordinated Checkpointing Protocol using MPI point to point and
collective communications”, IJACC, Accepted, in Press.

[8] Mallikarjuna Shastry P.M. and K.Venkatesh, ”Selection of a
Checkpoint Interval in Coordinated Checkpointing Protocol for Fault
Tolerant Open MPI,” IJCSE, Vol. 02, No. 06, pp 2064-2070, Sep -
2010.

[9] Geff Vallee, Anand Tikotekar, Stephen L Scott, “Impact of Fault
Tolerant Policies: Feasibility Study”, Oak National Laboratory, Apr-
2008.

[10] K.M. Chandy, “A survey of analytic models of roll-back and recovery
strategies,” Computer 8, 5 (May 1975), 40-47.

[11] K.M. Chandy, J.C. Browne, C. W. Dissly, and W. R. Uhrig, “Analytic
models for rollback and recovery stratagems in data base systems,”
IEEE Trans Software Engg. SE-1, (March 1975), 100-110

[12] M.Treaster, “A survey of fault-tolerance and fault-recovery
techniques in parallel systems, “Technical Report cs.DC / 0501002,
ACM computing Research Repository (CoRR), January 2005.

[13] Y. Liu, “Reliability Aware Optimal Checkpoint/ Restart Model in
High Performance Computing, PhD Thesis,” Louisiana Tech
university, Ruston, LA, USA, May-2007.

[14] Yudun Liu, Raja Nassar, Chokchai (box) Leangsuksum, Nichamon
Naksinehaboon, Mihaels Paun, Stephen L. Scott, “An Optimal
Checkpoint /Restart Model for a Large Scale High Performance
Computing System,” IEEE Trans. 2008.

[15] Bouguerra Mohammed Slim, Thierry Gautier, Denis Trystram, Jean
,Marc Vincent, ”A New flexible Checkpoint/Restart Model,” INRIA,
Dec-2008.

[16] Hoda El-Sayed and Eric Wright,” Sparse Matrix Multiplication Using
UPC,” Proceedings of the World Congress on Engineering 2007,
Vol. I, WCE 2007, July 2 - 4, 2007, London, U.K.

[17] Xin Wang,” Scalable Parallel Matrix MultiplicationAlgorithms with
Application to a Maximum Entropy Problem, Sep – 1997.

[18] The Open MPI Team,”Open MPI Checkpoint/Restart Fault Tolerance
User’s Guide,” OPEN MPI Team, Oct-2008.

[19] H. Paul Hargrove and C. Jason Duell, “Berkeley lab checkpoint /
restart (BLCR) for Linux clusters”, Journal of Physics, Conference
series 46 (2006), 494-499, SciDAC 2006.

AUTHORS PROFILE

MR. Mallikarjuna Shastry P.M has received his B.E. and
M.Tech in Computer Science and Engineering from
Karnataka University Dharwar, and Vishweshwaraiah
Technological University, Belgaum, Karnataka, India
respectively. He is currently pursuing Ph.D on “Analysis of
Fault Tolerant Methods and Performance Evaluation in
Distributed Systems “ under the guidance of Prof. Dr.
K.Venkatesh at M.S.Ramaiah Institute of Technology,
Bangalore-54, Karnataka, India. He is a Professor in the
department of Computer Science and Engg. at Sapthagiri
College of Engg, Bangalore, Karnataka, India. He has
totally 18 years of teaching experience in Computer Science
and Engg.

Prof. Dr. K. Venkatesh has received his M.Sc. in Physics
from Mysore University in 1973 and MS from BITS Pilani
in 2001 respectively. He has received Ph.D in 1980 from
Mysore University. He is a professor at M.S.Ramaiah
Institute of Technology, Bangalore-54 and has totally 30
years of teaching experience.

ISSN : 0975-3397 2697

