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Abstract - The association rule mining is one of the 
important area for research in data mining.  In association 
rule mining online association rule mining is one of the 
hottest area due to the reason that the knowledge embedded 
in the data stream is more likely to be changed as time goes 
by. This paper proposes an algorithm as well as a data 
structure for online data mining. In this method the pruning 
in the data structure as well as the frequent itemset 
generation will be based on the request. The data structure 
which we introducing will have the capability to maintain 
the transactions in the sorted order. Every transaction can be 
extracted from the item-Order-Tree as by doing the traversal 
in depth. Frequent itemset can be generated as by do the 
traversal from the parent node that the user requested for.  
This ItemOrder-Tree improves the performance of the 
online association rule mining. 
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I.  INTRODUCTION  

      In recent years the size of the database of any transaction 
storage increased rapidly. This has led to a growing interest 
in the development of tools capable in the automatic 
extraction of knowledge from data. The term data mining or 
knowledge discovery in database has been adopted for a 
field of research dealing with the automatic discovery of 
implicit information or knowledge within the databases. The 
implicit information within databases, mainly the interesting 
association relationships among sets of objects that lead to 
association rules may disclose useful patterns for decision 
support, financial forecast, marketing policies, even medical 
diagnosis and many other applications.  

The problem of mining frequent itemsets came out first as 
a sub-problem of mining association rules[1]. Frequent 
itemsets play an essential role in many data mining tasks that 
try to find interesting patterns from databases such as 
association rules, correlations, sequences, classifiers, clusters 
and many more of which the mining of association rules is 
one of the most popular problems. The original motivation 
for searching association rules came from the need to analyze 
so called supermarket transaction data, that is, to examine 
customer behavior in terms of the purchased products. 
Association rules describe how often items are purchased 
together. For example, an association rule states that four out 
of five customers that bought beer also bought chips. Such 
rules can be useful for decisions concerning product pricing, 
promotions, store layout and many others. 

II. PRILIMINARIES 

A. Need of Frequent Itemset Mining 

Studies of Frequent Itemset (or pattern) Mining is 
acknowledged in the data mining field because of its broad 
applications in mining association rules, correlations, and 
graph pattern constraint based on frequent patterns, 
sequential patterns, and many other data mining tasks. 
Efficient algorithms for mining frequent itemsets are crucial 
for mining association rules as well as for many other data 
mining tasks. The major challenge found in frequent pattern 
mining is a large number of result patterns. As the minimum 
threshold becomes lower, an exponentially large number of 
itemsets are generated. Therefore, pruning unimportant 
patterns can be done effectively in mining process and that 
becomes one of the main topics in frequent pattern mining. 
Consequently, the main aim is to optimize the process of 
finding patterns which should be efficient, scalable and can 
detect the important patterns which can be used in various 
ways. 

B. Preliminaries of New Approach 

Different methods[2,3,4] introduced by different 
researchers are generated the frequent itemsets by using the 
candidate generation as well as without candidate 
generation. The different data structures[1,12,13,14] are 
used for frequent itemset mining and the methods which 
they used for input data to the data structure is also different. 
The new method examines the transactions one by one 
without the candidate generation and it will keep track of the 
occurrence count of each item in a monitoring lattice called 
Item-Order-Tree. The new itemset will be entered in the data 
structure after sorting the itemset. 

The new approach will work as below: 

[1] Sort the itemset I. 
[2]  Insert the items in the itemset in the sorted order 

and can be accessed in the same order while we 
traverse in depth. In each  node one counter for 
count the occurrence of item. 

[3]  Consider all the branches which having the item to 
be included for finding the frequent itemset. 

[4]   The total number of nodes available in the 
ItemOrder-Tree is 

[5] ∑ N௡ଶ   n is the maximum number of unique item 
a. N is the total number of nodes. 

[6]  The parameters in the counters in the node are nCN   

where N is the item ID of the counter. 
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[7]  There is no need to store the minimum support and 

the confidence in the lattice as it can store 
separately. 

 

To design a compact data structure for efficient online data 
mining let us examine an example. Let the transactions as 
given below in the first two columns of Table 1. A data 
structure can be designed based on the observations below: 

[1] Since the online transactions are streaming in, it is 
necessary to store the items in a data structure to 
save time and space with a frequency count. 

[2] If all the items can be stored in some order in a data 
structure, it may be possible to avoid repeatedly 
scanning the previous transactions as by storing in 
database. 

[3] If multiple transactions share a set of frequent 
items, it can be registered as by increment the 
count. It is easy to check whether two sets are 
identical if the frequent items in all of the 
transactions are listed according to a fixed order. 

[4] If more than one transactions share a common 
prefix, according to some sorted order frequent 
items, the shared parts can be merged using one 
prefix structure as by registering the count 
properly. 
 

Table 1: A transaction database as example. 

        
            

[1] The different advantages of the data structure used 
as below 

 

[2] It will be ordered on transactions received 
[3] It will be in ascending order of the number of 

occurrence of each item in the transactions contain 
the same itemsets. 

[4] Traversal for finding the frequent itemset will be 
fast. 

[5] More frequently occurring items are more likely to 
be shared and thus they are arranged top of the tree. 

 

III. ITEM-ORDER-TREE 

The ItemOrder-Tree is the tree used as the data structure. 
The temporary storage of  itemset can be reduced by storing 
of the node item along with the predecessors. This can be 
achieved by adding an item in the tree immediately after the 
root node if it is a single item in the transaction and not in 
the lattice as the first node after the null node. Let there is a 
single item transaction as {a} and a is already existing in the 
lattice then no need to add the same item otherwise add that 
immediately after the root node by creating a new node. If 
there is another transaction as {d,a,c} then in our new data 

structure the transaction has to be ordered and after that it 
can be entered in the Itemset-Tree in the new order, it will 
be {a},{c},{d} while traverse in depth. 

A. Definition 1. Item-Order-Tree  

  Let Tk be an Item-Order-Tree and let e denote the 
itemsetand its elements are e= {i1, i2, i3….}. Set of its 
subsetsareadded in to the tree after reordering the elements 
in e. 

[1] The new node created if i1ك I and i1ב Tk. From the 
newly created node i1 create the child node and the item 
is i2. 

[2] Any of the node available then its count incremented 
and create the non existing element node. 

[3] Add a transaction under one node along with all the 
items of its parents. The same transaction with n-1 
itemset is in the tree then the nth item to be added and 
increment the counter for all other. 

[4] The concatenation of the parent node items to the new 
node to reduce the temporary storage. 
 

B. Definition 2:Item-Order-Tree node structures 

Given an ItemOrder-Tree Tk.  For finding frequent 
itemsets, a data stream can be defined as follows:  

Let I1={i1,i2, … ,in} be a set of items in the transaction of 
any application domain. 

[1] An itemset e is a set of items such that eא(2I- {Ø}) 
where 2I is the power set of I. The length |e| of an 
itemset e is the number of items that form the itemset 
and it is denoted by |e|-itemset.  

[2] A transaction is a subset of I and each transaction has 
a unique transaction identifier TID. A transaction 
generated at the kth turn is denoted by Ik. 

[3] The stream Dk is composed of all transactions that 
have  ever been generated so far i.e. Dk = <T1, T2, … , 
Tk> and the total number of transactions in Dk is 
denoted by |D|k.  

[4] When a transactions Ik is generated, the current count 
Ck(e) of an itemset e is the number of transactions 
that contain the itemset among the k transactions.  

The below given fig:1 is the example of a Item-Order-Tree. 
 

 
Figure 1: Item-Order-Tree Tk 

ISSN : 0975-3397 2599



Pramod S et al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No. 08, 2010, 2598-2601 

 
C. Algorithm 1: (Item-Order-Tree Construction) 

Input : A transaction  Tk in the data stream. 

Output: ItemOrder-Tree of the given transactions. 

Method: The ItemOrder-Tree is constructed as follows. 

[1] Sort the items in the transaction Tk 
[2] Create the root node of an Item-Order-Tree, T, and label 

it as “null”. For each transaction do the following.  
a. Select the item from the sorted transaction list of 

Tk. Let  the sorted list in the transaction be [i|I], 
where i is the first item and I is the remaining items 
in the Tk. Call the function Insert-ItemOrder-
Tree([i|I],T). 

b. The function Insert-ItemOrder-Tree ([i|I],T) is 
performed as follows. If T has a child N such that  

c. N.item-name=i.item-name then increment count of 
N by 1;else create a new node N with its count 
initialized as 1, its parent linked to T, and its node-
link linked to the nodes with the same item-name 
via the node link structure. If I is non empty, call 
insert-ItemOrder-Tree(I,N) recursively. 

IV. FREQUENT ITEM GENERATION 

It is working almost the same as the way of the FP-
Tree[14] pattern mining process. In a single prefix-path 
Item-Order-Tree that consists of only a single path starting 
from the root to the first branching node of the tree where a 
branching node containing more than one child. In the below 
example the two separate process. The single prefix-path P= 
((a:10),(b:8),(c:7))can be mined by enumeration of all the 
combinations of the sub paths of P with the support set to 
the minimum support of the items contained in the  sub path. 
This is because each sub path is distinct and occurs the same 
number of times as the minimum occurrence frequency 
among the items in the sub path. Thus the path P generate 
the following set of frequent patterns. So the frequent 
pattern set of P is {(a:10), (b:8), (c:7), (ab:8), (ac:7), 
(abc:7)}. Let Q be the second Item-Order-Tree, and it is 
rooted with null. The mining of Q can be using the same 
frequent pattern growth method. 
 

              

Fig 2: Single Prefix-path Tree 

 

          
Fig 3: Single-path P        

 
 
Fig 2: Multi-path Tree Q 

 
Frequent Item Generation Algorithm 
Input : An Item-Order-Tree T constructed according to 
Algorithm 1 and a minimum threshold ‘mt’. 
Output : The complete set of frequent patterns. 

Method :  Frequent_Item_Generation(Item-Order-Tree, 
null). 

{ 
If Item-Order-Tree contains a single prefix path then 
{ 
let P be the single prefix-path of Item-Order-Tree; 
let Q be the multipath  with the top branching node replaced  
by a null root; 
for each combination(denoted β) of the nodes in the path P 

do 
generate pattern β U α with support=minimum support of 
nodes in β; 
let frequent_Item_set(P) be the set of patternsgenerated;} 
else let Q be Item-Order-Tree; 
for each item i in Q do{ 
generate pattern β= i U α with support= i.support; 
construct  β’s conditional pattern-base and then β’s 
conditional Item-Order-Treeβ ; 
if Item-Order-Treeβ ≠�; 
then call Freequent_Item_Generation(Item-Order-Treeβ); 
let frequent_Item_set(Q) be the set of patterns so 
generated;} 
return(frequent_Pattern_set(P) U frequent_Pattern_set(Q) U 
(frequent_Pattern_set(P) 
X frequent_Pattern_set(Q)))} 
 

V.   CONCLUSION 

Determining frequent objects is one of the most 
important fields in data mining. It is well known that the 
way candidates are defined have great effect on running 
time and memory need, and this is the reason for the large 
number of algorithms. It is also clear that the applied data 
structure also influences efficiency parameters. In this paper 
we presented an implementation that solved frequent itemset 
mining problem in a way by reducing the number of 
transactions which we saved as space in the Item-Order-
Tree. Considering the continuity of a data stream, the 
general definition of finding frequent itemsets used in 
conventional data mining methodology may not be valid in a 
data stream. This is because the old information of a data 
stream may be no longer useful or possibly incorrect at 
present. In this algorithm we have proved the change in the 
item storage can improve the performance.  
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