
Pramod S et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2598-2601

Frequent Itemset mining over transactional data
streams using Item-Order-Tree

Pramod S. O.P. Vyas
Reader, Information Technology, Professor,

M.P.Christian College of Engineering and Tech., IIIT Allahabad
Bhilai, C.G., INDIA. U.P., INDIA.

Abstract - The association rule mining is one of the
important area for research in data mining. In association
rule mining online association rule mining is one of the
hottest area due to the reason that the knowledge embedded
in the data stream is more likely to be changed as time goes
by. This paper proposes an algorithm as well as a data
structure for online data mining. In this method the pruning
in the data structure as well as the frequent itemset
generation will be based on the request. The data structure
which we introducing will have the capability to maintain
the transactions in the sorted order. Every transaction can be
extracted from the item-Order-Tree as by doing the traversal
in depth. Frequent itemset can be generated as by do the
traversal from the parent node that the user requested for.
This ItemOrder-Tree improves the performance of the
online association rule mining.

Keywords- Frequent Itemset, Freequent Itemset Mining ,
Online Data Mining, Item-Order-Tree

I. INTRODUCTION

 In recent years the size of the database of any transaction
storage increased rapidly. This has led to a growing interest
in the development of tools capable in the automatic
extraction of knowledge from data. The term data mining or
knowledge discovery in database has been adopted for a
field of research dealing with the automatic discovery of
implicit information or knowledge within the databases. The
implicit information within databases, mainly the interesting
association relationships among sets of objects that lead to
association rules may disclose useful patterns for decision
support, financial forecast, marketing policies, even medical
diagnosis and many other applications.

The problem of mining frequent itemsets came out first as
a sub-problem of mining association rules[1]. Frequent
itemsets play an essential role in many data mining tasks that
try to find interesting patterns from databases such as
association rules, correlations, sequences, classifiers, clusters
and many more of which the mining of association rules is
one of the most popular problems. The original motivation
for searching association rules came from the need to analyze
so called supermarket transaction data, that is, to examine
customer behavior in terms of the purchased products.
Association rules describe how often items are purchased
together. For example, an association rule states that four out
of five customers that bought beer also bought chips. Such
rules can be useful for decisions concerning product pricing,
promotions, store layout and many others.

II. PRILIMINARIES

A. Need of Frequent Itemset Mining

Studies of Frequent Itemset (or pattern) Mining is
acknowledged in the data mining field because of its broad
applications in mining association rules, correlations, and
graph pattern constraint based on frequent patterns,
sequential patterns, and many other data mining tasks.
Efficient algorithms for mining frequent itemsets are crucial
for mining association rules as well as for many other data
mining tasks. The major challenge found in frequent pattern
mining is a large number of result patterns. As the minimum
threshold becomes lower, an exponentially large number of
itemsets are generated. Therefore, pruning unimportant
patterns can be done effectively in mining process and that
becomes one of the main topics in frequent pattern mining.
Consequently, the main aim is to optimize the process of
finding patterns which should be efficient, scalable and can
detect the important patterns which can be used in various
ways.

B. Preliminaries of New Approach

Different methods[2,3,4] introduced by different
researchers are generated the frequent itemsets by using the
candidate generation as well as without candidate
generation. The different data structures[1,12,13,14] are
used for frequent itemset mining and the methods which
they used for input data to the data structure is also different.
The new method examines the transactions one by one
without the candidate generation and it will keep track of the
occurrence count of each item in a monitoring lattice called
Item-Order-Tree. The new itemset will be entered in the data
structure after sorting the itemset.

The new approach will work as below:

[1] Sort the itemset I.
[2] Insert the items in the itemset in the sorted order

and can be accessed in the same order while we
traverse in depth. In each node one counter for
count the occurrence of item.

[3] Consider all the branches which having the item to
be included for finding the frequent itemset.

[4] The total number of nodes available in the
ItemOrder-Tree is

[5] ∑ N௡ଶ n is the maximum number of unique item
a. N is the total number of nodes.

[6] The parameters in the counters in the node are nCN

where N is the item ID of the counter.

ISSN : 0975-3397 2598

Pramod S et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2598-2601

[7] There is no need to store the minimum support and

the confidence in the lattice as it can store
separately.

To design a compact data structure for efficient online data
mining let us examine an example. Let the transactions as
given below in the first two columns of Table 1. A data
structure can be designed based on the observations below:

[1] Since the online transactions are streaming in, it is
necessary to store the items in a data structure to
save time and space with a frequency count.

[2] If all the items can be stored in some order in a data
structure, it may be possible to avoid repeatedly
scanning the previous transactions as by storing in
database.

[3] If multiple transactions share a set of frequent
items, it can be registered as by increment the
count. It is easy to check whether two sets are
identical if the frequent items in all of the
transactions are listed according to a fixed order.

[4] If more than one transactions share a common
prefix, according to some sorted order frequent
items, the shared parts can be merged using one
prefix structure as by registering the count
properly.

Table 1: A transaction database as example.

[1] The different advantages of the data structure used
as below

[2] It will be ordered on transactions received
[3] It will be in ascending order of the number of

occurrence of each item in the transactions contain
the same itemsets.

[4] Traversal for finding the frequent itemset will be
fast.

[5] More frequently occurring items are more likely to
be shared and thus they are arranged top of the tree.

III. ITEM-ORDER-TREE

The ItemOrder-Tree is the tree used as the data structure.
The temporary storage of itemset can be reduced by storing
of the node item along with the predecessors. This can be
achieved by adding an item in the tree immediately after the
root node if it is a single item in the transaction and not in
the lattice as the first node after the null node. Let there is a
single item transaction as {a} and a is already existing in the
lattice then no need to add the same item otherwise add that
immediately after the root node by creating a new node. If
there is another transaction as {d,a,c} then in our new data

structure the transaction has to be ordered and after that it
can be entered in the Itemset-Tree in the new order, it will
be {a},{c},{d} while traverse in depth.

A. Definition 1. Item-Order-Tree

 Let Tk be an Item-Order-Tree and let e denote the
itemsetand its elements are e= {i1, i2, i3….}. Set of its
subsetsareadded in to the tree after reordering the elements
in e.

[1] The new node created if i1ك I and i1ב Tk. From the
newly created node i1 create the child node and the item
is i2.

[2] Any of the node available then its count incremented
and create the non existing element node.

[3] Add a transaction under one node along with all the
items of its parents. The same transaction with n-1
itemset is in the tree then the nth item to be added and
increment the counter for all other.

[4] The concatenation of the parent node items to the new
node to reduce the temporary storage.

B. Definition 2:Item-Order-Tree node structures

Given an ItemOrder-Tree Tk. For finding frequent
itemsets, a data stream can be defined as follows:

Let I1={i1,i2, … ,in} be a set of items in the transaction of
any application domain.

[1] An itemset e is a set of items such that eא(2I- {Ø})
where 2I is the power set of I. The length |e| of an
itemset e is the number of items that form the itemset
and it is denoted by |e|-itemset.

[2] A transaction is a subset of I and each transaction has
a unique transaction identifier TID. A transaction
generated at the kth turn is denoted by Ik.

[3] The stream Dk is composed of all transactions that
have ever been generated so far i.e. Dk = <T1, T2, … ,
Tk> and the total number of transactions in Dk is
denoted by |D|k.

[4] When a transactions Ik is generated, the current count
Ck(e) of an itemset e is the number of transactions
that contain the itemset among the k transactions.

The below given fig:1 is the example of a Item-Order-Tree.

Figure 1: Item-Order-Tree Tk

ISSN : 0975-3397 2599

Pramod S et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2598-2601

C. Algorithm 1: (Item-Order-Tree Construction)

Input : A transaction Tk in the data stream.

Output: ItemOrder-Tree of the given transactions.

Method: The ItemOrder-Tree is constructed as follows.

[1] Sort the items in the transaction Tk
[2] Create the root node of an Item-Order-Tree, T, and label

it as “null”. For each transaction do the following.
a. Select the item from the sorted transaction list of

Tk. Let the sorted list in the transaction be [i|I],
where i is the first item and I is the remaining items
in the Tk. Call the function Insert-ItemOrder-
Tree([i|I],T).

b. The function Insert-ItemOrder-Tree ([i|I],T) is
performed as follows. If T has a child N such that

c. N.item-name=i.item-name then increment count of
N by 1;else create a new node N with its count
initialized as 1, its parent linked to T, and its node-
link linked to the nodes with the same item-name
via the node link structure. If I is non empty, call
insert-ItemOrder-Tree(I,N) recursively.

IV. FREQUENT ITEM GENERATION

It is working almost the same as the way of the FP-
Tree[14] pattern mining process. In a single prefix-path
Item-Order-Tree that consists of only a single path starting
from the root to the first branching node of the tree where a
branching node containing more than one child. In the below
example the two separate process. The single prefix-path P=
((a:10),(b:8),(c:7))can be mined by enumeration of all the
combinations of the sub paths of P with the support set to
the minimum support of the items contained in the sub path.
This is because each sub path is distinct and occurs the same
number of times as the minimum occurrence frequency
among the items in the sub path. Thus the path P generate
the following set of frequent patterns. So the frequent
pattern set of P is {(a:10), (b:8), (c:7), (ab:8), (ac:7),
(abc:7)}. Let Q be the second Item-Order-Tree, and it is
rooted with null. The mining of Q can be using the same
frequent pattern growth method.

Fig 2: Single Prefix-path Tree

Fig 3: Single-path P

Fig 2: Multi-path Tree Q

Frequent Item Generation Algorithm
Input : An Item-Order-Tree T constructed according to
Algorithm 1 and a minimum threshold ‘mt’.
Output : The complete set of frequent patterns.

Method : Frequent_Item_Generation(Item-Order-Tree,
null).

{
If Item-Order-Tree contains a single prefix path then
{
let P be the single prefix-path of Item-Order-Tree;
let Q be the multipath with the top branching node replaced
by a null root;
for each combination(denoted β) of the nodes in the path P

do
generate pattern β U α with support=minimum support of
nodes in β;
let frequent_Item_set(P) be the set of patternsgenerated;}
else let Q be Item-Order-Tree;
for each item i in Q do{
generate pattern β= i U α with support= i.support;
construct β’s conditional pattern-base and then β’s
conditional Item-Order-Treeβ ;
if Item-Order-Treeβ ≠�;
then call Freequent_Item_Generation(Item-Order-Treeβ);
let frequent_Item_set(Q) be the set of patterns so
generated;}
return(frequent_Pattern_set(P) U frequent_Pattern_set(Q) U
(frequent_Pattern_set(P)
X frequent_Pattern_set(Q)))}

V. CONCLUSION

Determining frequent objects is one of the most
important fields in data mining. It is well known that the
way candidates are defined have great effect on running
time and memory need, and this is the reason for the large
number of algorithms. It is also clear that the applied data
structure also influences efficiency parameters. In this paper
we presented an implementation that solved frequent itemset
mining problem in a way by reducing the number of
transactions which we saved as space in the Item-Order-
Tree. Considering the continuity of a data stream, the
general definition of finding frequent itemsets used in
conventional data mining methodology may not be valid in a
data stream. This is because the old information of a data
stream may be no longer useful or possibly incorrect at
present. In this algorithm we have proved the change in the
item storage can improve the performance.

REFERENCES
[1] R. Agrawal, T. Imielienski, and A. Swami. Mining Association Rules

between Sets of Items in Large Databases. Proc. Conf. on

ISSN : 0975-3397 2600

Pramod S et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2598-2601

Management of Data, 207–216. ACM Press, New York, NY,
USA 1993.

[2] H. Chang and W.S. Lee. Finding recent frequent itemsets adaptively
over online data streams. In Proc.of the 9th ACM SIGKDD, pp. 487 -
492, 2003.

[3] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset
counting and implication rules for market basket data. In Proc. of the
ACM SIGMOD Int'l Conference on Management of Data, pages 255
-264, Tucson, AZ, May1997.

[4] R. C. Agarwal, C. C. Aggarwal and V.V.V. Prasad. Depth first
generation of long patterns. In Proc. of the 6th ACM SIGKDD Int'l
Conference on Knowledge Discovery and Data Mining, pages 108-
118, Boston, MA, Sept. 2000.

[5] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Association
Rules between Sets of Items in Large Databases. In Proc. of
SIGMOD, 1993.

[6] M. Garofalakis, J. Gehrke and R. Rastogi. Querying and mining data
streams: you only get one look. In the tutorial notes of the 28th Int'l
Conference on Very Large Databases.

[7] G. S. Manku and R. Motwani. Approximate frequency counts over
data streams. In Proc. of the 28th Int'l Conference on Very Large
Databases, Hong Kong, China, Aug. 2002.

[8] M. Charikar, K. Chen and M. Farach-Colton. Finding frequent items
in data streams. In Proc. of the 29th Int'l Colloq. on Automata,
Language and Programming, 2002.

[9] C.-H. Lee, C.-R. Lin and M.-S. Chen. Sliding-window filtering: An
efficient algorithm for incremental mining. In Proc. of the 10th Int’l
Conference on Information and Knowledge Management, pages 263-
270, Atlanta, GE, Nov. 2001.

[10] B.-K. Yi, N. D. Sidiropoulos, T. Johnson, H. V. Jagadish, C.
Faloutsos, and A. Biliris Online data mining for co-evolving time
sequences. In Proc. of the 16th Int'l Conference on Data Engineering,
pages 13-22, San Diego, CA, Feb. 2000.

[11] H. S. Javitz and A. Valdes. The NIDES statistical component
description and justification. Annual report, March 1994.

[12] C. Hidber. Online association rule mining. In Proc. of the ACM
SIGMOD Int'l Conference on Management of Data, pages 145-156,
Philadelphia, PA, May 1999.

[13] R. Agrawal, and R. Srikant. Fast algorithms for mining association
rules. In Proc. of the 20th Int'l Conference on Very Large Databases,
Santiago, Chile, Sept. 1994.

[14] Han, J., PEI, J., And YIN, Y.2000. Mining frequent patterns without
candidate generation. In 2000 ACM SIGMOD Intl. Conference on
Management of Data, W. Chen, J. Naughton, and P. A. Bernstein,
Eds. ACM Press, 1-12.

ISSN : 0975-3397 2601

