
Devaki Pendlimarri et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2698-2704

Novel Pattern Matching Algorithm
for Single Pattern Matching

Devaki Pendlimarri Paul Bharath Bhushan Petlu (corresponding author)

Dept. of Computer Applications, Dept. of Computer Applications,
Swarnandhra Institute of Engineering and Technology, Swarnandhra College of Engineering and Technology,
Narsapur, INDIA. Narsapur, INDIA.

Abstract– Pattern matching is one of the important issues in
the areas of network security and many others. The increase
in network speed and traffic may cause the existing
algorithms to become a performance bottleneck. Therefore,
it is very necessary to develop more efficient pattern
matching algorithm, in order to overcome troubles on
performance. There are several algorithms in use, in which,
some are with different methodology and other are with the
improved methodology for the existing algorithms. In this
paper, we are proposing a novel pattern matching algorithm,
called, DP algorithm (Devaki – Paul algorithm). The
algorithm works basing on some novel set of innovated rules,
which will endorse the algorithm resulting in better
performance and efficiency. In case of unsuccessful search,
the DP algorithm has zero character comparisons,
irrespective of the sizes of the text and pattern, provided if
either the first or the last character was not present in the
given input text. Whereas, the Booyer-Moore and Quick
Search algorithms will do search as usual. The algorithm
also doesn’t require any pre-processing phase, if the search is
on the same given input text and with different patterns,
provided the first and the last characters are same as in the
case of first pattern. The algorithm was tested and validated
and the results have proved that the performance of DP
algorithm is better than BM algorithm (Boyer – Moore
algorithm) and Quick Search algorithm. In case of tests with
repeated character, its performance is greater than 1%~50%
with BM and Quick Search algorithms. In case of tests with
the English Text and Random Pattern, it’s greater than
33%~91% with BM and 37%~85% with Quick Search
algorithms. In case of tests with the English Text and
Random Pattern of an unsuccessful search, its performance
is greater than BM and Quick Search algorithms with 100%,
if either the first and/or the last character of the pattern in
the given text were not present.

Key words – DP algorithm, single pattern matching, Boyer –
Moore algorithm, Quick Search algorithm

I. INTRODUCTION

Pattern matching is one of the basic and most
important issues, which have been studied, in the research
areas of computer science. In a standard problem, we are
required to find all occurrences of the pattern in the given
input text, known as single pattern matching [6]. Suppose,
if more than one pattern are matched against the given
input text simultaneously, then it is known as, multiple
pattern matching. Here, we are presenting a novel pattern
matching algorithm, which will find all the occurrences of

a pattern in the given input text. Single pattern matching
algorithm is widely used in network security
environments. In network security realm, the pattern is a
string indicating a network intrusion, attack, virus, and
snort, spam or dirty network information, etc [9]. For
example, snort[3] and Bro[4] is an open source network
intrusion prevention and detection system (IDS/IPS)
developed by sourcefire.

Since the evolution of the Boyer – Moore (BM) [1]
and the Knuth – Morris – Pratt (KMP) [12], [13]
algorithms, many more techniques were proposed by
many researchers, to find the exact pattern matching, by
improving the performance and efficiency. The BM
algorithm is considered as one of the most efficient
pattern matching algorithm in general applications and is
also known as the best average-case performance
algorithm of any algorithm [1]-[2], [5], [8]. This algorithm
requires a preprocessing phase of O(m+σ) time, and a
search phase of O(mn) time complexity. The algorithm
requires a preprocessing of the pattern before starting the
search, which constructs a table. A 256 member table is
constructed that is initially filled with the length of the
pattern. The 256 members represent the full range of
characters in the ASCII character set. A second pass is
then made on the table that places a descending count
from the original length of the pattern in the ASCII table
for each character that occurs [2]. To find the occurrence
of a pattern in the given input text, the algorithm scans the
characters of the pattern in the text from right to left,
beginning with the rightmost character. In case of a
match, it continues matching the character of the pattern
with the characters of the text sequentially from right to
left, until the match is complete. In case of a mismatch, it
uses two pre-computed heuristics to shift the window to
the right. These two heuristics are: good-suffix and bad
character-shift. Both heuristics are triggered on a
mismatch.

Quick Search algorithm [2], is one simplification of
the BM algorithm, which uses only the bad character
heuristic and also easy to implement. This algorithm
requires a preprocessing phase of O(m+σ) time, and a
search phase of O(mn) time complexity. The algorithm
uses only the bad-character shift table. After an attemp
where the window is positioned on the text factor,
. ሾ݆ݕ . ݆ ݉ െ 1ሿ, the length of the shift is atleast equal

to one. So, the character ݕሾ݆ ݉ሿ is necessarily

ISSN : 0975-3397 2698

Devaki Pendlimarri et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2698-2704

involved in the next attempt, and thus can be used for the
bad-character shift of the current attempt. The bad-
character shift of the BM algorithm is slightly modified to
take into account the last character of x as follows: for c in
ሾܿሿܿܤݏݍ ,∑ ൌ minሼ݅: 0 ݅ ൏ ሾ݉ݔ ݀݊ܽ ݉ െ 1 െ
݅ሿ ൌ ܿሽ, if c occurs in x, m otherwise. The algorithm is
very fast in practice for short patterns and large alphabets.

In this paper, we propose a novel methodology, to
improve the performance in the pattern matching. This
algorithm requires a preprocessing phase of O(m) time,
where m is size of the given input text, the search phase
time is directly proportional to the size of the table of
occurrences of preprocessing phase.

II. METHODOLOGY

A novel pattern matching algorithm, called, Devaki –
Paul algorithm (DP algorithm), is presented here. This
algorithm requires a preprocessing phase, which prepares
a table of occurrences of the first and the last characters of
the pattern in the given input text. The preprocessing
phase time complexity of the DP algorithm is less than the
BM and the Quick Search algorithms. The preprocessing
phase time complexity of the DP algorithm is compared
with the BM and Quick Search algorithms and is
presented in the table tab 1, where m is the size of the
given input text.

TABLE 1: Preprocessing phase time complexity

S. No. Algorithm Time complexity

1 DP O(m)

2 BM O(m+σ)

3 Quick Search O(m+σ)

A. Preprocessing Phase

In this phase, we find the occurrences of the first and
last characters of the pattern in the given input text. Here,
we will get two cases: first and last characters of the
pattern are similar and the other, dissimilar. In the first
case we use algorithm Similar, otherwise, Different as
below:

Similar(char x[], int m, char y[], int n)

/* Preparing a table of occurrences of the first character
of the pattern in the given input text*/

Step 1: [initialization]

Initialize the index and other variables

Step 2: [find the first character occurrences]

Find all the occurrences of the first character of
the pattern in the given input text

Step 3: [Finish]

 return

Different(char x[], int m, char y[], int n)

/* Preparing a table of occurrences of the first and the
last characters of the pattern in the given input text*/

Step 1: [initialization]

Initialize all index and other variables

Step 2: [find the first and last character occurrences]

Find all the occurrences of the first and the last
characters of the pattern in the given input text

Step 5: [Finish]

 return

Then, it performs a search phase based on the pre-
computed table with a set of rules.

B. Search Phase

In this phase, we find the probability of having an
occurrence of a pattern in the given input text by using the
table of occurrences of pre-processing phase.

Search(char x[], int m, char y[], int n,int a[], int alen, int
b[], int blen)

/* Search Phase: This algorithm will find the chances of
getting pattern match */

Step 1: [initialing the variables]

Initialize all the index and other variables

Step 2: [find the probability of occurrence of a pattern
and do match]

Repeat step 3 until the end of the table of last
character occurrences

Step 3: [calculate the difference between the last and first
character occurrence]

Case 1: difference > n – 1

Update the index of the table of first
character occurrence

 Go to step 2

ISSN : 0975-3397 2699

Devaki Pendlimarri et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2698-2704

 Case 2: difference < n – 1

Update the index of the table of last
character occurrence

 Go to step 2

 Case 3: difference = n – 1

 Match()

Update the indices of both tables of first
and last character occurrence

 Go to step 2

Step 3: [finish]

 return

In the above algorithm, once we find the probability of
occurrence of a pattern in the given input text, we perform
an exact pattern matching algorithm.

C. Exact Pattern Matching

This algorithm will find that whether the probability
will lead to either successful or unsuccessful search. As
already the first and the last characters of the pattern were
compared with the given input text and found equal, the
number of character comparisons can be reduced by two.

Match(char x[], char y[], int first, int size)

/* This algorithm will conclude that, whether a found
probability results to an exact pattern match or not. As we
already found that the first and the last characters of the
pattern are equal in the text, the algorithm reduces two
more character comparisons. */

Step 1: [initializing]

Initialize the index variable

Step 2: [initiate the process of finding the exact match]

 Repeat step 3 until the i <= size

Step 3: [perform character comparisons]

Compare each character in the pattern with the
character in the text sequentially

 If (characters do not match) then

 Go to step 4

Step 4: [verify]

If (i >size) then

 OUTPUT(pattern)

Step 5: [Finish]

 return;

III. IMPLEMENTATION

The DP algorithm requires a preprocessing of the
given text to prepare a table of the occurrences of the first
and the last characters of the given pattern. This table is
used to find the probability of having a match of the
pattern in the given text, which reduces the number of
comparisons, improving the performance of the pattern
matching algorithm. The probability of having a match of
the pattern in the given text is mathematically proved.

A. Mathematical Proof:

Here, we get two cases: first and last characters of the
pattern in the given input text may be of similar or
dissimilar.

Case 1: If the first and the last characters of the Patterns
are similar

If the difference between any two occurrences of the
first character of the pattern in the pre-computed table is
less than the size of the pattern by one, then, it is taken as
one probability for occurrence of an exact pattern match.

Let, x, be the given text of size m and y, be the given
pattern of size n, where m ≥ n. Let us assume that
,ሾa1ܣ a2, … , aiሿ, is an array, in which, a1, a2, … , ai,
represents the occurrences of the first character of given
pattern, y, in the given text, x, where, 0 ݅ ݉.

We know that,

y[1] = the position of the first character in the pattern

y[n] = the position of the last character in the pattern

Hence, the offset between the last character and the first
character in the pattern is:

ݐ݁ݏ݂݂ ൌ ݊ െ 1 (1)

Now, from the pre-computed table,

If A[i] = ai = one of the positions of the first character of
the pattern in the given input text then the position of the
last character of the pattern in the given input text in case
of exact pattern match must be:

ݏݐݏ݈ܽ ൌ ܽሾ݅ሿ (2) ݐ݁ݏ݂݂

Let, if a[j] = another position of the last character of the
pattern in the given input text, where ݅ ൏ ݆ ݈ܽ݁݊
then,

ISSN : 0975-3397 2700

Devaki Pendlimarri et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2698-2704

ݏݐݏ݈ܽ ൌ ܽሾ݆ሿ (3)

From (2) & (3), we get

 ܽሾ݆ሿ ൌ ܽሾ݅ሿ ݐ݁ݏ݂݂

ൌ ܽሾ݆ሿ െ ܽሾ݅ሿ ൌ ݐ݁ݏ݂݂

Substituting (1), we get

 ܽሾ݆ሿ െ ܽሾ݅ሿ ൌ ݊ െ 1 (4)

Hence, we proved that, any condition which satisfies
with the (4), is a probability of occurrence of a pattern.

Case 2: If the first and the last characters of the Patterns
are dissimilar

If the difference between any two occurrences of the
last and the first characters of the pattern in the pre-
computed table is less than the size of the pattern by one,
then, it is taken as one probability for occurrence of an
exact pattern match.

Let, x, be the given text of size m and y, be the given
pattern of size n, where m ≥ n. Let us assume that,
,ሾa1ܣ a2, … , aiሿ, is an array, in which, a1, a2, … , ai,
represents the occurrences of the first character of the
given pattern, y, in the given input text, x, where, 0
݅ ݉. Similarly,Bሾb1, b2, … , bjሿ, is an array, in

which, b1, b2, … , bj, represents the occurrences of the
last character of the given pattern, y, in the given input
text, x, where, 0 j m.

We know that,

y[1] = the position of the first character in the pattern

y[n] = the position of the last character in the pattern

then, the offset between the last character and the first
character in the pattern is:

ݐ݁ݏ݂݂ ൌ ݊ െ 1 (5)

Now, from the pre-computed table,

If A[i] = ai = one of the positions of the first character of
the pattern in the given input text then the position of the
last character of the pattern in the given input text in case
of exact pattern match must be:

ݏݐݏ݈ܽ ൌ ܽሾ݅ሿ (6) ݐ݁ݏ݂݂

Let, if b[j] = one of the positions of the last character of
the pattern in the given input text then,

ݏݐݏ݈ܽ ൌ ܾሾ݆ሿ (7)

From (6) & (7), we get

ܾሾ݆ሿ ൌ ܽሾ݅ሿ ݐ݁ݏ݂݂

ൌ ܾሾ݆ሿ െ ܽሾ݅ሿ ൌ ݐ݁ݏ݂݂

Substituting (5), we get

 ܾሾ݆ሿ െ ܽሾ݅ሿ ൌ ݊ െ 1 (8)

Hence, we proved that, any condition which satisfies
with the (8), is a probability of occurrence of a pattern.

B. Description

As specified in the methodology, we may have
patterns of two cases: first and last characters of the
pattern are similar and the other is different.

Case 1: If the first and the last characters of the Patterns
are similar

Let us assume that the example text and patterns for
the above case are as given in Fig 1.

The table of occurrences of the first character of the
pattern in the given input text will be calculated using the
Similar algorithm as in the methodology and was obtained
as above. After the pre-processing phase a search phase
begins, where we use Search algorithm as given in the
methodology, to find the probability of a pattern match.
Here, we get three possibilities:

Fig. 1 The example text and pattern with the table of occurrence of the
first character of the pattern in the given input text for case 1.

Possibility 1: A[j] – A[i] = one less than the size of the
pattern, i.e., n-1, where j > i at all times

From the table, we have: A[j] = 14 and A[i] = 12.
Hence, the condition given in possibility 1 is satisfied.
This will be taken as a probability of occurrence of the
pattern in the given input text at the current location and
then execute the algorithm, Match(), which finds whether
the pattern exists in that place or not. In this example,

Text:

… … a b a b b c a b a c …

 11 12 13 14 15 16 17 18 19 20

Pattern1:

b a b

Table[]:

A[] … 12 14 15 18 …

ISSN : 0975-3397 2701

Devaki Pendlimarri et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2698-2704

here, we find the pattern. Index variables, i and j, are
incremented to search for the next possibility.

Possibility 2: A[j] – A[i] < one less than the size of the
pattern, i.e., n-1, where j > i at all times

From the table, we have: A[j] = 15 and A[i] = 14 as
the index variables, i and j, were incremented in the
possibility 1. Hence, the condition given in possibility 2 is
satisfied. This specifies that there is no possibility of
having an occurrence of the pattern in the given text at the
current location. Hence, the index, j, is incremented to
search for the next possibility.

Possibility 3: A[j] – A[i] > one less than the size of the
pattern, i.e., n-1, where j > i at all times

From the table, we have: A[j] = 18 and A[i] = 14 as
the index variable, j, was incremented in the possibility 2.
Hence, the condition given in possibility 3 is satisfied.
This specifies that there is no possibility of having an
occurrence of the pattern in the given input text at the
current location. Hence, the index, i, is incremented to
search for the next possibility.

Case 2: If the first and the last characters of the Patterns
are dissimilar

Let us assume that the example text and patterns for
the above case are as given in Fig 2.

The table of occurrences of the first and last characters
of the pattern in the given input text will be calculated
using the Different algorithm as in the methodology and
was obtained as above. After the pre-processing phase a
search phase begins, where we use Search algorithm as
given in the methodology, to find the probability of a
pattern match. Here, we get three possibilities:

Possibility 1: B[j] – A[i] > one less than the size of the
pattern, i.e., n-1, where j ≥ i at all times

From the table, we have: B[j] = 16 and A[i] = 12.
Hence, the condition given in possibility 1 is satisfied.
This specifies that there is no possibility of having an
occurrence of the pattern in the given input text at the
current location. Hence, the index, i, is incremented to
search for the next possibility.

Possibility 2: B[j] – A[i] < one less than the size of the
pattern, i.e., n-1, where j ≥ i at all times

From the table, we have: B[j] = 16 and A[i] = 15, as
the index variable, i, was incremented two times in the

possibility 1. Hence, the condition given in possibility 2 is
satisfied. This specifies that there is no possibility of
having an occurrence of the pattern in the given input text
at the current location. Hence, the index, j, is incremented
to search for the next possibility.

Possibility 3: B[j] – A[i] = one less than the size of the
pattern, i.e., n-1, where j ≥ i at all times

From the table, we have: B[j] = 20 and A[i] = 18 as
the index variable, i and j, were incremented in the
possibilities 1 and 2. Hence, the condition given in
possibility 3 is satisfied. This will be taken as a
probability of occurrence of a pattern in the given input
text at the current location and then execute the algorithm,
Match(), which finds whether the pattern exists in that
place or not. In this

Fig. 2 The example text and pattern with the table of occurrence of the
first character of the pattern in the given input text for case 2.

example, here, we find the pattern. Index variables, i and
j, are incremented to search for the next possibility.

IV. RESULTS AND ANALYSIS

We have implemented and tested the DP algorithm and
compared its performance with the BM algorithm and
Quick Search Algorithm.

A. Tests with Repeated Characters

The input text and the pattern are given with the same
character, or with the repeated set of characters. It
provides the worst case situation for the pattern matching
algorithm. The text was taken as,

 “AAAAAAAAAAAAAAAAAAAAAAAA”,

of size 24 characters and the patterns were taken as, “A”,
“AA”, “AAA”, “AAAA” …
“AAAAAAAAAAAAAAAAAAAAAA”, with the
pattern size, 1, 2 … 24, respectively. The results were
compared with the BM and Quick Search algorithm and
were shown in Fig. 3.

In this example, the DP algorithm has given the best
performance than BM and Quick Search algorithms, if the
pattern size is less than half of the text size. The
performance of DP algorithm has been improved with
respect to BM algorithm and Quick Search algorithm with
1%~50%, if the pattern size is less than half of the text
size.

Text:

… … a b a b b c a b a c …

 11 12 13 14 15 16 17 18 19 20

Pattern1:

b a c

Table[]:

A[] … 12 14 15 18 …

B[] … … 16 20 … …

ISSN : 0975-3397 2702

Devaki Pendlimarri et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2698-2704

Fig. 3 The Performance of DP algorithm with Repeated characters

B. Tests with an English Text and a Random Pattern:

Let us assume, the given input text as,

“patternmatchingisoneofthebasicandmostimportantissuesi
ntheresearchareasofcomputersciencethemeaningofthepatte
rnmatchingisthatfindingtheoccurrencesofagivenpatterninth
egiventext”,

and the random patterns as “a”, “of”, “and”, “most”,
“given”, “issues”, “pattern”, “matching”, of sizes, 1, 2 …
8, respectively. The results were compared with the BM
and Quick Search algorithm and were shown in Fig. 4.

The performance of DP algorithm has been improved
with respect to BM algorithm with 33%~91% and Quick
Search algorithm with 37%~85%, varying with the pattern
size from 1 to 8 as given in the example above. The time
complexity of the DP algorithm is directly proportional to
the number of occurrences of the first and the last
characters of the pattern in the given input text obtained
from the preprocessing phase.

C. Tests with English Text and Random Pattern
(Unsuccessful Search):

In this case, we have taken a set of patterns as an
example, which leads to an unsuccessful search. Let us
assume the given input text as,

“patternmatchingisoneofthebasicandmostimportantissu
esintheresearchareasofcomputersciencethemeaningofthepa
tternmatchingisthatfindingtheoccurrencesofagivenpatterni
nthegiventext”,

Fig. 4 The performance of DP algorithm with an English Text and
Random Pattern

 and the random patterns as “z”, “lo”, “yet”, “cute”,
“given”, “hellow”, “fantasy”, “kindness”, of sizes, 1, 2 …
8, respectively. The results were compared with the BM
and Quick Search algorithm and were shown in Fig. 5.

Here, irrespective of the pattern and the text sizes, the
number of character comparisons is one. For example, if
either the first or last characters of the pattern are not
present in the given input text, then certainly, there is no
possibility of having an occurrence of the pattern in the
given input text.

In case of unsuccessful search, irrespective of the sizes of
the pattern and the text, the performance of DP algorithm
has been improved with respect to BM algorithm and
Quick Search algorithms by 100%. Because, if either the
first and/or the last character of the pattern were not
present in the given input text means, there is no
possibility of having a pattern in the given input text.
Hence, in case of unsuccessful search (if either the first
and/or the last character of the pattern in the given input
text was not present), by checking the table of
occurrences, we can execute the algorithm in O(1) time
complexity.

The time complexity of DP algorithm is directly
proportional to the total number of occurrences of the first
and the last characters of the pattern in the given input
text.

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19 21 23

DP BM Quick Search

pattern size

ch
ar
ac
te
r
co
m
p
ar
is
o
n
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

DP BM Quick Search

ch
ar
ac
te
r
co
m
p
ar
is
o
n
s

pattern length

ISSN : 0975-3397 2703

Devaki Pendlimarri et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2698-2704

Fig. 5 The performance of DP algorithm with an English Text and
Random Pattern (Unsuccessful Search)

V. CONCLUSION

We presented a novel pattern matching algorithm (DP
algorithm) with a simple logic which is very easy to
implement. We evaluated its performance with different
texts and various set of patterns. The results were proved
that the performance of the DP algorithm is greater than
BM algorithm with 33%~91% and Quick Search
algorithm with 37%~85%, in most of the cases. In case of
unsuccessful search, the DP algorithm has one comparison
with irrespective of the size of the text and pattern,
provided if either the first or the last character was not
present in the given input text. In this case, the
performance of the DP algorithm has been improved by
100%. The algorithm also doesn’t require any pre-
processing phase, if the search is on the same given input
text and with different patterns, provided the first and the
last characters are same as in the case of first pattern.
Because, the same table of occurrences can be used for the
purpose. The time complexity of the preprocessing phase
of the DP algorithm is O(m), which is less than the BM
and Quick Search algorithms. The time complexity of the
search phase of the DP algorithm is directly proportional
to the total number of occurrences of the first and the last
characters of the pattern in the given input text rather than
the sizes of the pattern and/or given input text.

REFERENCES

[1] R. S. Boyer and J. S. Moore: “A fast String Searching algorithm”,
Communications of the ACM, vol 20, no. 10, pp.762-772, 1977.

[2] C. Charras, and T. Lecroq. “Exact string matching algorithms”,
http://www.igm.univ-mlv.fr/~lecroq/string/, 1997

[3] Snort, http://www.snort.org
[4] V. Paxson, Bro: “A System for Detecting Network Intruders in

Real-Time”, Proc. Of the 7th USENIX Security Symposium, 1998.

[5] Stephen Gossin, et al: “Pattern Matching in Snort”,
http://www.sporksoft.com/~njones/notes/CSE202/project.pdf,
2002.

[6] M. Crochemore, C. Hancart: “Pattern Matching in Algorithms and
Theory of Computation Handbook”, CRC Press Inc. Bocaaton, FL.
1999.

[7] R. N. Horspool: “Practical Fast Searching in string. Software –
Practice & Experience”, 10(6):501-506, 1980.

[8] M. Fisk and G. Varghese: “An analysis of fast string matching
applied to content-based forwarding and intrusion detection”,
Technical Report CS2001-0670 (updated version), 2002.

[9] S. Antonatos, K. G. Anagnostakis, and E. P. Markatos:
“Generating realistic workloads for network intrusion detection
systems”, In ACM workloads on software and performance, 2004.

[10] M. Fisk, and G. Varghese, “Fast content-based packet handling for
intrusion detection”, UCSD Technical Report CS2001-0670, May
2001

[11] “Fundamentals of Computer Algorithms”, Ellis Horowitz, Sartaz
Sahni, and Sanguthevar Rajasekaran, Galgotia Publications.

[12] Beate Commentz, Walter: A string matching algorithm fast on
average. Proc. 6th International Colloquium on Automata,
Languages and Programming, Vol 71 of Lecture Notes in
Computer Science, pp 118-132, 1979.

[13] Knuth, D. and J. Morris, V. Pratt, “Fast pattern matching in
strings”, SIAM J. Computing 6(1977) 323-350.

P P Bharath Bhushan, received
MCA degree from S. V.
University, Tirupati, India, in
2000. He has been received the M.
Tech. degree in Computer Science
and Engineering from Sam
Higginbottom Institute of
Agriculture, Technology and
Science – Deemed University,
India in 2004. His main area of

interests in research is network security and data mining.

Pendlimarri Devaki, received
MCA degree from S. V.
University, Tirupati, India, in
2000. She is pursuing project of
M. Tech. degree final semester in
Computer Science and
Engineering in Jawaharlal Nehru
Technological University,
Kakinada, India. Her main area of

interests in research is intrusion detection, network
security and data mining.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

DP BM Quick Search

pattern length

ch
ar
ac
te
r
co
m
p
ar
is
o
n
s

ISSN : 0975-3397 2704

