
Mudassar M. Majgaonker et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2716-2720

Discovering suffixes: A Case Study for Marathi
Language

Mudassar M. Majgaonker
Comviva Technologies Limited

Gurgaon, India

Tanveer J Siddiqui
 J. K. Institute of Applied Physics and Technology

Department of Electronics and Communication
University of Allahabad, Allahabad, India

Abstract— Suffix stripping is a pre-processing step required in a
number of natural language processing applications. Stemmer is
a tool used to perform this step. This paper presents and
evaluates a rule-based and an unsupervised Marathi stemmer.
The rule-based stemmer uses a set of manually extracted suffix
stripping rules whereas the unsupervised approach learns
suffixes automatically from a set of words extracted from raw
Marathi text. The performance of both the stemmers has been
compared on a test dataset consisting of 1500 manually stemmed
word.

Keywords-component; Marathi morphology, Marathi stemmer,
Unsupervised stemmer, Rule-based stemmer, Natural language
processing

I. INTRODUCTION

Suffix stripping is a pre-processing step required in a
number of natural language processing applications such as
information retrieval, text summarization, document clustering,
and word sense disambiguation. One of the quite widely used
tool for this processing is stemmer which uses a suffix list to
remove suffixes from words. The stem is not necessarily the
linguistic root of the word. For example, words like
भारताची(bharatachi), भारतासाठी(bharatsathi), भारतामध्ये
(bharatmadhye), भारतानी (bharatani) after stemming may be

mapped to common stem भारता(bharatbharata) whereas the

root form is भारत. This paper presents the design of two
Marathi stemmer – a rule-based and an unsupervised stemmer
– and compares their performance. Rule-based stemmers
require identification of suffix stripping rules for creating
morphological variants. Obtaining such rules for a highly
inflectional language like Marathi is difficult and time
consuming besides being language specific. It uses a set of
words extracted from online Marathi documents [1][2] to learn
suffixes automatically and hence can be easily applied to other
languages as well. Earlier work in this direction for Indian
languages includes Hindi, Bengali, Tamil, and Oriya. But very
little amount of work has been done for Western Indian
languages like Marathi and Konkani. The rest of the paper is
organized as follows:

Section 2 reviews the earlier work done in morphological
analysis and stemming for Indian languages. Morphological
characteristics of Marathi language has been discussed in

section 3. Section 4 offers details on the rule-based and
unsupervised approaches. Section 5 presents the details of the
experiments and discusses the results. Conclusions have been
made in section 6.

II. RELATED WORK

Most of the early work done for stemmers was rule based
[3][4]. This requires formulation of linguistic rules for suffix
stripping. Wicentowski [6] proposed a supervised approach
using the WordFrame model which uses the set of inflection-
root pairs for learning the set of suffixes for stripping. An
information theoretic approach based on Minimum Description
length (MDL) was proposed by Brent et al. [7]. Later a
Bayesian Model for MDL was proposed by Snover and Brent
[8] for English and French. The work by Goldsmith [9] focuses
on the MDL while the work in [10] involves automatic
clustering of words using co-occurrence information.

Earlier work in Indian morphology includes [11, 12, 13,
and 14]. Larkey et al. [11] defined a light weight stemmer for
Hindi using a manually formulated list of 27 most common
suffixes for stemming. A similar approach was proposed by
Ramanathan and Rao [12]. They used a manually extracted list
of 65 most inflectional suffixes. In [13] a statistical Hindi
stemmer was developed and used for evaluating the
performance of the Hindi information retrieval system. Similar
work has been done by Dasgupta and Ng [14] for Bengali
morphological analyzer. In [5] an unsupervised Hindi stemmer
has been discussed. An approach based on “observable
paradigms” for Hindi morphological analyzer is proposed in
[15]. A rule based approach TelMore was proposed by [16] for
Telugu language. The western Indian languages like Marathi
and Konkani have gained very less attention. Earlier reported
work includes [17] which uses simple corpus based n-gram
matching approach for stemming. In this approach, the classes
of words which share a common prefix of given character
length were extracted and each of them was replaced by the
common prefix.

III. MORPHOLOGICAL CHARACTERISTICS OF

MARATHI LANGUAGE

Marathi is morphologically very rich. A single root word
may have different morphological variants, for example, words

like

ISSN : 0975-3397 2716

Mudassar M. Majgaonker et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2716-2720

(Bharatachi, Bharatani, Bharatasathi, Bharatakadun,
Bharatavar, Bharatakade) are morphological variants of the

word .

Like Hindi, the variants in Marathi are usually formed by
adding suffixes to the stem or root word. We can categorize the
suffixes found in Marathi into three types:

i. Plain Suffixes: Plain suffixes are also called dependent

vowel Signs. , , , , , ,… are some of
the suffixes which combine with the root word to produce its
morphological variants.

 For example,

ii. Join word suffixes: Join word suffixes are those suffixes
which are formed by merging two or more consonants and
vowels. These join words are formed by merging any of the

consonants with the morphological variant of the

consonant . Variants like are
considered as the join word suffixes. For example, words

like consists of join word suffixes.

iii. Complex suffixes: Complex suffixes are formed by
combining two or more consonants with the plain suffixes.

For example, are words containing
complex suffixes . The inflections
forming prefix part are rarely found in Marathi. Prefix
stripping results in change in the meaning of the word. So, it
can be neglected.

iv. Words follow a specific pattern: Unlike other Indian
languages it is found that words in Marathi language follow a
specific pattern. The words in the Marathi can be expressed
as:

 <token>:= <stem/root word> + <inflection>

 <inflection>:=<inflections>+<inflections>

IV. OUR APPROACH

The rule-based stemmer extracts suffix stripping rules
based on the morphological characteristics of Marathi
discussed in previous section. The unsupervised stemmer
learns suffixes automatically from a set of Marathi words.

A. Rule-based Stemmers

The common morphological patterns found in Marathi are:

1. <original word>:= <stem/root words> + <plain
suffixes>

 e.g., घेत + ◌ा , भारत + ◌ाची
2. <original word>:= <plain suffixes + <complex

suffixes>

 e.g., सलमान + वर
3. <original word>:= <plain suffixes + join word +

complex suffixes>

 e.g., दहशतव + ◌ा + द्यां + कडून

4. <original word>:= <plain suffixes + join word
suffixes + complex suffixes + join word suffixes>

 e.g., घर + ◌ा + समोर + च्या
The suffix stripping rules for the rule-based stemmer are

based on these patterns. Fig. 1 depicts steps in the algorithm
and fig. 2 shows the trace of the algorithm on the word
ऑिफसमधलेच.

Input: List of words

Output: Stem of words

Step 1: Eliminate all the complex suffixes.

e.g:- कडून , मुळे, साठी , ूमाणे, वरून, वर ,…

Step 2: Eliminate the join word suffixes i.e. Eliminate the
inflections of consonants like च, ल, ण, ळ, र, द… with या

e.g., द्या = <द> + <या>

Step 3A: Eliminate the inflections for consonant च

Step 3B: Eliminate the inflections for consonant ल

Step 3C : Eliminate the inflections involving plain
suffixes

Fig. 1. Algorithm for Rule Based Marathi Stemmer

In some cases the algorithm results in under stemming, e.g.,
the output of the algorithm on the word ऑिफसमधलेच isre is

< ऑिफसमधले > instead of ऑिफस. <मधले> is a valid suffix in

Marathi. But the algorithm fails to eliminate the suffix <मधले>.
One of the solutions to this problem is to call the algorithm
recursively. But this results in over-stemming resulting in a
drop in the performance.

B. Unsupervised Stemmer

The unsupervised stemmer is based on n-gram splitting
approach as in [5] [19]. We have extracted words from the
Marathi corpus [1] and split them using n-gram model to get
the n (n=1,2,3,……,l) split suffixes, where l is the length of the
word. Fig. 2 briefs the algorithm and the steps are discussed
below.

ISSN : 0975-3397 2717

Mudassar M. Majgaonker et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2716-2720

Fig. 2. Algorithmic steps

 Step 1. Word Segmentation

In this step the word Wj is split into n-grams using n-gram
model to obtain corresponding stems and suffixes as:

Wj: = {(stem1j|suffix1j); (stem2j|suffix2j); …….. ;
(stemij|suffixij)}

where stemij is the ith stem of jth word and suffixij is the ith
suffix of jth word.

For example, the word अंकात can be split up into following
stems and suffixes:

अंकात := { (अंकात | NULL); (अंका | त); (अंक | ◌ात); (अं |

कात); (अ | ◌ंकात); (NULL| अंकात) }

 Step 2. Generation of Stem Classes

Next, we have used maximum common prefix method to
find common stems and then grouped the words with common
stems under a single common stem class.

For example, if Wm and Wn are two words segmented as:

Wm: = {(stem1m|suffix1m); (stem2m|suffix2m);
…(stemim|suffixim); (stemlm|suffixl1m)}

Wn = {(stem1n|suffix1n); (stem2n|suffix2n); …(stemin|suffixin);
….. ; (stemln|suffixl2n)}

Let R be the largest common prefix such that R = stemim =
stemjn then the words are stored under the same equivalence
class R , called stem class, as:

R = [Wm, Wn]

For example, the words िचऽपट, िचऽपटांतील, िचऽपटाचा,
िचऽपटाचे, िचऽपटात, िचऽपटाने can be grouped under the stem

class िचऽपट as:

िचऽपट := [िचऽपटांतील, िचऽपटाचा, िचऽपटाचे, िचऽपटात,

िचऽपटाने]

Step 3. Generation of stem and suffixes

This step finds stems and suffixes of the word. For this, the
longest common prefix from the stem equivalence class formed
in the first stage is identified and stored as stem; the remaining
part is stored as suffix.

For example, the words िचऽपटांतील, िचऽपटाचा, िचऽपटाचे,

िचऽपटात, िचऽपटाने, िचऽपटाूमाणे, िचऽपटाच्या can be grouped
as:

िचऽपट := [◌ा◌तंील, ◌ाचा, ◌ाचे, ◌ात, ◌ाने, ◌ाूमाणे, ◌ाच्या]
Similarly,

ूशासन:= [◌ाचा, ◌ाकडून, ◌ात, ◌ाने, ◌ावर]
Step 4. Generation of suffix rules

In this step the rules for suffix stripping are generated.
Several simple rules such as s є, where s is the suffix and є
is any non-empty string, are introduced. Three approaches for
suffix rules generation has been used in evaluation.

 (a) Frequency based suffix stripping

This is the crudest method for suffix rule generation. The
suffixes are sorted according to the descending order of their
frequencies. A threshold is set manually and the frequencies
lying above the particular threshold are considered as the valid
candidates for suffix rules generation and those lying below the
threshold are discarded. This is done in order to reduce the
number of rules for suffix stripping. This method works for
highly inflectional languages like Marathi up to some extent
because the number of suffixes is very high in Marathi.

 (b) Iterative suffix stripping

This is an optimization over the frequency based suffix
stripping approach. It involves repeated application of suffix
rules derived using frequency-based stripping approach in an
attempt to handle under stemming. If the accuracy of the
stemming increases after iteration the stripped part of the word
is added as a rule.

 (c) Statistical stripping

Statistical stripping approach is similar to unsupervised
approach discussed in [5]. It assigns a score to individual stems
and suffixes using frequency of the word in the corpus and total
number of words. The split score is calculated by multiplying
the scores of the stem and suffixes.

Stems and suffixes are given an initial score using the
following expression:

1. Segment words using n-gram splitting
2. Generate stem classes using maximum common

prefix
3. Generate suffix lists for stem classes identified in (2)
4. Generate suffix rules

ISSN : 0975-3397 2718

Mudassar M. Majgaonker et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2716-2720

The scores are updated as follows:

Where m is the number of similar suffixes or stems.

The split having maximum score is used to generate suffix
list.

V. EXPERIMENT AND RESULTS

A. Dataset

Two test dataset has been created. The TestDataset1
consists of 1500 words extracted from the Marathi Corpus [1].
These documents were not used in training. TestDataset2
consists of 1500 words extracted from the documents collected
from internet [2]. The stem for these words have been defined
manually. The training dataset consists of 1,32,895 words
extracted from the Marathi corpus. Table 1 summarizes the
statistics used for the dataset generation.

TABLE 1. DATA SET GENERATION

Dataset Total
Number
of Words

Total
Number of

Unique
Words

Minimum
Length of
the Word

Maximum
Length of
the Word

Train
Dataset

1,32,895 27,613

4 12

Test
Dataset 1

19,365 1500 4 10

Test
Dataset 2

14,956 1500 4 12

B. The Experiment

In order to evaluate the performance we have conducted
two test runs on test dataset 1 and test dataset 2 respectively.
The accuracy is measured in terms of accuracy which is
defined as fraction of words stemmed correctly.

C. Results and Discussions

 Table 2 shows the results of comparisons of the three
approaches used for suffix rule generation. As shown in table 2,
we observed a maximum accuracy of 80.7% with rule-based
stemmer and a maximum accuracy of 82.5% with the
unsupervised stemmer using statistical stripping approach on
test dataset 1. The accuracy observed with rule-based stemmer
in test run 2 is 78.4%. In test run 2 the three different suffix
generation methods of unsupervised approach results in an
accuracy of 61.8%, 70.3% and 81.6% respectively. The

frequency based suffix stripping approach has the lowest
accuracy in both the test run. This is due to the problem of
under stemming. For example, the word अंकात after applying

frequency based suffix stripping approach is stemmed to अंका
instead of correct stem अंक. The iterative suffix stripping
approach is able to overcome this problem resulting in an
improvement in the accuracy in both the test run. The
maximum accuracy achieved using this approach is 72.8%. The
statistical suffix stripping approach gave the maximum
accuracy of 82.5%. This is even better than the accuracy
observed with rule-based approach. All the approaches
performed better on test dataset 1. The reason may be that the
dataset 2 consists of words extracted from internet documents.
The presence of noise, e.g. foreign language words, spelling
variations, may be responsible for comparatively poor
performance.

TABLE 2. RESULTS

Run Approach Accuracy

Run1

Rule-based stemmer 80.7%

Frequency Based Suffix
stripping

63.5%

Iterative suffix Stripping 72.8%

Statistical stripping 82.5%

Run 2

Rule-based stemmer 78.4%

Frequency based suffix stripping 61.8%

Iterative suffix stripping 70.3%

Statistical stripping 81.6%

VI. CONCLUSION

An unsupervised approach to Marathi stemmer has been
discussed. Three different approaches for suffix rules
generation has been used in unsupervised stemmer. The
maximum accuracy observed is 82.5% for the statistical suffix
stripping approach. The approach is unsupervised and
language independent. It uses a set of words to learn suffixes
and does not require any linguistic input. Hence, it can be used
for developing stemmer of other languages as well.

REFERENCES

[1] http://www.cfilt.iitb.ac.in/marathi_Corpus/

[2] http://www.esakal.com/

[3] M. Porter, “An algorithm for suffix stripping program,” Vol. 14,
pp. 130-137, 1980.

[4] Julie Beth Lovins, “Development of a stemming algorithm.
Mechanical Translation and Computational Linguistics,” 11:22–
31, 1968.

ISSN : 0975-3397 2719

Mudassar M. Majgaonker et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2716-2720

[5] Amaresh Kumar Pandey, Tanveer J Siddiqui, “An unsupervised
Hindi stemmer with heuristic improvements,” In the Proceedings
of the Second Workshop on Analytics for Noisy Unstructured
Text Data, AND 2008, Singapore, July 24, pp. 99-105, ACM
International Conference Proceeding Series, 2008.

[6] R. Wicentowski, Multilingual Noise-Robust Supervised
Morphological Analysis using the WordFrame Model,” In
Proceedings of Seventh Meeting of the ACL Special Interest
Group on Computational Phonology (SIGPHON), pp. 70-77,
2004.

[7] M. R. Brent, S. K. Murthy and A., Lundberg “Discovering
morphemic suffixes: A case study in minimum description length
induction,” In Proceedings of the fifth international workshop on
artificial intelligence and statistics, 1995.

[8] M. G. Snover, and M. R. Brent, “A Bayesian model for
morpheme and paradigm identification” In Proceedings of the
39th annual meeting of the ACL, pp. 482–490, 2001.

[9] John Goldsmith, “Unsupervised Learning of the Morphology of a
Natural Language,” Computational Linguistics, Volume 27, No.
2, pp 153-198, 2001.

[10] D. Freitag, “Morphology induction from term clusters,” In
Proceedings of the ninth conference on computational natural
language learning (CoNLL), pp. 128–135, 2005.

[11] Leah S. Larkey, Margaret E. Connell and Nasreen Abdul Jaleel,
“Hindi CLIR in thirty days” ACM Transaction on Asian
Language Information Processing, Vol. 2, No. 2, Pages No. 130-
142, 2003.

[12] A. Ramanathan, and D. Rao, “A lightweight stemmer for
Hindi,” In Proceedings of the 10th Conference of the European
Chapter of the Association for Computational Linguistics

(EACL) on Computational Linguistics for South Asian
Languages (Budapest, Apr.) Workshop, 2003.

[13] A. Chen and F. C. Gey, “Generating statistical Hindi stemmers
from parallel texts,” ACM Trans. Asian Language Inform.
Process. Vol. 2(3), 2003.

[14] Sajib Dasgupta, Vincent Ng, “Unsupervised morphological
parsing of Bengali,” 2007.

[15] Akshar Bharat, Rajeev Sangal, S. M. Bendre, Pavan Kumar and
Aishwarya, “Unsupervised improvement of morphological
analyzer for inflectionally rich languages,” Proceedings of the
NLPRS, pp. 685-692, 2001.

[16] Madhavi Ganapathiraju and Levin Lori, TelMore:
“Morphological Generator for Telugu Nouns and verbs,” In the
proceedings of Second International Conference on Universal
Digital Library Alexandria, Egypt, November 17-19, 2006.

[17] Jiaul H. Paik and Swapan K. Parui, “A Simple Stemmer for
Inflectional Languages ,” (No date)

AUTHORS PROFILE

Mudassar J. Majgaonkar Tech. (Intelligent System) from IIIT Allahabad,
India. Currently he works for Comviva Technologies Limited, Gurgaon, India.

Tanveer J. Siddiqui is a Senior Lecturer at the Allahabad University of India.
She has more than 10 years of teaching and research. Her current rcscarch
interests are Natural Language Processing and Information Retrieval.

ISSN : 0975-3397 2720

