
D.Shravani et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2609-2615

Web Services Security Architectures
Composition and Contract Design using RBAC

D.Shravani1, Dr.P.Suresh Varma2, Dr.B.Padmaja Rani3, Dr.D.Sravan Kumar4, M.Upendra Kumar5
1Research Scholar, Rayalaseema University, Kurnool, A.P., India

2Principal and Professor, Department of Computer Science, Adikavi Nannaya University, Rajahmundry, A.P., India
3Associate Professor, Department of CSE, JNTU College of Engineering, Hyderabad, A.P., India

4Principal and Professor of CSE, KITE Women’s College of Professional Engineering Sciences, Hyderabad, A.P., India
5Associate Professor, Department of CSE, MGIT, Hyderabad, A.P., India

Abstract— Service Oriented Architecture’s Web Services
authorization traditionally is done using common access
control models like Role-Based Access Control. In thinking
of a composite application that stitches together the
capabilities of multiple services, any action in the composite
app should ideally check the access control rules of all
constituent services before initiating an action. The Web
Services Access controls are categorized according to access
control granularity and have two approaches: The first
approach supports a negotiation-based attribute-based access
control to Web Services with fine access granularity. The
second approach is tailored to access control for
conversation-based Web services and composite services;
where in a Web Service is not considered as a set of
independent operations and therefore access control must
take such dependencies into account. During a Web Services
invocation, a client interacts with the service, performing a
sequence of operations in a particular order called
conversation. In this paper, we want to propose strategies for
analyzing and managing Role Based Access Control policies
for designing Security Architectures for web services. We
validate role-based access control with a case study, where
in access decisions are based on the roles that individual
users have as part of an organization. Users take on assigned
roles. The process of defining roles should be based on a
thorough analysis of how an organization operates and
should include input from a wide spectrum of users in an
organization. Access rights are grouped by role name, and
the use of resources is restricted to individuals authorized to
assume the associated role. For example, within a hospital
system the role of doctor can include operations to perform
diagnosis, prescribe medication, and order laboratory tests;
and the role of researcher can be limited to gathering
anonymous clinical information for studies. The use of roles
to control access can be an effective means for developing
and enforcing enterprise-specific security policies, and for
streamlining the security management process. Under the
RBAC framework, users are granted membership into roles
based on their competencies and responsibilities in the
organization. The operations that a user is permitted to
perform are based on the user's role.
Keywords-Web Services, Security Architectures, Role-
Based Access Control

I. INTRODUCTION TO WEB SERVICES SECURITY

ARCHITECTURES

Service Oriented Architectures Web Services authorization
strategies traditionally were implemented using Role-Based
Access Control. (RBAC). Authorization specifically here
means, once a user is authenticated with or without the help
of a directory server, an application needs to determine
whether the identified user is authorized to access the
functionality she is requesting. Authorization is also
commonly refered to as access control. The decision to grant
access may depend on multiple criteria, such as the action
that is being requested, the resource on which the action is
being requested, and the groups to which the authenticated
user belongs or the roles that the user plays. For example,
the superuser or the administrator may access all the files in
a system, but a user belonging to the HR group can access
only those files that are allowed for that group. In traditional,
RBAC, permissions for each action on a resource are
granted to one or more role. For example, in an e-learning
application, a teacher role is required to grade a test.
Information on what roles are granted to which users can be
maintained in an LDAP directory. In the context of SOA,
thinking of a composite application that stitches together the
capabilities of multiple services. An action in the composite
app should ideally check the access control rules of all
constituent services before initialing an action. But this is
only possible if the access control rules of each constituent
service are also available to the composite application.. This
is not possible, in general; traditionally, access control rules
are built into each application in an opaque way. There is
another reason why we cannot hard-core a specific access
control strategy into each application. The reusability of the
service may be drastically reduced for use cases that require
a different access control model. Any authorization strategy
for SOA Web Services will have to address these issues.
 The World Wide Web Consortium (W3C) defines a Web
Service as,” A Software System identified by a URI whose
public interfaces and bindings are defined and described
using XML. Its definition can be discovered by other
software systems. These systems may then interact with the
Web Service in a manner prescribed by its definition using
XML-based messages conveyed by Internet Protocols”. The
most basic standard in providing security for Web Services
is WS-Security (WS-Sec). Other important standards
include: WS-Security Policy, Security Assertions Markup
Language (SAML) and WS-Trust. WS-Secure

ISSN : 0975-3397 2609

D.Shravani et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2609-2615

Conversation is a standard that enables two principals to
establish a session context. The state of a session includes a
secret key that they share for the duration of a session.
Setting up such a session is especially efficient if two parties
need to exchange several messages during a session. This
reduces the overhead of creating a shared secret for every
message exchanged. The idea of a session context is the
application layer analogue of the session in SSL or the IPSec
Security Association. WS-Trust builds on WS-Sec.
Similarly, WS-Federation builds on WS-Trust. It helps
broker trust between entities in different security domains.
Many of the standards developed for Web Services Security
are complementary to each other. A single application may
use several standards to realize its security goals. At the
same time, different developers may use a different subset of
standards to achieve their security goals for the same
application. [1]. Refer to Figure 1, which depicts the Web
Services Security Architecture as defined by NIST draft.
 The Web Services Access controls are categorized
according to access control granularity and have two
approaches: The first approach supports a negotiation-based
attribute-based access control to Web Services with fine
access granularity. The second approach is tailored to access
control for conversation-based Web services and composite
services; where in a Web Service is not considered as a set
of independent operations and therefore access control must
take such dependencies into account. During a Web Services
invocation, a client interacts with the service, performing a
sequence of operations in a particular order called
conversation.

Figure 1. Web Services Security Architecture defined by NIST

A.Security Architectures for Software Security Engineering

Software Engineering covers the definition of processes,
techniques and models suitable for its environment to
guarantee quality of results. An important design artifact in
any software development project is the Software
Architecture. Software Architecture’s important part is the
set of architectural design rules. A primary goal of the
architecture is to capture the architecture design decisions.
An important part of these design decisions consists of
architectural design rules.

 In an MDA (Model-Driven Architecture) context, the
design of the system architecture is captured in the models
of the system. MDA is known to be layered approach for
modeling the architectural design rules and uses design
patterns to improve the quality of software system.
 And to include the security to the software system, security
patterns are introduced that offer security at the architectural
level. Moreover, agile software development methods are
used to build secure systems. There are different methods
defined in agile development as extreme programming (XP),
scrum, feature driven development (FDD), test driven
development (TDD), etc.
 Agile processing is includes the phases as agile analysis,
agile design and agile testing. These phases are defined in
layers of MDA to provide security at the modeling level
which ensures that “security at the system architecture stage
will improve the requirements for that system”.

II. MODEL-DRIVEN ARCHITECTURES FOR WEB SERVICES

SECURITY ARCHITECTURES

MDA (Model-Driven Architecture) is an approach to
modeling that enables interoperability. MDA preserves the
OMG’s (Object Management Group) focus on integration
and interoperability. MDA is a standard that focuses on the
system or point solution and how it can be made to
interoperate effectively. To enable this interoperability, it
focuses on one key idea “the separation of the specification
of functionality from the specification of the implementation
of that functionality”. With MDA, the models are the key
artifacts of the system. Models- and especially models
captured in the UML- are formal representations of different
aspects of the system being constructed. MDA encourages
the use of formal models because they are “machine
processable”, that is, they can be manipulated by tools
because their meaning is clear and unambiguous, at the level
of abstraction presented.
 Key Concepts of MDA: MDA includes a number of
fundamental concepts. Together, they provide a coherent
view of OMG’s view of how to create and maintain
interoperable enterprise architectures.
 Model: The OMG defines the term model to be “a
description or specification of that system and its
environment for some purpose”. The salient aspects of a
model are the following: A model is a simplification of the
thing that is models. A model has a purpose or intent. The
model focuses on the aspects relevant to its purpose
That is, it is common to have different models of the same
thing for different purposes. MDA uses this concept to
implement a well-established idea- the separation of the
essential aspects of the thing from how those aspects are
implemented. Refer to Figure 2 which provides class
diagram for MDAauthentication using Executable UML.

ISSN : 0975-3397 2610

D.Shravani et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2609-2615

Figure 2. Class Diagram for MDA Authentication using Executable

UML

III. AGILE MODELING FOR WEB SERVICES SECURITY

ARCHITECTUTES

Software design is a process that defines the solution to
software implementation at the early stages of the software
development process. It comprises software requirements
and software architecture modeling. A modern concept of
design modeling is performed through the design patterns.
Agile Methodologies (AMs) focus on incremental
development without a single and large upfront design.
Namely, they adopt the Big Design Upfront Anti-pattern
(BDUFA) that embraces changes adopting envisioning
modeling of design (requirements and architecture) just
when needed. AMs use design patterns when the language
of programming is object oriented. AMs share the common
principle of reusing working objects from previous projects
or project iterations to avoid waste and useless activities.
A design practice peculiar to development with the AMs
concerns testing. AMs extensively use the concept of
acceptance test. Some of the design approaches in Agile
Methods are:
Extreme programming (XP): The initial light design is
defined with the System Metaphor. The System Metaphor is
a short description of the system describing how it works.
The design is implemented with the use of models like user
stories, acceptance tests, and CRC cards. These models are
refined in each iteration. As the work is incremental the
additions of new system components or user’s requirements
are also modeled iteratively.
SCRUM: SCRUM is a management, enhancement and
maintenance methodology for an existing systems or
prototypes. SCRUM is more oriented to the orchestration,
SCRUM uses backlogs to organize and design the work.
Backlogs are dynamically and iteratively filled by the
different stakeholders of the development. The priority is
based on customer’s needs and team ability.
Test Driven Development (TDD): In TDD the stress is on
testing. It includes design patterns like the Positive
Feedback loop, for which tests needed to be isolated, to be
returned soon starting from the assert, to use realistic data, to
relate input with output. In TDD the mock objects are used
in testing.

Feature Driven Development (FDD): FDD consists of six
phases as, Requirements analysis, Develop an overall model,
Build a feature list, Plan by feature, Design by feature,
Build by feature. According to FDD, developers capture
requirements with use cases, in each use case actors are
potential security subjects. Then an overall model is derived
from the use cases. Then designers specify the abuse case
scenario to include countermeasures to prevent the abuse
case from occurring. Then designers put forth a
development plan that guides the order of the features to be
developed. Next the attributes are added to the classes. At
last, the developers code and test the information system or
software under development.
To arm agile methodologies with security features, to
restrain reduction of agility nature a method has been
proposed consists of first, security activities are extracted
from existing processes and guidelines, and then agility
degree of activities is defines to measure their nimbleness,
integration issues of agile and security activities are handled
and an algorithm to integrate security activities with
organization’s agile process is introduced, finally agility
reduction tolerance (ART) parameter and its optimum value
are discussed. Refer to Figure 3 which provides class
diagram for Agile Modeling with Security activities.

Figure 3. Class Diagram for Agile Modeling with Security Activities

Refer to Figure 4 which provides sequence diagram for
Agile Modeling predecessor activities.

SecurityAgileMethods

SecurityActivity

extractActivity() : void
sdlc() : void
classify(securityActivity : void) : void

Nimbleness

generateAgileDegree() : void
generateADVect() : void

Integration

analyzeAgileMethod() : void
coreActivityIdentification() : void
generateAICM() : void

ART

SMET(securityPArameter : void) : void
optimization() : void

Algorithm

extractActivity() : void
AICM() : void
ADVect(newActivity : void) : void
rerCalculateAgileDegree() : void
remove(securityActivity : void) : void

ISSN : 0975-3397 2611

D.Shravani et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2609-2615

Figure 4. Sequence Diagram for Agile Modeling predecessor activities

Refer to Figure 5 which provides sequence diagram for

Agile Modeling Analysis, Design and Testing..

Figure 5. Sequence Diagram for Agile Modeling Analysis, Design and

Testing

IV. IMPLEMENTATIONS AND VALIDATIONS

 A. Design of Web Services

 SERVICE-ORIENTED computing (SOC) is an emerging
paradigm for designing distributed applications. SOC
applications are obtained by suitably composing and
coordinating (that is, orchestrating) available services.
Services are stand-alone computational units distributed
over a network and are made available through standard
interaction mechanisms. Composition of services may
require peculiar mechanisms to handle complex interaction
patterns (for example, to implement transactions) while

enforcing nonfunctional requirements on the system
behavior, for example, security, availability, performance,
transactional, quality of service, etc. From a methodological
perspective, Software Engineering should facilitate the shift
from traditional approaches to the emerging service-oriented
solutions. Along these lines, one of the goals of this paper is
to strengthen the adoption of formal techniques for
modeling, designing, and verifying SOC applications. In
particular, we propose a SOC modeling framework
supporting history-based security and call by contract.
The execution of a program may involve accessing security-
critical resources and these actions are logged into histories.
The security mechanism may inspect these histories and
forbid those executions that would violate the prescribed
policies. Service composition heavily depends on which
information about a service is made public, on how those
services that match the user’s requirements can be chosen,
and on their actual runtime behavior. Security makes service
composition even harder. Services may be offered by
different providers which only partially trust each other. On
the one hand, providers have to guarantee that the delivered
service respects a given security policy in any interaction
with the operational environment, regardless of who actually
called the service. On the other hand, clients may want to
protect their sensitive data from the services invoked.
 Our methodology for designing and composing services is
to create new services, and to sell it by a package base
through a secured media. In particular, we are concerned
with Safety properties of service behavior. Services can
enforce security policies locally and can invoke other
services that respect given security contracts. This call-by-
contract mechanism offers a significant set of opportunities,
each driving secure ways to compose services. We discuss
how we can correctly plan service compositions in several
relevant classes of services and security properties. With this
aim, we propose a graphical modeling framework in this
project. Our formalism features dynamic and static
semantics, thus allowing for formal reasoning about
systems. Static analysis and model checking techniques
provide the designer with useful information to assess and
fix possible vulnerabilities.
Several approaches have been developed to support the
verification of service-oriented systems. For example,
dynamic bisimulation-based techniques have been adopted
to analyze the consistency between orchestration and
choreography of services whereas state-space analysis has
been exploited to check the correctness of service
orchestration. Our approach allows for synthesizing and
checking the correctness of the orchestration statically.
In proposed system, we introduced a UML-like graphical
language for designing and verifying the security policies of
service oriented applications. Another feature offered by our
framework is that of mapping high-level service descriptions
into more concrete programs. This can be done with the help
of simple model transformation tools. Such model-driven
transformation would require very little user intervention.
Here one new framework is introduced called Service
Component Architecture (SCA). This framework aims at
simplifying implementations by allowing designers to focus
only on the business logic while complying with existing

P r e s p i r a lP la
n

S t a k e h o l d e r R e
q u i r e m e n t s

D e v e lo p m e n t
E n v i r o n m e n t

1 : C r e a t e a s c h e d u le

2 : C r e a t e a t e a m w o r k

3 : P la n f o r r e u s e

4 : P la n f o r r is k r e d u c ti o n

5 : S p e c i f y t h e lo g i c a l a r c h i t e c t u r e

: P e r f o r m i n i t i a l s a f e t y a n d r e l i a b i l i t y a n a ly s i s

7 : L i n k t h i s p la n r e p o r t w i t h r e q u i r e m e n t s

8 : D e f i n e t h e p r o d u c t v is i o n

9 : F i n d a n d o u t l i n e s t a k e h o ld e r r e q u i r e m e n t s

1 0 : D e t a i l t h e s t a k e h o ld e r r e q u ir e m e n ts

1 1 : R e v i e w s t a k e h o ld e r r e q u i r e m e n t s

1 2 : r e la t e t h e r e q u i r e m e n t s w i t h d e v e lo p m e n t e n v i r o n m e n t

1 3 : T a i lo r t h e p r o c e s s

1 4 : In s t a l l t h e d e v e lo p m e n t t o o ls

1 5 : C o n f i g u r e t h e d e v e lo p m e n t t o o ls

1 6 : In i t i a l i z e t h e d e v e lo p m e n t t o o ls

1 7 : L a u n c h t h e d e v e lo p m e n t t o o ls

AgileAnalysis AgileD esign AgileTesting

1: Prototype definition is given

2: Do the Object analysis

3: send the report for designing for optimization and use of design patterns

4: Architectural design rules are applied for gross optimization

5: Mechanistic design rules are applied for system optimization

6: Detailed design rules are applied for optimization at system at primitive elements level

7: A llow for testing the design

8: D o Unit testing

9: Implement Integration testing

10: Apply Validation testing

ISSN : 0975-3397 2612

D.Shravani et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2609-2615

standards. Our approach complements the SCA view,
providing a full-fledged mathematical framework for
designing and verifying properties of service assemblies. It
would be interesting to develop a (model-transformation)
mapping from our formal framework to SCA. Refer to
Figure 6 which provides class diagram for Web Services
Design Application.

Figure 6. Class Diagram for Web Services Application Design

Refer to Figure 7 which provides execution screen shot for
Web Services Design Application.

Figure 7. Execution Screen shot for Web Services Application Design

 B. Design of Agile Pair Programming

 In this implementation, efficiency of pairs in program
design tasks is identified by using pair programming
concept. Pair programming involves two developers
simultaneously collaborating with each other on the same
programming task to design and code a solution. Algorithm
design and its implementation are normally merged and it
provides feedback to enhance the design. Previous
controlled pair programming experiments did not explore
the efficacy of pairs against individuals in program design-
related tasks. Variations in programmer skills in a particular
language or an integrated development environment and the
understanding of programming instructions can cover the
skill of subjects in program design-related tasks.
Programming aptitude tests (PATs) have been shown to
correlate with programming performance. PATs do not
require understanding of programming instructions and do
not require a skill in any specific computer language. By
conducting two controlled experiments, with full-time
professional programmers being the subjects who worked on

increasingly complex programming aptitude tasks related to
problem solving and algorithmic design. In both
experiments, pairs significantly outperformed individuals,
providing evidence of the value of pairs in program design-
related tasks. Refer to Figure 8 and Figure 9 which provides
respectively class diagram and sequence diagram for Agile
Pair Programming design application.

Figure 8. Class diagram for agile pair programming application

Figure 9. Sequence diagram for agile pair programming application

In the computerized world all the data are saved on
electronically. It also contains more sensitive data. In
computer systems security, role-based access control is an
approach to restricting system access to authorized users. It
is a newer alternative approach to mandatory access control
and discretionary access control. Security critical business
processes are mapped to their digital governments. It needs
different security requirements, such as healthcare industry,
digital government, and financial service institute. So the
authorization and authentication play a vital role.
Authorization constraints help the policy architect design
and express higher level organizational rules. Access is the
ability to do something with a computer resource (e.g., use,
change, or view). Access control is the means by which the
ability is explicitly enabled or restricted in some way

Login.

user_name
password

login()

Service

s_name
s_id
s_provider
s_package

User.

serviceName
servicePackage

service()
encr_service()

Admin.

serviceName
serviceId
serviceProvider

Service_creat()
service_Edit()

Login.

user_name
password

login()

Test

indQstns
indAns
pairQstns
pairAns

Individual

indName
indDetail

ind_test()
pair_test()

Admin.

qstns
answers
user

update_qstn()

Admin Qstns &
Answers

Individual TestProcessing Pair

CreateQstns

Assign test

Calculate Test Result

Ind Test

Pair Test

ISSN : 0975-3397 2613

D.Shravani et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2609-2615

(usually through physical and system-based controls).
Computer- based access controls can prescribe not only who
or what process may have access to a specific system
resource, but also the type of access that is permitted. These
controls may be implemented in the computer system or in
external devices. Refer to Figure 10, Figure 11 and Figure
12 which provides respectively class diagram, sequence
diagram and execution screen shot for Role-based access
control for Web Services policies.

Figure 10. Class diagram for RBAC Web Services policies

Figure 11. Sequence diagram for RBAC Web Services policies

Figure 12. Execution screen shot for RBAC Web Services policies

 D. Model-Driven Web Requirements

Web engineering is a new research line in software
engineering that covers the definition of processes,
techniques, and models suitable for Web environments in
order to guarantee the quality of results. The research
community is working in this area and, as a very recent line,
they are assuming the Model-Driven paradigm to support
and solve some classic problems detected in Web
developments. However, there is a lack in Web requirements
treatment. This paper presents a general vision of
Navigational Development Techniques (NDT), which is an
approach to deal with requirements in Web systems. It is
based on conclusions obtained in several comparative
studies and it tries to fill some gaps detected by the research
community. This paper presents its scope, its most important
contributions, and offers a global vision of its associated
tool: NDT-Tool. Furthermore, it analyzes how Web
Engineering can be applied in the enterprise environment.
NDT is being applied in real projects and has been adopted
by several companies as a requirements methodology. The
approach offers a Web requirements solution based on a
Model-Driven paradigm that follows the most accepted
tendencies by Web engineering.
Most approaches in Web engineering are focused on
analysis and design phases. They usually propose using
classic requirements techniques, such as use cases, in order
to capture and define requirements on the Web. Metamodels
do not offer specific artifacts to deal with the Web
environment since only an approach for classic requirements
treatment is offered.
This project presents the power of tools that support
metamodels because they are suitable for any approach
defined using metamodels NDT is a methodological
approach which deals with requirements in Web
environments. NDT was proposed in order to support the
requirements engineering and the analysis phase of Web
systems and is based on the MDE paradigm. Refer to Figure
13 which consists of execution screen shot of Model-Driven
Web requirements.

Figure 12. Execution screen shot for Model-driven web requirements

role

user

job process

user

role()

Users

role
name
job

jobprocess()

administrator

name,
password

new_user()
role()
job_process()

Admin Edit Information User Job Processing

Create User

Assign Role

Admin Job

Job

ISSN : 0975-3397 2614

D.Shravani et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 08, 2010, 2609-2615

V. DESIGNING SECURE SERVICES APPLICATIONS USING

PATTERNS

I Designing an effective authorization strategy is important for
the security and reliability of our service application. Failure
to design a good authorization strategy can leave our
application vulnerable to information disclosure, data
tampering, and elevation of privileges. Consider the
following guidelines when designing an authorization
strategy. Set appropriate access permissions on resources for
users, gropus, and roles; and apply granular level granular
level authorization across all trust boundaries. Execute
services under the most restrictive account that is
appropriate. Consider using Uniform Resource Locator
(URL) authorization and/or file autorization when protecting
URL-and file-based resources. When appropriate, restrict
access to publicly accesible service methods using
declarative principle permisssions demands.

CONCLUSIONS AND FUTURE WORK

In this paper, we proposed role-based access control
policies for Web Services using Layered Model-driven
architectures and Agile modeling security principles for
enhancing security requirements. Further work includes
Securer Web Service contract design and versioning for
SOA. Security for Workflow and Business Processing
focuses on an important component that makes it possible to
build and manage complex applications. In a Web-based
environment, business processes or workflows can be built
by combining Web Services through the use of a process
specification language. Such languages basically allow us to
specify which tasks have to be executed and the order in
which those tasks should be executed. One such language is
WS-BPEL, which provides syntax for specifying business
processes based on Web Services.

ACKNOWLEDGEMENTS

 The authors wish to thank the following students of CSE,
MGIT for implementing these concepts: B.Preethi, Kavitha,
Anuradha, R.Nitesh Kumar, Ch.Nitesh Reddy, M.Sundeep
and A.Prithvi Srikanth
For detailed implementations, source code, UML diagrams
and documentation, please refer to the website
http://sites.google.com/site/upendramgitcse

REFERENCES
[1] Bernard Menezes,”Network Security and Cryptography”, Cengage

Learning India Pvt. Ltd., 2010 pp. 393-413.
[2] Elisa Bertino, Lorenzo D.Martino, Federica Paci, Anna

C.Squicciarini,” Security for Web Services and Service-Oriented
Architectures”, Springer-Verlag Berlin Heidelberg 2010

[3] Anders Mattsson, Bjorm Lundell, Brian Lings, and Brian Fitzgerald,
“Linking Model-Driven Development and Software Architecture: A
Case Study”, IEEE Transactions on Software Engineering, vol. 35,
no. 1. pp. 83-93 January/February 2009.

[4] Spyros T. Halkidis, Nikolaos Tsantalis, Alexander
Chatizigeorgiou and George Stephanides, “Architectural Risk
Analysis of Software Systems Based on Security Patterns,” IEEE
Transactions on Dependable and Secure Computing, vol. 5 no. 3,
pp. 129–142, July-September 2008.

[5] Mouratidis and Giorgini, Integrating Security and Software
Engineering: Advances and Future Vision. Idea Group Publishing
Inc., 2007.

[6] Heiko Tillwick and Martin S Olivier, “A Layered Security
Architecture: Design Issues”, in Proceedings of the Fourth Annual
Information Security South Africa Conference (ISSA2004), July
2004.

[7] Asoke K. Talukder and Manish Chaitanya, Architecting Secure
Software System. CRC Press, 2009.

[8] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari and
Roberto Zunino, “Semantics Based Design for Secure Web Services,”
IEEE Transactions on Software Engineering, vol. 34 no. 1, pp. 33–49,
January-February 2008.

[9] Anoop Singhal and Theodore Winograd, Guide to Secure Web
Services. NIST Draft (800-95), September 2006.

[10] Daniel Jackson, A Direct path to Dependable Software. Computer
Science and Artificial Intelligence Software, Massachusetts Institute
of Technology.

[11] Hossein Keramati, Seyed-Hassan Mirian-Hosseinabadi, "Integrating
software development security activities with agile methodologies,"
aiccsa, pp.749-754, 2008 IEEE/ACS International Conference on
Computer Systems and Applications.

[12] I. Lazar, B. Parv, S. Motogna, I.-G. Czibula, C.-L. Lazar, “An Agile
MDA approach for Executable UML Structured Activities”, Studia
Univ. Babes-bolyai, Informatica, vol. LII, No. 2, 2007, pp.111-114

[13] Yann-Gael Gueheneuc, Giuliano Antoniol, “DeMIMA: A
Multilayered Approach for Design Pattern Identification”, IEEE
Transactions on Software Engineering, vol. 34, no. 5. pp. 667-684,
September/October 2008.

[14] Johan Peeters, “Agile Security Requirements Engineering”, on
Requirements Engineering for Information Security, 2005.

[15] Ramarao Kanneganti, Prasad Chodavarapu, “SOA Security”,
Manning Publishers, 2007, ISBN 978-1932394689.

[16] Sylvain Halle, Roger Villemaire, Omar Cherkaoui,”Specifying and
Validating Data-Aware Temporal Web Servies Properties”, IEEE
Transactions on Software Engineering, Vol. 35, No. 5, pp. 669-682
September/October 2009.

[17] George Spanoudakis and Andrea Zisman, “Discovering Services
during Service-Based System Design Using UML”, IEEE
Transactions on Software Engineering, Vol 36, No.3, May/June 2010,
PP 371 – 389.

[18] Joao Antunes, Nuno Neves, Miguel Correla, Paulo Verissimo, Rui
Neves,”Vulnerability Discovery with Attack Injection”, IEEE
Transactions on Software Engineering, Vol. 36, No. 3, pp. 357-369,
May/June 2010.

ISSN : 0975-3397 2615

