
Shital S. Thorat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2337-2344

Comparative study of various PKINIT methods
used in Advanced Kerberos

*Ms. Shital S. Thorat,** Prof. H. K. Sawant*** Mrs. Sarita S. Gaikwad ****Prof. G. T. Chavan

* MTech(IT)BVCOEP, ** Ap. Dept. Comp Dept.BVCOEP, ***ME(Comp CN), SCOE **** Ap. Comp. Dept. SCOE

Abstract - Traditional authentication method is password, but
it cannot resist dictionary and playback attack. Thus,
applications, which send an unencrypted password over the
network, are extremely vulnerable. Kerberos can be used as a
solution to these network security problems. The Kerberos
protocol with public key cryptography may help client to prove
its identity to a server (and vice-versa) across an insecure
network connection. This paper shows comparative study of
various PKINIT methods used in Kerberos with their results.

Keywords - Authentication Server, Ticket-Granting Server, Ticket
Granting Ticket, Ticket-Granting Service Request, Ticket-Granting
Service Response, Authentication Service Request, Authentication
Service Response, Application Request, Application Reply, Public
key cryptography for initial authentication, Extensible Pre-
Authentication in Kerberos,Key Distribution Center, Kerberos
Authentication Server. Data Encryption Standard, Certificate
Revocation List, Online Certificate Status Protocol Services.

I. EVOLUTION OF KERBEROS
The name Kerberos comes from Greek mythology;
‘Cerberos’ was the three-headed dog that guarded the
entrance to Hades. Kerberos is a network authentication
protocol developed by MIT (Massachusetts Institute of
Technology) as part of Project Athena, which started in
1983 when MIT decided to integrate network computers as
part of its campus curriculum[1].
The goals of Athena were the integration of a SSO (Single
Sign-on), networked file systems, a unified graphical
environment, and a naming convention service. Kerberos
has since evolved into a strategic security standard that
provides secure authentication services to users,
applications, and network devices, which eliminates the
threats caused by passwords being stored or transmitted
across the network. Additionally, Kerberos provides data
integrity to ensure messages are not tampered with on the
network and message privacy (encryption) to ensure
messages are not visible to eavesdroppers on the
network[3].
The Kerberos model is partly based on trusted third-party
authentication protocol. Versions one through three never
reached outside MIT, but version 4 was (and still is) quite
popular, especially in the academic community. It is also
used in commercial products like the AFS file system.
Following points are discussed here:
 Traditional authentication service exchange
 Working principle of Kerberos
 Authentication process
 Existing Methodology: Kerberos Products on HP-UX

A. The Traditional Authentication Service Exchange

Kerberos is designed to eliminate the need for users to
demonstrate possession of private or secret information (the
password). Instead, Kerberos disseminates this information.
Kerberos Server lets entities authenticate themselves,
without transmitting their passwords in clear text over the
network.

The abstract structure of the messages in the traditional
(non-PKINIT) AS exchange is given in Figure 1[3]. A client
C generates a fresh nonce n1 and sends it, together with own
name and the name T of TGS for whom client desires a
TGT, to the KAS. The KAS responds by generating a fresh
key AK for use between the client and the TGS. This key is
sent back to the client, along with the nonce (n1) from the
request and other data, encrypted under a long-term key kC
shared between C and the KAS[3]; this long-term key is
usually derived from the user’s password. We write {m}k
for the encryption of m with symmetric key k.

This is the only time that this long-term key is used in a
standard Kerberos run because later exchanges use freshly
generated keys. AK is also included in the TGT, sent
alongside the message encrypted for the client. The TGT is
encrypted under a long-term key kT shared between the KAS
and the TGS named in the request.

These encrypted messages are accompanied by the client’s
name and other data. Once the client has received this reply,
she may undertake the Ticket-Granting exchange.

Figure 1. Message Flow in the Traditional AS xchange where TGT =

{AK,C, tT } kT

B. Working Principle of Kerberos

Kerberos uses secret-key cryptography, which is used to
identify the entities communicating over networks. Kerberos
is based on the concept of a trusted third party that performs
secure verification of users and services. In the Kerberos

ISSN : 0975-3397 2337

Shital S. Thorat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2337-2344

protocol, this trusted third party is called the key distribution
center (KDC)[5].

Figure 2. Kerberos Overview

Kerberos is used to verify that users and the network

services they use are really who and what they claim to be.
To accomplish this, a trusted Kerberos Server issues tickets
to users. These tickets, which have a limited lifespan, are
stored in a user's credential cache and can be used in place
of the standard username-and-password authentication
mechanism. The ticket can then be embedded in virtually
any other network protocol, thereby letting the processes
implementing that protocol to be sure about the identity of
the principals involved.
The Kerberos credential scheme includes the Single Sign On
(SSO)[2] concept. Secure authentication is based on
previously established initial credentials, which eliminates
the need to re-key a password on multiple occasions.
A Kerberos server consists of the following elements:
 Realm - a user-defined administrative boundary.
 Key Distribution Center (KDC) - the heart of the

Kerberos realm. It provides Kerberos authentication
services by issuing encrypted tickets that require
secret keys to decode.

 Principal - a unique name for a user or service stored
in a KDC.

 Tickets - records that help a client authenticate to a
server

Kerberos realms represent a networked collection of client
workstations, application servers, and a single master Key
Distribution Center (KDC) with the following
responsibilities[3]:

1. Maintaining a database of matching user IDs and
hashed passwords for registered Kerberos users

2. Maintaining shared secret keys with each registered
application server

3. Maintaining shared secret keys with remote KDC’s in
other realms

4. Propagating new or changed secret keys and database
updates to slave KDC’s. (Slave KDC’s are redundant
copies of the master KDC. They increase the

tolerance of a Kerberos environment to faults in the
master KDC.)

Typically, networks of client workstations and application
servers under different administrative domains fall into
different Kerberos realms. Cross-realm authentication is
required when a user requests a service from an application
server that resides in a remote realm.
The client process interacts with three types of principals
(KDC server, Kerberos security principal, Validating server)
during the three rounds of Kerberos 5 (with or without
PKINIT). The client’s goal is first to authenticate himself to
various application servers (e.g., email, file, and print
servers). This is done by first obtaining credentials, called
the “ticket-granting ticket” (TGT), from a “Kerberos
Authentication Server” (KAS) and then by presenting these
credentials to a “Ticket-Granting Server” (TGS) in order to
obtain a “service ticket” (ST), which is the credential that
the client finally presents to the application servers in order
to authenticate himself A TGT might be valid for a day, and
may be used to obtain several ST’s for many different
application servers from the TGS, while a single ST might
be valid for a few minutes and is used for a single
application server. The KAS and the TGS are altogether
known as the “Key Distribution Center” (KDC).
The client’s interactions with the KAS, TGS, and
application servers are called the Authentication Service
(AS), Ticket-Granting (TG), and Client-Server (CS)
exchanges, respectively. The focus of this work will be the
AS exchange, as PKINIT does not alter the remaining parts
of Kerberos[4].

Figure 3. An Overview of Kerberos Authentication[3]

C. Authentication Process

The following steps describe how a client and a server
authenticate each other using Kerberos. The step numbers
match with the numbered arrows in figure below[9].

ISSN : 0975-3397 2338

Shital S. Thorat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2337-2344

Figure 4. The Kerberos Authentication Protocol[9]

Step 1: The user begins to use a Kerberized application by
entering the user name and password. Optionally, the user
can request for specific ticket flags and specify the key type
to be used for constructing the secret key. The user can also
accept the default, configured for the client. The user sends
the following information to the Authentication Service
(AS) to obtain credentials[9]:
 Client, Server, T, N; where
 Client indicates the user name, also referred to as the

principal name Server indicates the Application Server
 T indicates the time stamp and
 N indicates nonce

Step 2: If the AS can decrypt the message successfully, it
issues a temporary session key, which is encrypted with the
user’s secret key (a key derived from the user password,
which is stored in the KDC), and a TGT encrypted with the
TGS’s secret key. The TGT contains the name of the user
and a copy of the session key (a randomly generated
temporary encryption key) to be used by the user and the
Server for any subsequent communication.
Step 3: The user decrypts the session key. The TGT and the
session key are stashed in the user’s credential cache. The
credentials are used to obtain tickets for each network
service the principal wants to access. This protocol
exchange has two important features:
 The authentication scheme does not require that the

password be sent across the network, either in
encrypted form or in clear text.

 The client (or any other user) cannot view or modify the
contents of the TGT.

Step 4: To obtain access to a secured network service such
as rlogin, rsh, rcp, ftp, or telnet, the requesting client
application uses the previously obtained TGT in a dialogue
with the TGS to obtain a service ticket. The protocol is the
same as used while obtaining the TGT, except that the
messages contain the name of the server and a copy of the
previously obtained TGT.
Step 5: The TGS returns a new service ticket that the
application client can use to authenticate the service.
Step 6: The application client tries to authenticate to the
service on the application server using the service ticket

obtained from the TGS. The secure application validates the
service ticket using the server’s service key present in the
key tab file. Using this service key, the server decrypts the
authenticator and verifies the identity of the user. It also
verifies that the user’s service ticket has not expired. If the
user does not have a valid service ticket, then the server will
return an appropriate error code to the client.
Step 7: (Optional) At the client’s request, the application
server can also return the time stamp the client sent
encrypted in the session key. This ensures a mutual
authentication between the client and the application server.

II. INTRODUCTION TO PKINIT

Kerberos is a successful, widely deployed single sign-on
protocol that is designed to authenticate clients to multiple
networked services, e.g., remote hosts, file servers, or print
spoolers. Kerberos 5, the most recent version, is available
for all major operating systems. Kerberos 5 continues to
evolve as new functionalities are added to the basic
protocol[1].

One of these extensions, known as Public Key
Cryptography for Initial Authentication (PKINIT), which
modifies the basic protocol to allow public-key
authentication and in the process adds considerable
complexity to the protocol[3]. Here we report a protocol-
level attack on PKINIT and discuss the constructive process
of fixing it. Kerberos is based on conventional
cryptography. That is, it relies on symmetrical cryptographic
algorithms that use the same key for encryption as for
decryption[9].

PKINIT is intended to add flexibility, security and
administrative convenience by replacing this static shared
secret with two pairs of public/private keys, one assigned to
the KDC and one belonging to the user[2].

Following points are discussed here -

 Security constraints in existing system
 Public key cryptography for initial authentication in

Kerberos

A. Kerberos with Public Key Cryptography

Kerberos authentication is based on use of symmetric
cryptography. The implication is that symmetric encryption
keys must be exchanged between parties as a precondition
to being able to perform authentication. For human users,
passwords are used to derive symmetric encryption keys for
authentication and exchange of subsequent session keys.
In practice, every user and service principal must go through
an initial setup process where passwords or symmetric
encryption keys are exchanged with a KDC. This can be
done securely with proper procedures by an
administrative[2].

ISSN : 0975-3397 2339

Shital S. Thorat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2337-2344

Furthermore, both parties can compromise the shared secret
key. Changing passwords and keys can also be a burden for
users and system administrators.
The appeal of asymmetric cryptography is that there are two
keys, where anything encrypted with one key can only be
decrypted with the one-and-only corresponding key[2].
When asymmetric “key pairs” are generated, it is common
practice to treat one as a “public key” that can be freely
shared with other parties while the other key in the pair is
kept as a “private key” that should not be shared with any
other parties. This significantly simplifies key sharing, since
the public key can be freely exchanged between parties
provided the private key is not disclosed.
The primary concern with distributing public keys is
determining whether or not a public key really belongs to a
specific party. This is generally solved through use of public
key certificates, which include the name of the party
(subject) and their public key in a document that is digitally
signed by some “Certification Authority” or “CA.” Any
party that receives a certificate can validate the CA’s
signature to confirm that the public key really belongs to the
subject named in the certificate.
Kerberos has been extended to take advantage of public key
technologies, primarily for initial authentication of users
requesting TGT’s, though other extensions have been
proposed for including public key certificates in Kerberos
tickets.

B. PKINIT with Kerberos

Public Key Cryptography for initial authentication
(PKINIT) specifies extensions to KDC Authentication
Services that allow clients (users) to be initially
authenticated by presenting their public key certificates
instead of using previously shared secret passwords[1]. Only
the initial authentication procedure is changed; all other
Kerberos interactions remain the same.
In particular, clients continue to receive Ticket Granting
Tickets (TGTs) that will be used to subsequently request
tickets for services, and services continue to authenticate
users via tickets issued by KDCs. A service has no need to
support public key cryptography, or even know how the
client initially authenticated to the KDC[1].
From an application perspective, client and service
interactions are exactly as before. An important
consequence of using PKINIT is that users can more easily
be given an account in a realm they have never visited
before[2]. If an employee or contractor with a trusted
certificate moves to a new part of an organization, their
account can be waiting for them with no need to register a
new password.
Furthermore, use of public key certificates helps to
moderate risks with weak user passwords, since the user’s
private key is used during initial authentication instead of a
password. A user may still enter a password, but only on

their local workstation or device to unlock the private key.
Password changes tend to be handled at the user device
level, and do not have to be coordinated with other systems.
At least theoretically, using PKINIT, user principals no
longer need to be registered in the KDC database before
initial authentication, since the KDC does not need to look
up the corresponding shared secret for a user with a
certificate[3]. Service principals must still be registered in
the KDC database along with a shared symmetric encryption
key. A KDC database could be much smaller.
However, in practice, users still need to be registered to
store policy and other information. PKINIT does not reduce
the need for this information. With PKINIT, the
administrative overhead for maintaining the KDC database
should be reduced, and user password changes would no
longer need to be supported for users with certificates.
Another benefit is that certificates can be associated with
hardware cryptographic tokens, including “smart cards” and
USB devices with embedded “smart chips.” Some biometric
authentication devices can also be used with certificates, but
where the biometric device is used to unlock access to the
user’s private key. Of course, these benefits come at the
expense of deploying a Public Key Infrastructure (PKI) that
includes Certification Authorities (CAs), certificate request
and issuing services, certificate revocation procedures,
status checking services, and directories for retrieving
certificates for specific users or other principals. However,
PKI has become an integral part of several vendor
platforms, and it is widely available.
The KDC database can store self-issued certificates
associated with user principals. This avoids reliance on a
CA, since the KDC can trust a public key in its database,
and no password secret is needed for the user. However,
other advantages such as easy migration between realms and
support for applications beyond Kerberos tend to require a
PKI[4].
One concern with certificates used in authentication is that
they tend to have relatively long lifetimes on the order of
months to even a couple of years. This leads to greater
exposures when private keys are compromised, or a user’s
certificate needs to be revoked for some cause. This means
that a KDC might allow a user with a revoked certificate to
authenticate, and subsequently access application services.
There are two approaches for mitigating this risk[5]:
1. Distribution of Certificate Revocation Lists (CRLs)

2. Use of Online Certificate Status Protocol (OCSP)
services .

Use of OCSP services is particularly attractive, as it allows
certificate status to be checked in real time as part of the
initial authentication process. PKINIT can be further
extended to integrate OCSP checks during Kerberos initial
authentication.
Scalability: Similarly, public-key cryptography simplifies
the registration of new keys into the key distribution center
(KDC) since public keys can be safely communicated over a

ISSN : 0975-3397 2340

Shital S. Thorat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2337-2344

remote connection to the KDC database. PKC improves the
scalability of KDC maintenance by affording administrators
the freedom of remote access without the burden of a priori
security.

Figure 5. PKINIT Overview

Improved security: Public-key cryptography improves
Kerberos security because modifying public keys in the
public-key infrastructure is much more difficult than
passively reading secret-keys in traditional Kerberos
databases.
Performance issues: While public-key cryptography can
improve scalability and security aspects of Kerberos, it can
also harm performance. Traditionally, Kerberos has been
applied on a small enough scale that performance
bottlenecks at key distribution centers did not occur. But
recent systems are implementing Kerberos in very large
networks with many entities participating in the
authentication process.
Furthermore, the computational requirements of public-key
cryptography are generally higher than for secret-key
cryptography for the following reasons:
1. The calculations involved during key generation and

encryption and decryption routines are computationally
expensive. For example, DES uses table lookups and
XOR operations whereas the public-key RSA (Rivest,
Shamir, Adleman) algorithm uses exponentiation and
multiplication for encryption and decryption. In fact,
hardware implementations of RSA are about 1000 times
slower than DES.

2. Public-key cryptography generally requires much larger
keys than conventional secret-key cryptography.

For these reasons, most proposals to include PKC in
Kerberos attempt to minimize the number of public-key
computations that occur.

C. Public-key cryptography for Cross- Realm

Authentication in Kerberos (PKCROSS)

The primary benefits of PKCROSS[5] involve “simplifying
the administrative burden of maintaining cross-realm keys,”
In other words, it improves the scalability of Kerberos in

large multi-realm networks where many application servers
may be participating in the authentication process. This
protocol is summarized in Figure 6.

Figure 6. PKCROSS overview

The public-key extensions proposed in PKCROSS take
place only between pairs of key distribution centers (i.e.
KDC-to-KDC authentication). They are, thus, transparent to
end-users requesting cross-realm tickets.
The PKCROSS ticket is used to achieve mutual
authentication between the local key distribution center and
the remote key distribution center. The messages exchanged
between the two key distribution centers closely follow the
PKINIT specification, with the local key distribution center
acting as the client. When the remote key distribution center
issues a PKCROSS ticket to the local key distribution
center, it trusts the local key distribution center to issue the
remote realm TGT to its local client on behalf of the remote
key distribution center.
In summary, PKINIT facilitates public- key based
authentication between local Kerberos clients and their local
key distribution center; PKCROSS extends the public-key
capabilities to cross-realm KDC-to-KDC authentication.
Thus, by using PKINIT and PKCROSS together, public-key
based authentication can be integrated throughout the entire
Kerberos framework.

D Public-key based Kerberos for Distributed

Authentication (PKDA)
The PKINIT and PKCROSS protocols are embraced and
extended to create a new protocol, called “Public-key based
Kerberos for Distributed Authentication” (PKDA)[5]. It
provides enhanced privacy for Kerberos clients, as well as
increased scalability and security within the Kerberos
framework. Client-side privacy is increased by simply
“moving the client identity fields from unencrypted to
encrypted portions” of the authentication messages.

ISSN : 0975-3397 2341

Shital S. Thorat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2337-2344

Figure 7 PKDA overview

Increased scalability and security is attempted by moving
authentication procedures away from centralized key
distribution centers to between the individual clients and
application servers on a network.
It also eliminate the single point of failure a key distribution
center’s centralized collection of keys imposes on the
Kerberos environment (improved security).
The PKDA design differs from all other proposed public-
key enhancements to Kerberos by completely avoiding the
centralized key distribution center in the Kerberos
framework. Using public-key cryptography for every
service ticket request renders the symmetric key maintained
in the key distribution center completely unnecessary. This
includes cross-realm authentication.
In fact, since PKDA doesn’t rely on the key distribution
center for initial authentication, specialized cross realm
authentication procedures are also unnecessary. (As they can
be identical to those procedures within a local realm.) The
five messages illustrated in Fig. 4 describe the PKDA
exchanges that occur when an unauthenticated client
requests a service from an application server.

III. RESULTS AND MEASURES

A. Results

All administrators are familiar with the problems Kerberos
was designed to mitigate. Those problems include, password
sniffing, password filename/database stealing, and the high
level of effort necessary to maintain a large number of
account databases.
A properly deployed Kerberos Infrastructure will help you
address these problems. It will make your enterprise more
secure.
Use of Kerberos will prevent plaintext passwords from
being transmitted over the network. The Kerberos system
will also centralize your username and password
information which will make it easier to maintain and
manage this data.
Finally, Kerberos will also prevent you from having to store
password information locally on a machine, whether it is a
workstation or server, thereby reducing the likelihood that a
single machine compromise will result in additional
compromises.

In a large enterprise, the benefits of Kerberos will translate
into reduced administration costs through easier account and
password management and through improved network
security. In a smaller environment, scalable authentication
infrastructure and improved network security are the clear
benefits.
Some of the dangerous attack found in public-key
encryption mode is given below:

1. Message Flow - Figure 8 shows the AS exchange
message flow in the attack[3]. The client C sends a request
to the KAS K with its own credentials, which is intercepted
by the attacker I. Attacker constructs his own request
message using the parameters from C’s message. This
allows the attacker to decrypt this part of the message using
his private key, learn the key k, and use this to learn the key
AK and send request to KAS. Now KAS view this request
as C receives it. In turn, KAS provide service to this request.
Attacker I modify the data received from KAS and send to
client C, who assumes that the received data is send by
KAS[7].

 Figure 8. Message Flow in the Man-In-The-Middle Attack on PKINIT-
26,[3]

 where TGT = {AK, I, tK}kT

2. Attacker impersonate Servers - The attacker may
intercept C’s requests in the TG and CS exchanges and
impersonate the involved servers rather than forwarding
altered messages to them.

3. Attacker Observes Traffic - Once the attacker learns
AK in the AS exchange, he may either mediate C’s
interactions with the various servers (essentially logging in
as I while leaking data to C so user believes that he has
logged in) while observing this traffic or simply impersonate
the servers in the later exchanges.

B. Solution for Attack

The attack outlined in section 4.1 was possible because the
two messages constitute, then the current version of PKINIT
(PKINIT 26) was inefficient to handle it. More precisely,
the attack shows that, although a client can link a received
response to a previous request, user cannot be sure that the
KAS generated the key AK and the ticket granting ticket
TGT appearing in this response for the particular user. In

ISSN : 0975-3397 2342

Shital S. Thorat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2337-2344

fact, the only evidence of the principal for whom the KAS
generated these credentials appears inside the TGT, which is
unclear to user.

This suggests one approach to making PKINIT protected to
this attack, namely to require the KAS to include the
identity of this principal in a component of the response that
is integrity protected and that the client can verify. An
obvious mechanism is the sub message signed by the KAS
in the reply. In PKINIT-27 (and subsequent versions),
whenever a client C processes an AS reply containing server
generated public-key credentials, the KAS previously
produced such credentials for C.

1. Abstract Fix - Because of the attack the client cannot
verify that the received credentials (the TGT and the key
AK) were generated for him. This problem can be fixed by
including the KAS include C’s name in the reply in such a
way that it cannot be modified whole route and that C can
check it[5].

With this abstract fix in place, the PKINIT exchange in
public-key encryption mode is depicted in Figure 9, where
box highlights the modification with respect to PKINIT-
26[5].

Figure 9. Abstract fix of PKINIT[3]

Now the client can verify the KAS received credentials for
him and not for another attacker. In fact, an honest KAS will
produce the signature ([k, F(C, ni)]skK) only in response to
a request from C.

2. Solution Adopted In PKINIT-27 - In PKINIT-27,
clients or C’s name is included in the signed portion of the
reply and also replaces the nonce n2 there with a keyed hash
(“checksum” in Kerberos terminology) taken over the
client’s entire request. This approach also overcomes the
attack. The IETF Kerberos Working Group decided to
include the checksum based approach in PKINIT-27[3]. The
message flow of this version of PKINIT is displayed in
Figure 10.

Figure 10. Fix of PKINIT adopted in version 27[3]

C. Measures

Single point of failure: It requires continuous availability
of a central server. When the Kerberos server is down, no
one can log in. This can be mitigated by using multiple
Kerberos servers and fallback authentication mechanisms.
Kerberos requires the clocks of the involved hosts to be
synchronized. The tickets have a time availability period
and if the host clock is not synchronized with the Kerberos
server clock, the authentication will fail. The default
configuration requires that clock times are no more than 10
minutes apart. In practice Network Time Protocol daemons
are usually used to keep the host clocks synchronized. The
administration protocol is not standardized and differs
between server implementations. Since the secret keys for
all users are stored on the central server, a compromise of
that server will compromise all users' secret keys. A
compromised client will compromise the user's password

Together, the PKINIT and PKCROSS specifications define
a public-key based authentication solution across multi-
realm Kerberos networks.

PKDA makes more fundamental changes to the Kerberos
standard in an attempt to achieve greater improvements in
scalability, security and client privacy issues. The
complexity of public-key computations and length of its
messages makes PKDA generally less efficient than the
simpler PKCROSS protocol for cross-realm (key
distribution center-to-key distribution center) authentication.
So, while PKDA may achieve better security and privacy
characteristics than other public key cryptography
proposals, it offers no greater improvement in scalability.
Public-key cryptography enhancements to the traditional
Kerberos standard incorporate a public-key infrastructure

ISSN : 0975-3397 2343

Shital S. Thorat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2337-2344

into the scope of underlying systems trusted by Kerberos.
Therefore, any weakness in the public-key infrastructure
will inherently degrade the reliability of Kerberos.
Although no security flaws have been associated with the
PKINIT, PKCROSS or PKDA specifications, nothing can
be concluded about their reliability until they have been
implemented together with a public-key infrastructure and
applied for widespread public review.

IV. CONCLUSIONS

Adding Kerberos to a network can increase the overall
security available to the users and administrators of that
network. Remote sessions can be securely authenticated and
encrypted. In addition, Kerberos allows the user and service
principal’s database to be managed securely from any
machine that supports the Kerberos protocol.
The public-key based protocols—PKINIT, PKCROSS, and
PKDA—add public-key cryptography support at different
stages of the Kerberos framework. However, they all
attempt to improve Kerberos scalability and security by
simplifying key management and utilizing trustworthy
public-key infrastructures.

REFERENCES

[1] Boldyreva, A. Kumar, V. Sch. of Comput. Sci., Georgia Inst. of
Technol., Atlanta, GA: Extended Abstract: Provable-Security
Analysis of Authenticated Encryption in Kerberos : IEEE Symposium
on Security and Privacy, 2007. SP '07.

[2] Boldyreva, A. Kumar, V. Sch. of Comput. Sci., Georgia Inst. of
Technol., Atlanta, GA: Extended Abstract: Provable-Security
Analysis of Authenticated Encryption in Kerberos This paper appears
in : Security and Privacy, 2007. SP '07. IEEE Symposium on
Publication Date: 20-23 May 2007

[3] Cervesatol, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad,
Tulane University: Breaking and Fixing Public-Key Kerberos. IEEE
Communications (2007)

[4] Downnard, I. Public-key cryptography extensions into Kerberos
Potentials, IEEE Publication Date: Dec 2002-Jan 2003 Volume: 21

[5] El-Hadidi, M.T. Hegazi, N.H. Aslan, H.K. Dept. of Electron. &
Electr. Commun, Cairo Univ., Egypt; Performance analysis of the
Kerberos protocol in a distributed environmentThis paper appears in:
Computers and Communications, 1997. Proceedings., Second IEEE
Symposium on Publication Date: 1-3 July 1997 On page(s): 235 –
239

[6] Hellewell, P.L. van der Horst, T.W. Seamons, K.E. Brigham
Young Univ., Provo: Extensible Pre-authentication Kerberos:
Computer Security Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual

[7] Ke Jia , Xiaojun Chen Guanghua Xu : The improved Public Key
Encryption Algorithm of Kerberos Protocol based on Braid
Groups,[2008] IEEE Communications

[8] Zrelli, S. Medeni, T. Shinoda, Y. Japan Adv. Inst. of Sci. &
Technol., Nomi : Improving Kerberos Security System for Cross-
Realm Collaborative Interactions Research, Innovation and Vision
for the Future, 2007 IEEE

[9] Alan H. Harbitter, Daniel A. MenascC “Performance of Public-Key-
Enabled Kerberos Authentication in Large Networks” 1081-601 1/01
$10.00 0 2001 IEEE

ISSN : 0975-3397 2344

