
A.R. Jayasudha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2322-2327

Grid Scheduling using Differential Evolution (DE)
for solving multi-objective optimization

parameters

 Mrs. A.R. Jayasudha MCA, M.Phil Dr. T. Purusothaman, M.E., Ph.D.,
 Lecturer, Assistant Professor,
 Department of Computer Applications, Department of CSE,
 Hindusthan College of Engg & Tech, Government College of Technology,
 Coimbatore, India Coimbatore, India

Abstract—The computational grid is a collection and aggregation
of parallel, distributed, and heterogeneous resources. Grid
Scheduling is the complex issue to manage the heterogeneous
resources. The proposed approach considers the evolutionary
algorithm of Differential Evolution (DE) technique in a modified
manner to solve the multi-objective parameters of makespan and
flowtime. The proposed grid scheduling approach completes the
jobs within minimal time and also it increases the utilization of
resources. The proposed DE based grid scheduling algorithm
with modified has been tested under the batch mode and the
performance of the proposed MDE based algorithm has been
compared with Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Simulated Annealing (SA), and the results
outperform the compared one.

Keywords - Grid Scheduling, Differential Evolution,
 Makespan, Flowtime, Grid Scheduler

1. INTRODUCTION

Grid is emerging as a wide-scale infrastructure that promises to
support resource sharing and coordinated problem solving in
dynamic, multi-institutional virtual organization [8]. Grid
computing aggregates the resources from multiple computers in
a network for a single problem at the same time usually to a
scientific or technical one that requires a large number of
computer processing cycles or access to large amounts of data.
A computational grid is the combination of distributed
resources such as personal computers, workstations,
supercomputers, processors, clusters, and scientific instruments
have emerged as a next generation computing platform for
solving large-scale problems in science, engineering, and
commerce. Job Scheduling and Resource Management are the
critical issue in Grid Computing [9]. It is a big challenge to
design an efficient Grid Scheduling algorithm in computational
grid. The above grid scheduling problem is multi-objective in
nature, the two most important objectives considered in our
proposed approach is minimization of makespan and flowtime
of the resources.

In the heterogeneous nature of grid the job has to wait
in the queue, the waiting time of the job in the queue depends
on the following factors such as load and availability of the
resources. There are lots of jobs submitted by the user and the
submitted jobs have been categorized based on the user
requirements such as number of nodes, estimated execution
time, and specific input/ output needs. The grid scheduler is
responsible for making scheduling decisions to allocate the jobs
to the resources in an optimal way. To allocate the resources in
an optimal manner, the grid scheduler needs the required
information such as size of the job, priority of the jobs and
estimated execution time of the job. The way in which the jobs
have been prioritized and the prioritized jobs have been
allocated to the appropriate resources is called Grid
Scheduling. The above grid scheduling problem is called NP-
Complete and it is in multi-objective nature. The efficient grid
scheduling algorithm minimizes the average completion time
of jobs through optimal job allocation on each grid node. The
two most important objectives considered in our proposed
approach are makespan and flowtime. The remainder of the
paper has been organized as follows. The related work has been
described in section 2, generic grid scheduling and grid
scheduler performance factors and the implemented grid
scheduler has been described in section 3, introduction to DE
and proposed DE has been given in section 4, implementation
details has been discussed in section 5, experimental results has
been explained in section 6, conclusion and future work has
been explained in section 7.

2. Related Work

 Job scheduling is known to be NP-complete [10] and
there are lot of meta-heuristics techniques have been examined
job scheduling approach. A heuristic approach proposed by Lei
Zhang, Yuehui Chen, Bo Yang [1] based on particle swarm
optimization is adapted to solving scheduling problem in the
grid environment. Each particle is represented a possible
solution. The approach aims to generate an optimal schedule so
as to get the minimum makespan and maximum resource
utilization while completing the jobs. The hybrid particle

ISSN : 0975-3397 2322

A.R. Jayasudha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2322-2327

swarm optimization algorithm was proposed by M. Fikret
Ercan [2] for the application of PSO in scheduling hybrid flow
shops with multiprocessor jobs. In order to improve the
performance of PSO, hybrid techniques were employed. The
experimental results show that the PSO and hybrid methods are
more efficient and effective in scheduling basis. Ritchie and
Levine [3] have combined an Ant Colony Optimization
algorithm with a TS algorithm for the problem. Abraham et al.
[4] have proposed hybridization of Genetic Algorithm,
Simulated Annealing and Tabu Search heuristics for dynamic
job scheduling on large-scale distributed systems. They have
combined the local search heuristics such as Tabu Search (TS)
and Simulated Annealing (SA) that deals with a single solution
at a time. Braun et al [11] & Maheswaran et al [12] have
defined the simple heuristics for dynamic matching and
scheduling of a class of independent jobs onto a heterogeneous
computing. There are lot of research works has been carried out
related to our work using Differential Evolution (DE) [13]
technique, in this the chromosome has been represented as a
feasible schedule that should be converted to a string of real
numbers for DE operations, their proposed approach creates the
infeasible solutions.

3. Introduction to Grid Scheduling
3.1 Grid Scheduling

 Grid scheduling [6] is the process of scheduling
applications over grid resources under different administrative
domains. Grid Scheduler is responsible for implementing the

efficient Grid Scheduling Algorithms.
The Grid Scheduling has been classified into three main

phases.
 Resource Discovery – In the first phase of grid

scheduling, resource discovery returns the list of
capable resources available in the grid environment.

 Resource Selection – In the second phase of grid
scheduling, resource selection retrieves the exact
resource for job execution has been selected from the
list of capable resources.

 Job Execution – In the third phase of grid scheduling,
job execution involves the submission of jobs and
monitors the job execution.

3.2 Grid Scheduling Performance Factors
 There has been lot of optimization criteria can be
considered for the grid scheduling problem and the problem is
multi-objective in nature. In our proposed approach we have
classified the performance factors into grid resource
performance parameters and scheduling optimization criteria.
The grid resource performance related factors are CPU
utilization of Grid resources, Load Balancing, Queuing Time,
Throughput, Turnaround time, Waiting Time, Response Time,
Deadline, User Priority, and etc. The scheduling optimization
criterion related factors are Makespan, Flowtime, Resource
Utilization, Load Balancing, Turnaround Time, Total
Completion time and Total Response time. The combination
of grid resource performance factors and scheduling

optimization criterion related factors improve the overall grid
resource performance.
3.3. Implemented Grid Scheduler
 The implemented grid scheduler architecture has
been classified into two layers such as Broker Layer and
Middleware Layer. The grid scheduler retrieves the user
request using the Request Handler The request handler parses
the resource information which is available in the resource
repository. Once the resource information has been matched
with the user request, the matched resource information has
been sent to the Job Dispatcher. The job dispatcher maintains
the job queue which contains the dispatched and undispatched
jobs. The Differential Evolution (DE) based resource allocator
has been periodically invoked by the dispatched for allocating
the resources to jobs in an optimal manner. Once the resource
has been scheduled, the dispatcher invokes the Transfer
Manager for transferring the input files and executable to the
scheduled resource. Once the input file and executable has
been transferred successfully the dispatcher invokes the
Execution Manager to invoke the job execution. The job
execution has been periodically monitored by the execution
manager and the job information has been updated and sent to
the Request Handler.

Figure. 1. Grid Scheduling Architecture

4. Differential Evolution Algorithm for Grid Scheduling
 Differential Evolution is a Stochastic Direct Search
and Global Optimization algorithm and it has been emerged
from the field of Evolutionary Computation. It has been
closely related to the algorithms such as Genetic Algorithm
and Evolutionary Programming and also it shows some
similarities to Particle Swarm Optimization (PSO).Differential
evolution algorithm (DE) has been first introduced by R.Storn
and K.Price in 1995 which is basically a random parallel
searching algorithm [7]. The idea of differential evolution
algorithm is to obtain a new individual by adding the weighted

`

Broker Layer

Middleware Layer

Request
Handler

Job
Dispatcher

Job Queue

DE Based Resource
Allocator

Information
Manager

Transfer
Manager

Execution
Manager

Head
Node1

Compute
Node1

Compute
Node2

Head
Node2

Compute
Node1

Compute
Node2

Head
Noden

Compute
Node1

Compute
Node2

…

Middleware Access Adaptors

User

Resource
Repository

`

Broker Layer

Middleware Layer

Request
Handler

Job
Dispatcher

Job Queue

DE Based Resource
Allocator

Information
Manager

Transfer
Manager

Execution
Manager

Head
Node1

Compute
Node1

Compute
Node2

Head
Node2

Compute
Node1

Compute
Node2

Head
Noden

Compute
Node1

Compute
Node2

…

Middleware Access Adaptors

User

Resource
Repository

ISSN : 0975-3397 2323

A.R. Jayasudha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2322-2327

difference vector of any two individuals to another individual
with certain rules. Suppose if the value of the fitness has better
than another individual the new fitness value will replace the
existing value else the last fitness value kept for next
generation.

4.1 Proposed Differential Evolution Algorithm
 The evolutionary theory of the DE algorithm is that
chromosomes have special encoding format are decoded for
the fitness value of each chromosome of a generation. The
fitness value has been saved and used a reference value for the
next generating population. The population has been evolved
by using crossover operation and mutation operation, decoding
operation and selection operation. Once the above process has
been completed within certain times the chromosome in a
population which corresponds to the best fitness value has
been used as a sub-optimal solution for grid scheduling
problem.
4.2 Problem Formulation
 To formulate the problem the following information
needs about the resources in the computation grid environment
such as computational load of each job running in the grid
resources, computing capability of all the resource, estimation
of the computational requirements of each job and the
computational load of each resource. From the available
resource information of the grid resources the estimated
execution time of the job has been calculated by using an
Expected Time to Compute (ETC) model and Expected Time
to Compute matrix ETC has been constructed and the
expected execution time ETij of job ti on resource mj has been
defined as the amount of time taken by the resource mj to
execute the given job ti by considering the above resource
information. Let S be the set of jobs in our testing purpose for
testing our grid scheduling algorithm and si be the starting
time of the job .By using the above two we can compute the
completion time of job by using the following notation CTij =
si + ETij where CTij be the completion time of the whole job.
Let us assume that the schedule S from the set of all possible
schedules Sched.
Algorithm 1 Pseudo Code for DE based Grid Scheduling
Algorithm
Let TResources be the total number of grid resources
Let n be the total number of jobs available in queue for a
particular schedule
Let ATime be the available time of the grid resources
Let STime be the start time of the job in the grid resources
Let PSize be the population size
Let SFactor be the scaling factor
Let NIter be the number of iterations to be consider
Generate the initial population of random individuals
Match the feasibility for the initial vectors
 For 1 to NIter

Compute the makespan value for each
 individual

 For I = 1 to PSize
 Select the random integer number rand � (0, 1, 2,)

Select mutually exclusive random individuals Xa, Xb, and Xc
Calculate the mutant vector V starting from the position rand
of each individual.
Select the random value rand � [0, 1]
Calculate the path vector Ui
Check the feasibility of path vector Ui
end for
Calculate the makespan of path vector set
for i = 1 to PSize
if makespan of Ui is less than Xi then
 Select Ui
else
Preserve Xi
end if

end for
Select the solution with minimum makespan
end for

4.3 Chromosome encoding

In our proposed approach we have used the double-
chromosome encoding principle which has been used for
individuals. The first layer has been processed according to the
jobs followed by numbered 1, 2, 3… the priorities of the jobs
number implied the process constraint of the jobs. The second
layer will generate a chromosome and the code number is the
number of all jobs L and all codes have been retrieved by
using Random Number. The random numbers are used to
represent the priority of the job. The coding schemes will
generate chromosome faster and easier to use.
A schedule of n independent jobs has been executed on
TResources has been expressed as

S=S1, S2, S3….Sn ------------ (1)

Si � 1, 2…TResources ----- (2)
The value at i in S represents the resource on which ith job has
been scheduled in schedule S. The differential evolution has
been used for problem encoding real vectors, real coordinates
has been used instead of discrete resource numbers.

4.4 Differential operation
 The differential operation mainly includes
initialization, mutation, crossover, and selection operations.
Mutation operation has been based on three individuals that
have been randomly selected from the current population by
using one individual the disturbance has been deal by other
two individuals. Crossover operation has been performed
based on the new individual which has been generated by
come together the two random individuals which has been
randomly selected from the current population. Selection
operation has been performed by using the natural selection,
preserve the best, and realize the evolution of populations. In
Initialization operation chromosome is composed of random
[0, 1] which length is L and NP individuals form a population.
The local optimum value has been avoided in the mutation
operation by using the principle of inter-district operation. In

ISSN : 0975-3397 2324

A.R. Jayasudha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2322-2327

selection operation the chromosomes have been ordered based
on the fitness value into good, medium and bad. The ratio of g:
m: b chromosome has been randomly selected for those three
sub-populations where g represents good, m represents
medium and b represents bad.

4.5 Decoding Operation

In decoding operation the populations has been
decoded to retrieve the fitness of chromosomes. In the
decoding operation the capacity of every resource has been
evaluated. Decoding operation is a process that has been used
for satisfying the process constraint and search for period of
time that can be allocated to the job.

4.6 Fitness function for makespan and flowtime
computation

 In our proposed grid scheduling algorithm we have
consider the scheduling optimization parameters as makespan
and flowtime. The minimization of makespan has been
responsible for executing the whole job within a minimal time
and the minimization of flowtime has been responsible for
utilization of computing resources in an efficient manner.

The above two criteria have been defined as follows:
 Makespan: min {max Fj } j � jobs
 Si� Schedulelength ---------- (3)

 Flowtime : min{Fj}j�jobs ----- (4)
 Si � Schedulelength
Here Fj denotes the time when the job j finalizes,
Schedulelength is the set of all possible schedules and jobs is
the set of all jobs to be scheduled. Makespan is not affected by
the particular execution order of jobs in a resource in order to
minimize the flowtime the jobs should be executed in an
increasing order of their estimated execution time. The
makespan and flowtime are ambiguous objectives when we try
to minimize one it will not suit the other.
In our proposed approach we have define the fitness function
as follows:

 Fit(S) = Schedulelength → R --- (4)
 Fit(S) = λ1 · makespan(S) + (1 − λ1)
·flowtime(S)/m ---------- (5)

The function Fit(S) is the sum of two objectives such as the
makespan of schedule S and the flowtime of schedule S divide
by number of resources m to keep both objectives in
approximately the same magnitude. The weights assigned to
makespan and flowtime in Fit(S) has been parameterized by
the variable λ1.

5. Implementation Details

The algorithm has been implemented on a Pentium IV 2.3
GHZ PC, in Java programming language. The input for the
algorithm are job identifier, number of nodes needed for the
job, matched resources list in which the job can run, estimated
cost of executing the job on the matched resources list,
available number of free nodes. Then each cluster has been

configured with the collection of computing nodes which can
able to simultaneously execute the job in parallel manner. The
allocation to jobs to available resources in an optimal manner
using our proposed algorithm. The execution of jobs in a
cluster has been take care by the local scheduler available in a
cluster. The cost of executing a job on a resource includes the
time taken to transfer the required input data of the job and the
time taken to execute the job on the assigned resource. The
exact execution time of each job on each of its matched
resource may not be known prior to actual execution of the job
on that resource. This information has been required for the
proposed algorithm to obtain an optimum matching between
the jobs and resources. The approximate execution time of the
jobs has been obtained by using the history of jobs execution.
The jobs execution time has been calculated based on the
following characteristics such as jobs executed processor
architecture, CPU cycles, amount of memory needed, number
of nodes and etc, the estimated execution time has been
computed. For each job, a list of resources where it can
execute based on the requirements of architecture, memory,
CPU cycles and number of nodes has been maintained. This
list contains only those resources which have enough nodes as
needed by that job by using these data, cost array in which
total cost of execution of each job in each resource is stored.

6. Experimental Results

In our proposed algorithm we have implemented differential
evolution for scheduling of independent jobs on heterogeneous
grid environments. The results evolved from our modified
Differential Evolution (DE) algorithm have been compared
with different heuristic algorithms such as Genetic Algorithm
(GA), Simulated Annealing (SA) and Particle Swarm
Optimization (PSO). The experiment has been repeated for 10
times with different random numbers. Each experiment has
300 m X n iterations where n represents the grid resources and
m represents the number of jobs. The m X n has been varied
with the following two combinations such as follows:

 Less number of jobs n with less number of resources
as m

 More number of jobs n with more number of
resources as m

From the above two use cases makespan and flowtime values
have been calculated. The makespan results of 300 iterations
of use case 1 has been shown below in Table 1 and flowtime
values has been shown in Table 2 The performance both
makespan and flowtime value of the DE based Grid
Scheduling algorithm outperforms the other algorithms. The
makespan result of 300 iterations for use case 2 has been
shown below in Table 3 and the flowtime results for use case 2
has been shown in Table 4.

ISSN : 0975-3397 2325

A.R. Jayasudha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2322-2327

Table 1 Makespan for GA, SA, PSO, and DE algorithms for use case 1

Algorithm Makespan
Average Value

Genetic
Algorithm (GA)

41.82

Simulated
Annealing (SA)

46.62

Particle Swarm
Optimization (PSO)

44.42

Differential
Evolution (DE)

42.82

Table 2 Makespan for GA, SA, PSO, and DE algorithms for use case 1

Algorithm Flow time

Value (in seconds)

Genetic
Algorithm (GA)

28.0400

Simulated
Annealing (SA)

32.0200

Particle Swarm
Optimization (PSO)

30.0004

Differential
Evolution (DE)

26.0100

Table 3 Makespan for GA, SA, PSO, and DE algorithms for use case 2

Algorithm Makespan

Average Value

Genetic Algorithm
(GA)

41.36

Simulated
Annealing (SA)

48.66

Particle Swarm
Optimization (PSO)

42.42

Differential
Evolution (DE)

40.54

Table 4 Flowtime for GA, SA, PSO, and DE algorithms for use case 2

Algorithm Flow time Value (in
seconds)

Genetic Algorithm (GA) 42.0400

Simulated Annealing (SA) 48.800

Particle Swarm
Optimization (PSO)

44.400

Differential Evolution (DE) 40.000

It is evident from the data obtained by using DE based has
given excellent results when compared to other techniques.
The factor λ1 has been set to 0.1 to 0.5 for the equal
contribution of makespan and mean flowtime to the fitness
value.

6. Conclusion and Future Work
 In this paper we have discussed the important
concepts from Grid computing related to grid scheduling
problems and their resolution using heuristic based approach.
The grid scheduling involves the optimization of multiple
parameters such as completion time, resource utilization,
minimization of total execution cost etc because of the
optimization of multiple parameters the grid scheduling has
been considered as a multi-objective problem. The
optimization technique of Differential Evolution (DE) has
been used for solving the multi-objective parameters in grid
scheduling. The designed grid scheduling algorithm have been
used and tested under batch mode. By using our proposed
approach the grid scheduler has been able to reveal the
complexity of the scheduling problem in Computational Grids
and also it shows the effectiveness for the design of efficient
grid scheduling algorithm.

References

[1] Lei Zhang, Yuehui Chen, Bo Yang ”Job Scheduling Based on PSO
Algorithm in computational Grid”, 2006 Proceedings of the Sixth
International Conference on Intelligent Systems Design and Applications.
[2] M. Fikret Ercan, “A hybrid particle swarm optimization approach for
scheduling flow-shops with multiprocessor jobs”, 2008 International
Conference on Information Science and Security.
[3] G. Ritchie and J. Levine, “A fast, effective local search for scheduling
independent jobs in heterogeneous computing environments” Technical
report, Centre for Intelligent Systems and their Applications, School of
Informatics, University of Edinburgh, 2003.
[4] Abraham A, Liu H, Zhang W, Chang TG, Scheduling Jobs on
Computational Grids Using Fuzzy Particle Swarm Algorithm, Proceedings of
10th International Conference on Knowledge-Based & Intelligent Information
& Engineering Systems, England, pp. 500-507, 2006.
[5] G. Ritchie and J. Levine, “A hybrid ant algorithm for scheduling
independent jobs in heterogeneous computing environments.” in 23rd
Workshop of the UK Planning and Scheduling Special Interest Group
(PLANSIG 2004), 2004.
[6] Schopf J.M, “A General Architecture for Scheduling on the Grid”, special
issue of JPDC on Grid Computing, (2002).
[7] K. Price and R. Storn,”Differential evolution: Numerical optimization
made easy”, Dr. Dobb’s Journal, pages 18–24, 1997.

ISSN : 0975-3397 2326

A.R. Jayasudha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2322-2327

[8] I. Foster and C. Kesselman, “The Grid - Blueprint for a New Computing
Infrastructure” Morgan Kaufmann Publishers, 1998.
[9] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of the grid”,
International Journal of Supercomputer Applications, 15(3), 2001.
[10] M.R. Garey and D.S. Johnson, “Computers and Intractability – A Guide
to the Theory of NP Completeness” W.H. Freeman and Co., 1979.
 [11] Braun T. D., Siegel H. J., Beck N., Bolony L., Maheswaram M., Reuther
A. I., Robertson J.P., Theys M. D., Jao B., “A taxonomy for describing
matching and scheduling heuristics for mixed-resource heterogeneous
computing systems”, IEEE Workshop on Advances in Parallel and Distributed
Systems, (1998) 330–335.
[12] Maheswaran M., Ali S., Siegel H.J., Hensgen D., Freund R., “Dynamic
Mapping of a Class of Independent Jobs onto Heterogeneous Computing
Systems”, 8th IEEE Heterogeneous Computing Workshop (HCW’99), San
Juan, Puerto Rico, (1999) 30–44.
[13] A.C. Nearchou and S. L. Omirou, “Differential Evolution for Sequencing
and Scheduling Optimization” Journal of Heuristics.

ISSN : 0975-3397 2327

