
B. Jalender et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2386-2393

Drag and Drop: Influences on the Design of
Reusable Software Components

B.Jalender Dr A.Govardhan Dr P.Premchand Dr C.Kiranmai G.Suresh Reddy
Asst.Professor Principal, JNTUCEJ Professor,CSE Dept Professor Associate Professor

 IT Dept, VNRVJIET Jagtial, Karimnagar Osmania University CSE Dept, VNRVJIET IT Dept, VNRVJIET
Hyderabad, INDIA. A.P, INDIA. Hyderabad, INDIA. Hyderabad, INDIA Hyderabad, INDIA.

Department of Information Technology

VNRVJIET, Hyderabad, Andhra Pradesh, INDIA – 500090.

Abstract— The fundamental unit of large scale software
construction is the component. A component is the
fundamental user interface object in Java. Everything you see
on the display in a java application is a component. The
ability to let users drag a component from the Interface and
drop into your application is almost a requirement of a
modern, commercial user interface. The CBD approach
brings high component reusability and easy maintainability,
and reduces time-to-market. This paper describes the
component repository which provides functionality for
component reuse process through the drag and drop
mechanism and it’s influences on the reusable components..
(Abstract)

Keywords- Reuse, Drag and Drop, Drag Over,Drag
Under,Component,repository.

I. INTRODUCTION

 Component is fundamental unit of large scale software
construction. Every component has an interface and an
Implementation [1].The interface of a component is
anything that is visible externally to the component.
Everything else belongs to its implementation. A
component is the fundamental user interface object in Java.
Everything we seen on the display in a Java application is a
component. This includes things like windows, drawing
canvases, buttons, checkboxes, scrollbars, lists, menus, and
text fields [2]. To be used, a component usually must be
placed in a container. Container objects group components,
arrange them for display using a layout manager, and
associate them with a particular display device. The
Component Based Development approach brings high
component reusability and easy maintainability, and
reduces time-to-market [6]. Therefore it improves
productivity of software systems and lower development
cost [1],[2].In the context of reusable software
components, copying leads to two classes of difficulties:
components whose implementations are inherently
inefficient, and client programs that are hard to reason
about [4].

As a component is unit software that has business logics
and interfaces, the component communicate with other
omponents through its interfaces. Component-Based
Development (CBD) approach develops software systems
by assembling preexisting components under well-defined
architecture or framework [1],[2]. The CBD approach
brings high component reusability and easy
maintainability, and reduces time-to-market. Therefore it
improves productivity of software systems and lower
development cost [2],[3]. To develop component-based
software, software developers face a challenge to find
software components among the components that are
previously built. When the number of component grows,
the complexity of components becomes greater. Hence,
management for the existing components is basically
required.

To implement a range of services in component based
software, firstly a set of compatible components are
identified from existing components [3]. The component
that doesn’t operate correctly together should be modified
according to dependencies between other components.
Components with different form from a component are
generated, which need to test modified functionality to
check correctness of the changes. In developing
component-based software, the activities such as
component identification, component modification, and
component test make consequence for component reuse.

Until the Java 2 platform hit the streets, drag and drop
support (specifically support for interacting with the native
windowing system underneath the JVM[7]) was lacking.
The ability to let users drag a file from their file choosers
into your application is almost a requirement of a modern,
commercial user interface. The java.awt.dnd package gives
you and your Java programs access to that support. Now
you can create applications that accept information
dropped in from an outside source. You can create Java
programs that build up draggable information that you

VNR Vignana Jyothi Institute of Engg & Tech, Hyderabad.

ISSN : 0975-3397 2386

B. Jalender et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2386-2393

export to other applications. And of course, you can add
both the drop and the drag capabilities to a single
application to make its interface much more rich and
intuitive.

In this paper, we provide a GUI interface that makes
convenient access to the components by the Drag and Drop
mechanism, and reuse those components after dragging.

This paper is organized as follows. Firstly, we describe
what is Drag and Drop in Section 1 and Section 2 explains
Proposed work section 3 mentions results of the Drag and
Drop mechanism. Finally, Section 4 describes conclusion
and future work.

 If you have ever used a graphical file system manager to
move a file from one folder to another, you have used drag
and drop (often abbreviated DnD). The term “drag and
drop” refers to a GUI action whereby the end user “picks
up” an object such as a file or piece of text by pressing the
mouse button down on that object[4]. Then without letting
up on the button, the user “drags” it over some area of the
screen and lets up on the mouse button to “drop” the
object.

 In this paper we work with two main areas a drop target,
and a drag source. A drop target accepts an incoming drag.
The process of accepting the dragged information
generates a series of events that we can respond to.
Figure(6) represent the GUI with drop target. The source of
the dragged item might be your application, another Java
application, or some native window system application like
your file manager or any component. The source doesn’t
matter to the drop target.

Issues for drag and drop components

 When you create a D&D-enabled component, there are
several issues you need to address:

 Starting the Drag operation
 Drag-under feedback
 Drag-over feedback
 The Drop
 Transferable
 The Move operation

we will address each of these issues for the JTree[8] with
the help of our D&D library classes[5]. First however,
let's examine these issues in a general sense.

Starting the Drag operation
First we have to check is it OK to start dragging at the
current pointer location. Perhaps the component is a JTree

and the selected tree node cannot be dragged. The
DragGestureAdapter [5] object calls the isStartDragOk ()
method of our DragComponent object. If the return value
is true, the drag simply will start.

Drag-under feedback
 To show that a drop is valid we defined the
dragUnderFeedback()[5] and
undoDragUnderFeedback()[5] methods from our
DropComponent interface. This will make our GUI
interface components are associated with the logical
cursor.

Drag-over feedback
 Most of the time, the default drag-over feedback is fine.
However, there could be a situation in which you would
like to use custom cursors. The DropTargetAdapter[9] calls
the DropComponent's isDragOk() method repeatedly
during the drag. The return value sets the drag-over
feedback. For most components the initial cursor should be
a no-drop cursor, since dropping the data in the same place
as its origin is useless[7].

The Drop
 The dropped data, is inserted it someplace in the
component. In this aspect we provided a feature that the
users drop components any where in our Interface [8].

Transferable
 The Transferable object may encapsulate data associated
with the component or data retrieved from its model. Our
DragGestureAdapter [9] calls the DragComponent's
getTransferable() method.

The Move operation
 Because it's a two-step process, the move operation
actually removes the data. The D&D system adds the
components to the destination and then removes it from the
source. If it's a complex component, such as a JList[9], The
DragSourceAdapter[9] calls the DragComponent's move()
method.

Build a D&D library

If we need a single D&D-enabled component, we can
create a subclass that defines DragGestureListener,
DragSourceListener, and DropTargetListener as inner
classes. If user needs a number of D&D-enabled
components, user will write very similar code for each
component's listeners.

A D&D-enabled component would create associations with
an instance of each of these classes, data transfer in
theDnD interfaceas shown in Figure.(1).

ISSN : 0975-3397 2387

B. Jalender et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2386-2393

Figure 1. Data Transfer in DnD

Drag classes

A drag-enabled component implements the
DragComponent interface. It creates an instance of
DragGestureAdapter and an instance of
DragSourceAdapter. The DragSourceAdapter implements
the DragSourceListener interface and maintains a reference
to a DragComponent object. When a drag is initiated, the
DragSourceAdapter queries the DragComponent for the
acceptable drag operation and an appropriate Transferable
object(reusable component). If this is a move operation, the
DragSourceAdapter will tell the DragComponent to move
the component. The move operation actually adds the data
to the destination, then removes the data from the source at
the end of the D&D operation. These are usually cursor
changes.

The DragComponent uses a DragGestureAdapter object,
which implements the DragGestureListener interface, in
order to initiate the component drag operation. With
components such as a JTree, it is possible that not all nodes
can be dragged. The DragGestureAdapter verifies the drag
with the DragComponent's isStartDragOk() method, and
it registers the DragComponent's DragSourceAdapter.

The Drop classes

 A drop-enabled component implements the Drop
Component interface. The implementation is shown in
Below figure (2).

Drag and Drop and Data Transfer

 Most programs can benefit from the ability to transfer
information, either between components, between Java
applications, or between Java and native applications Drag
and drop (DnD) support. The following diagram illustrates
the Java portion of a drag operation in our interface.

Figure 2. Drop Component Interfaces

.
II. Proposed Work

 The Drag and drop functionality in our interface uses the
same technique as most other GUI features drag source
events, and drop events. To handle these events, we
implement the corresponding listener interfaces. This
process should sound familiar to anyone who has set up
event handlers for other GUI components. For example, to
respond to a dropped object (reusable component), we
create an event handler that implements the
DropTargetListener interface.

A DragSource comes into existence, associated with some
presentation Component in the GUI, to initiate a Drag and
Drop of some potentially Transferable of reusable
components. The DragSource object manifests “Drag
Over” feedback to the user, in the typical case by
animating the GUI Cursor associated with the logical
cursor.

 Data Flavors and Actions

 When the Transferable object (reusable component)
encapsulates data, it makes the data available to
DropTarget in a variety of DataFlavors. For a local transfer
within the same JVM (Java virtual machine), Transferable
provides an object reference. The results shown below are
related to local transfer of reusable components with in the
same JVM.

However, if we want transfer one reusable component to
another JVM or to the native system, this wouldn't make
any sense, so a DataFlavor using a java.io.InputStream
subclass usually is provided. In this paper we transferred
reusable components with in the same JVM.

When invoking a drag and drop operation of reusable
components, you may request various drag and drop

ISSN : 0975-3397 2388

B. Jalender et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2386-2393

actions. The DnDConstants class defines the class
variables for the supported actions:

ACTION_NONE no action taken

ACTION_COPY the DragSource leaves the data intact

ACTION_MOVE the DragSource deletes the data
upon successful completion of the drop

ACTION_COPY or ACTION_MOVE the
DragSource will perform either action requested by the
DropTarget

Figure 3.Drag Operation

The DragGestureListener causes the DragSource to initiate
the Drag and Drop of components.The components from
the GUI interface are dropped into the Logical cursor.

Cursor Icons for Drag and Drop

Microsoft
Windows

Description

Copy. The destination underneath accepts
reusable components.

Copy. The destination underneath will not
accept reusable components.

Move. The destination underneath accepts
reusable components.

Move. The destination underneath will not
accept reusable componets.

// Implementation of DragGestureListener interface.

 publicvoid dragGestureRecognized (DragGestureEvent
dge) {
 // Get the mouse location and convert it to a location
within the tree.
 Point location = dge.getDragOrigin();

 TreePath dragPath = tree.getPathForLocation(location.x,
location.y);
 if (dragPath != null && tree.isPathSelected(dragPath)) {
 // Get the list of selected files and create a Transferable
 // The list of files and the is saved for use when the
drop completes.
 paths = tree.getSelectionPaths();
 if (paths != null && paths.length > 0) {
 dragFiles = new File[paths.length];
 for (int i = 0; i < paths.length; i++) {
 StringpathName= tree.getPathName(paths[i]);
 dragFiles[i]=new File(pathName);
 }
 Transferable transferable = new
FileListTransferable(dragFiles);
 dge.startDrag(null, transferable, this);
 } }}

This implementation is shown in Figure (5).

DropTarget said to be “Drag Under” feedback to the user
i.e the components are droppend into the GUI Interface.

Figure 4. Drop Target Flow Review

Drop methods:

 Validation
 Accepting the incoming drop
 Data transfer

Validation

 First we have to do validation of DataFlavor before the
drop operation. The DropTargetListener chooses the
DataFlavor and checks the operation before the transfer
takes place.If none of the DataFlavors and operations are
acceptable, the DropTargetListener sends a rejectDrop
message to the DropTargetDropEvent.The event object is
depends on the drag source. Event object check with
isLocalTransfer if the drag source is in the same
JVM.depends on the event object the DropTargetListener
can choose an appropriate DataFlavor.

 Accepting the incoming drop

 Once the drop passes the validation, the
DropTargetListener sends an acceptDrop message with
the desired operation specified to the DragSourceListener
in its dragDropEnd method. After the DropTargetListener

ISSN : 0975-3397 2389

B. Jalender et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2386-2393

accepts the drop, it retrieves the Transferable and requests
its data.

 Data transfer

Data transfer in the case of native-to-Java or inter-JVM
transfers, the data's representation class should be a
subclass of java.io.InputStream, since references to a Java
object make sense only in the JVM.

Drag and Drop of reusable component can be it can
basically be broken down into three main components.

1. Starting the drag where the drag action is
recognized by the component

2. Converting the drag component into a

transferable component
3.

 Dropping the transferable component into
the drop target.

Drag Methods

 The following Drag methods facilitates the event whether
or not to accept reusable componets.

 public void acceptDrag()
 public void rejectDrag()

public void acceptDrag(int dragOperation)

This method indicates that the repository will accept the
drag of reusable component.

public void rejectDrag()

This method indicates that repository will not accept the
drag of reusable component.

Drop Methods

Similar to the drag events, we can accept or reject drops.

 public void acceptDrop()
 public void rejectDrop()

 public void acceptDrop(int dropAction)

 This method will accept a drop of type dropAction. If
you decide to accept the drop, call this method, process the
drop, and then call the dropComplete() method below.

 public void rejectDrop()

 This method rejects the drop of reusable component.

 public void dropComplete(boolean success)

 This method tells the source of the drag that the drop
was completed. The success argument should be true if the
drop of reusable component was successful, false
otherwise.

// This method handles a drop for a list of files

 FileTree.FileTreeNode node =

(FileTree.FileTreeNode)treePath.getLastPathComponent();
 // Highlight the drop location while we perform the drop
 tree.setSelectionPath(treePath);
 // Get File objects for all files being
 // transferred, eliminating duplicates.
 File[] fileList = getFileList(files);
 // Don't overwrite files by default
 copyOverExistingFiles = false;
 // Copy or move each component object to the target
 for (int i = 0; i < fileList.length; i++) {
 File f = fileList[i];
 if (f.isDirectory())
 {
 transferDirectory(action, f, targetDirectory, node);
 }
 else {
 try {
 transferFile(action, fileList[i],
 targetDirectory, node);
 } catch (IllegalStateException e) {
 // Cancelled by user
 return false;
 }}} return true;

 }

III. Results

 In this paper we describe a scenario where by the
designer/user can build as much as possible of the custom
application by interactively and graphically dragging
components out of a smart object suitcase, specifying their
exact behavior by directly editing their attributes ,then
graphically connecting them to other objects by drag and
drop, and reuse that dropped components[1].

Our GUI interface supports to drag the components from
GUI interface to Logical cursor. The dropped component is
reused with its interface specification and business logics.

Figure (5) represents dragging a java file from the
Interface. and dropped into the local drive of the same
system. our interface shows the hidden components also.
So the user able to drop the hidden components also. This

ISSN : 0975-3397 2390

B. Jalender et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2386-2393

functionality said to be “Drag Over”. The DragSource
object manifests “Drag Over” feedback to the user, in the
typical case by animating the GUI Cursor associated with
the logical cursor.

The Drag Under functionality is shown in the Figure
(6).This Figure shows a java file is dragged from local
drive of the same system and dropped into our Interface.
This interface is act as a repository to store the dropped
components into that. The DropTarget object manifests

“Drag Under” feedback to the user, in the typical case by
logical cursor associated with the animating the GUI
Cursor.In the Figure (5) the system file is dragged from the

Jal Drag Tree and Dropped into the Local Drive E.in the
Figure (6) info file is dragged from the local drive D and
dropped into Jal Drop Tree interface. Here we can edit the
file names also and we can enable and disable the drag and
drop operation using the check box provided in the
interface.

A drop target accepts an incoming drag. The process of
accepting the dragged information generates a series of
events that we can respond to. Figure(6) represent the GUI
with drop target.

Figure 5. Screen shot of “Drag Over” mechanism.

ISSN : 0975-3397 2391

B. Jalender et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2386-2393

Figure 6. Screen shot of ”Drag Under” mechanism.

IV. Conclusion and Future Works

 The ability to let users drag components from their Interfaces
into our application is almost a requirement of a modern,
commercial user interface [1]. Reusable components designed
with “Drag and Drop” style have many advantages over
designs based on the traditional “copying style,” [4] including
improved execution efficiency, higher reliability and enhanced
reusability. Over the years drag-and-drop has gone from a cool
feature to a required piece of most user interfaces.

Developing reusable components software requires a designer
to determine how to structure a software system so as to
achieve the necessary functionality, while at the same time
increasing the reuse potential of the software. Component
identification [6] centers on the application's domain, with
reuse focusing specifically on an organization's future systems.
The main approach is to categorize components, identify
component boundaries, and specify where components are
related.

Our repository is implemented to support process for
component reuse using drag and drop mechanism. When the
component developers perform component-based projects, our
repository provides reuse facilities that are necessarily
required during component-based development. Through the

component repository with this mechanism components can be
efficiently reused in component reuse process.

 For future work we suggest to built up your own reusable
component repository and provide the functionality to reuse
the components using both drag and drop mechanism.

REFERENCES

[1] B.Jalender, Reddy, P.N. “Design of Reusable Components
using Drag and Drop Mechanism” IEEE Transactions on
Information Reuse and Integration. IEEE International Conference
IRI Sept. 2006 Pages:345 - 350

[2] M. Aoyoma, “New Age of Software Development: How
Component-Based Software Engineering Changes the Way of
Software Development?,” in Proceedings of the 1998
International Workshop on CBSE, 1998.

[3] X. Cai, M.R. Lyu, K. Wong, “Component-Based Software
Engineering: Technologies, Development Frameworks, and
Quality Assurance Schemes,” in Proceedings of the 7th APSEC,
2000.

[4] Jihyun Lee, Jinsam Kim, and Gyu-Sang Shin “Facilitating Reuse
of Software Components using Repository Technology”
Proceedings of the Tenth Asia-Pacific Software Engineering
Conference (APSEC’03).

[5] Douglas E.Harms,Bruce W.Weide “ Copying and
Swapping:Influences on the Design of Reusable Software
Components” IEEE Transactions on software engineering vol
17,no.5.May 1991.

ISSN : 0975-3397 2392

B. Jalender et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2386-2393

[6] Laurence P. G. Cable,”Drag and Drop subsystem for the Java
Foundation Classes”.

[7] Hafedh Mili, Fatma Mili, and Ali Mili “ Reusing Software:
Issues and Research Directions” IEEE Trancastions on software
engineering, VOL 21, NO. 6, JUNE 1995

[8] Patrick Niemeyer & Jonathan Knudsen “O’Reilly Learning Java”.
[9] http://java.sun.com/docs/books/tutorial/uiswing.
[10] Kim Topley-“Core SWING Advanced Programming”.

AUTHORS PROFILE

B.Jalender Received the Bachelor’s Degree in
Computer Science and Engineering from JNT
University Hyderabad in 2003 and Master’s Degree in
Software Engineering from Kakatiya University
Warangal in 2006.Now pursuing Ph.D in Computer
Science and Engineering from Osmania University
College of Engineering, Hyderabad. He is presently
working as Assistant Professor in IT Department at
VNR VJIET Hyderabad. His current research interests
include software engineering especially in the areas of
reusable software components and component based

software engineering.

Dr.A.Govardhan did his BE in Computer
Science and Engineering from Osmania
University College of Engineering, Hyderabad,
M.Tech from Jawaharlal Nehru University, Delhi
and Ph.D from Jawaharlal Nehru Technological
University, Hyderabad. He is presently working
as Principal, JNTU Jagtial, Karimnagar, Andhra
Pradesh. He has guided more than 100 M.Tech
projects and number of MCA and B.Tech
projects. He has 93 research publications at
International/National Journals and Conferences.

He has been a program committee member for various International and
National conferences. He is also a reviewer of research papers of various
conferences. He has delivered number of Keynote addresses and invited
lectures. He is also a member in various professional bodies. His areas of
interest include Databases, Data Warehousing & Mining, Information
Retrieval, Computer Networks, Image Processing and Object Oriented
Technologies.

Dr.P.Premchand has graduated in Electrical
Engineering from National Institute of
Technology, Jamshedpur. He has obtained his
M.E and Ph.D degrees in the branch of computer
science and engineering from Andhra University,
Visakapatnam.He has joined as lecturer in the
department of CSE of Andhra University,
Visakapatnam.Later he has shifted to Osmania
University, Hyderabad into department of CSE as
Associate professor. He has also served in various

positions such as director at AICTE New Delhi and as an additional controller
of Exams at Osmania University, Hyderabad. Later he is elevated as Professor
in his parent Department at Osmania University and served as Head of the
Department CSE and chair man Board of Studies and presently he is serving
as Dean Faculty of Informatics at Osmania University Hyderabad. He is also
an active member of AICTE –NBA, selection committee member at J.N.T.U,
A.U, A.N.U, K.U, ISRO, NRSA and ADRIN. He is actively involved in
research, supervising 5 research students for the award of their Ph.D and many
more students are pursuing their Ph.D at O.U, JNTU and A.N.U. He has
presented several papers in national and international conferences and
journals.

Dr Kiran Mai, Cherukuri did her graduate course in
Electronics and Communication Engineering from
Jawaharlal Nehru Technological University,
Hyderabad and Masters in Software Systems from
Birla Institute of Science and Technology, Pilani.
From 1997 she is working in the Department of
Computer Science, VNRVJIET Hyderabad. Currently
she is the professor in the department. Before joining
the teaching profession, she worked 7 years in

industry where she was handling software projects in ‘C’, COBOL, Visual
Basic and ORACLE. She is a life member of ISTE. Her research interests
include Databases, Data mining, Networks and Human Computer Interaction.
is a member of the IEEE and the IEEE Computer Society.

 G.Suresh Reddy Received the Bachelor’s Degree in
Computer Science and Engineering from Bangalore
University Bangalore in 1997 and Master’s Degree in
Information Technology from Punjab University
Punjab. Now pursuing Ph.D in Computer Science and
Engineering from National Institute of Technology
Warangal. He is presently working as Associate
Professor and HOD in IT Department at VNR VJIET
Hyderabad. His current research interests include
Semantic Grid, Data Warehousing and Mining, Text

Mining and Information Security.

ISSN : 0975-3397 2393

