
Naveen Chauhan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2268-2273

Global Cluster Cooperation Strategy in Mobile Ad
Hoc Networks

*Naveen Chauhan1, Lalit K. Awasthi1, Narottam Chand1, R.C. Joshi2 and Manoj Misra2
1Department of Computer Science and Engineering

National Institute of Technology, Hamirpur – 177005, India
2Department of Electronics and Computer Engineering

Indian Institute of Technology, Roorkee – 247667, India

Abstract: MANETs or mobile ad hoc networks are a form of wireless
networks which do not require a base station for providing network
connectivity. Mobile ad hoc networks have many characteristics
which distinguish them from other wireless networks. Frequent
network disconnection is one among various characteristics, due to
which data availability is lower than traditional wired networks.
Cooperative caching helps MANETs in alleviating from the
situation of nonavailability of data. In this paper we have proposed a
cache cooperation strategy named global cluster cooperation (GCC)
which is based on clusters. This approach fully exploits the pull
mechanism to facilitate cache sharing in a MANET. We have
evaluated the performance of our strategy using simulation and
compared with existing cooperative caching schemes.

Keywords: MANETs, cluster, cooperative caching, cache state node,
global cache state.

I. INTRODUCTION

Due to information overflow, people can no longer be
disconnected from their information systems. Caching plays a
vital role in providing access of data to the information systems
in case of disconnection. This is a well establish way of
providing faster data in the area web caching, proxy servers and
browsers [8]. With the advent of mobile ad hoc networks
(MANET), which is demand based infrastructure less network,
being resource poor, caching plays a pivotal role in making
MANETs a success in many applications like rescue operations,
military operation, etc. A mobile node (MN) is envisioned to be
equipped with more powerful capabilities, like sufficient storage
space, more processing power etc. Even though there is no
dearth of storage space in present scenario, it is always better to
utilize the resources optimally. With caching, the data access
delay is reduced since data access requests can be served from
the local cache, thereby obviating the need for data transmission
over the scarce wireless links. However, caching techniques
used in one-hop mobile environment may not be applicable to
multi-hop ad hoc environment since the data or request may
need to go through multiple hops. Variable data size, frequent
data updates, limited client resources, insufficient wireless
bandwidth and clients’ mobility make cache management a
challenging task in mobile ad hoc networks. As mobile nodes in
ad hoc networks may have similar tasks and share common
interest, cooperative caching, which allows the sharing and
coordination of cached data among multiple nodes, can be used

to reduce the bandwidth and power consumption.

To date there are some works in literature on cooperative

caching in ad hoc networks, such as consistency [1, 3] and
placement [4]. To the best of our knowledge, only few of
previous works [2, 3, 6] have exploited clustering as caching
mechanism in MANETs. Cooperative caching has been studied
in web environment [8], but efficient cache management is still
a hot research area in MANETs. CoCa, a cooperative caching
protocol [9] have been proposed, which reduces the number of
server requests as well as number of cache miss by sharing the
cache contents. Further built on the CoCa framework a grou[p
based cooperative caching scheme called GroCoCa has been
proposed in [10] in which a centralized incremental clustering
algorithm is adopted by taking into consideration node mobility
and data access pattern. GroCoCa improves system performance
at the cost of extra power consumption. Chiu et al. [3] proposed
two protocols IXP and DPIP. In IXP each node share its cache
contents with the nodes in its zone. The disadvantage of the IXP
protocol is that when a node enters into a new zone, the nodes
of the new zone are not aware about the cache contents of the
new entrant.

In this paper, we investigate the data retrieval challenge of
mobile ad hoc networks and propose a novel scheme, called
global cluster cooperation (GCC) for caching. The goal of GCC
is to reduce the cache discovery overhead and provide better
cooperative caching performance. GCC partitions the whole
MANET into equal size clusters based on the geographical
network proximity (see Figure 1). To enhance the system
performance, within a cluster, individual caches interact with
each other and within a network, the designated CSN of clusters
interact with each other such that combined result is a larger
cumulative cache. In each cluster, GCC dynamically chooses a
“super” node as cache state node (CSN), to maintain the global
cache state (GCS) information of different nodes within the
network. The GCS for a client is the list of cached items along
with their time-to-live (TTL) field. Simulation experiments are
performed to evaluate the proposed GCC caching scheme and
compare it with existing strategies in the ad hoc networks.

The rest of the paper is organized as follows. Clustering
strategy employed in GCC is presented in Section II. Section III
describes the proposed GCC caching scheme for data retrieval.

ISSN : 0975-3397 2268

Naveen Chauhan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2268-2273

Section IV is devoted to performance evaluation. Section V
concludes the paper.

II. CLUSTER HANDLING

Our clustering algorithm divides the network topology into

predefined equal sized geographical grids called clusters. The
problem of finding an optimal clustering is out of the scope of
this paper. For the sake of simplicity, we assume that clustering
phase gives a partition of the network into grids. However, any
clustering algorithm can be used as our GCC caching scheme is
compatible with any non-overlapping clustering strategy. Grid
size captures the maximum distance between two nodes in
adjacent clusters (horizontally, vertically and diagonally). It is
ensured that the coordinators in adjacent grids are within the
transmission range of each other. Network area is assumed to be
virtually extended such that boundary clusters also have same
size as other clusters. Beginning with the left lower cluster, the
clusters are named as 1, 2, ..., in a column-wise fashion. In each
cluster area a “super” node is selected to act as CSN, which is
responsible for maintaining the global cache state (GCS)
information of different clusters within its network domain.
GCS for a network is the list of data items along with their TTL
stored in its cache. When a node caches/replaces a data item, its
GCS is updated at the CSN.

It may be noted that CSN is quite different from conventional
“clusterhead” that is used to forward requests for a group of
nodes. In each cluster of such a clusterhead networked system,
all the requests from/to a client are forwarded by the
clusterhead, which tends to make it a bottleneck and/or a point
of failure when the system has high network density. Unlike
this, CSN works only as GCS holder to save the information
about the cached items by different clients belonging to the
entire network partitioned into clusters, and provides additional
service during cache discovery, admission control and
replacement. Compared to clusterhead, CSN deals with much
less workload and does not have to as powerful as a clusterhead.
In the proposed clustering method, grid side g is a key factor to

the clustering. If g is set to 8r , all clients in a cluster can

connect to one another in one-hop communication. Where r is
transmission range of a client.

In GCC, a typical cluster consists of a CSN and a number of
clients, and a client only belongs to one cluster. Since a CSN is
expected to handle additional load in the system, it must be
relatively stable and capable to support this responsibility. In
order to ascertain such qualification of a node, we assign to each
node a candidacy factor to be CSN, which is function of node
staying period in the cluster and available battery power. A node
with the highest candidacy factor is elected as CSN.

III. GLOBAL CLUSTER COOPERATIVE (GCC) CACHING

The design rationale of GCC is that, there is no dearth of

storage space in present scenario, so the information regarding
the cached contents of various clients in a cluster would be kept
with each node in the cluster. In GCC, when a client suffers
from a cache miss (called local cache miss), the client will look
up the required data item from the cluster members. Only when
the client cannot find the data item in the cluster members’
caches (called cluster cache miss), it will request the CSN which
keeps the global cache state (GCS) and maintains the
information about the node in the network which has copy of
desired data item. If a cluster other than requesting nodes’
cluster has the requested data (called remote cache hit), then it
can serve the request without forwarding it further towards the
server. Otherwise, the request will be satisfied by the server. For
each request, one of the following four cases holds:

Case 1: Local hit. When a node requires a data and found it in
the local cache.

Case 2: Cluster hit. When a node requires the data, it checks its
local cache, in case of local miss, node consults its CCS which
is maintained by this node only, to check whether data is
available in one of the neighboring nodes within the cluster.

Case 3: Remote hit. When the requested data item is not stored
by a client within the cluster of the requester. The requester
checks with CSN which is maintaining GCS and then returns
the address of the client that has cached the data item.

Case 4: Global hit. When the data is not found even remotely
data is retrieved from data center.

Based on the above idea, we propose a cache discovery
algorithm to determine the data access path to a node having the
requested cached data or to the data source. Assume that MHi
denotes mobile node/client i. In Figure 1, let us assume MHi
sends a request for a data item dx and MHk is located along the
path through which the request travels to the data source MHs,
where k{a, c, d}. The discovery algorithm is described as
follows:

When MHi needs dx, it first checks its own cache. If the data
item is not available in its local cache, it checks with CCS
which is maintained by MHi to see whether any of neighboring
node in the cluster has a copy of desired data. If it is not
available at cluster level, it sends a lookup packet to the CSN
MHj in its cluster. Upon receiving the lookup message, the CSN
searches in the GCS for the requested data item. If the item is
found, the CSN replies with an ack packet containing id of the
client who has cached the item. MHi sends a request packet to
the client whose id is returned by MHj and the client responds
with reply packet that contains the requested data item.

When a node/MHs receives a request packet, it sends the
reply packet to the requester.

The reply packet containing item id dx, actual data Dx and
TTLx, is forwarded hop-by-hop along the routing path until it
reaches the original requester. Once a node receives the

ISSN : 0975-3397 2269

Naveen Chauhan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2268-2273

requested data, it triggers the cache admission control procedure
to determine whether it should cache the data item.

Figure 1. Request packet from client MHi to data source

Cache admission control decides whether a data item should
be brought into cache. Inserting a data item might not always be
favorable because incorrect decision can lower the probability
of cache hits. For example, replacing a data item that will be
accessed soon with an item that will be accessed in near future
degrades performance. In GCC, the cache admission control
allows a client to cache a data item based on the location of data
source or other client that has the requested data. If the origin of
the data resides in the same cluster of the requesting client, then
the item is not cached, because it is unnecessary to replicate
data item in the same cluster since cached data can be used by
closely located hosts. In general, same data items are cached in
different clusters without replication. Figure 2 shows the
behavior of GCC caching strategy for a client request.

The GCC caching uses a simple weak consistency model
based on time-to-live (TTL), in which a client considers a
cached copy up-to-date if its TTL has not expired. The client
removes the cached data when the TTL expires. A client
refreshes a cached data item and its TTL if a fresh copy of the
same data passes by.

Client Data Request Consistency Check
Local Cache
Discovery

Validate from other
Client/Source

Consult CCS

Consult GCS

Retrieve data from specific node from other
cluster

Retrieve data from specific node within the
cluster

Retrieve the data from Source

Cache Admission Control Return data to the
requester

Replacement Policy

Local
Miss

Local Hit Valid

Not Valid

Cluster
Miss

Cluster
Hit

Remote MissRemote
Hit

Fresh Copy

Figure 2. Service of a client by GCC caching strategy

IV. SIMULATION RESULTS

The simulation area is assumed of size 1500 m x 1500 m The
clients move according to the random waypoint model [7]. The
time interval between two consecutive queries generated from
each client follows an exponential distribution with mean Tq.
Each client generates accesses to the data items following Zipf
distribution with a skewness parameter . There are N data
items at the server. Data item sizes vary from smin to smax such
that size si of item di is,

)1ss().(randomss minmaxmini , i = 1, 2,... N, where
random() is a random function uniformly distributed between 0
and 1. The simulation parameters are listed in Table I. For
performance comparison with GCC, two other schemes non-
cooperative (NC) caching and CacheData [1, 3] are also
implemented. In NC received data are cached only at query
node and locally missed data items are always fetched from the
origin server. In our experiments, the same data access pattern
and mobility model are applied to all the three schemes. All the
schemes use LRU algorithm for cache replacement.

ISSN : 0975-3397 2270

Naveen Chauhan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2268-2273

TABLE I

 Simulation parameters
Parameter Default

Value
Range

Database size (N) 1000 items

smin 10 KB

smax 100 KB
Number of clients (M) 70 50~100

Client cache size (C) 800 KB 200~1400 KB
Client speed (vmin~vmax) 2 m/s 2~20 m/s

Bandwidth (b) 2 Mbps
TTL 5000 sec 200~10000 sec

Pause time 300 sec
Mean query generate
time (Tq)

5 sec 2~100 sec

Transmission range (r) 25 m 25~250 m

Skewness parameter () 0.8 0~1

a. Effects of cache size

Figure 3 and Figure 4 show the effects of cache size on
average query latency and message overhead by varying the
cache size from 200 KB to 1400 KB. From Figure 3, we can
see that the GCC scheme performs much better than NC
scheme. Because of the high byte hit ratio due to cluster
cooperation, the proposed scheme also performs much better
than CacheData. When the cache size is small, more required
data could be found in local+cluster cache for CC as compared
to CacheData which utilizes only the local cache. Because the
hop count of cluster data hit is one and is less than the average
hop count of remote data hit, GCC scheme achieves lower
average query latency. As the cache size is large enough, the
nodes can access most of the required data items from local and
cluster cache, so reducing the query latency. It is worth noting
that GCC reaches its best performance when the cache size is
800 KB. This demonstrates its low cache space requirement.

Figure 4 shows that GCC performs much better than NC and
CacheData in terms of message overhead. The reason is that
due to cache cooperation among clusters GCC gets data from
nearby clusters instead of far away data source. Therefore, the
data requests and replies need to travel smaller number of hops
and mobile nodes need to process lower number of messages.
As the cache size grows, the byte hit ratio of GCC increases
and its message overhead decreases.

b. Effects of mean query generate time

Figure 5 shows the average query latency as a function of the
mean generate time Tq. The GCC scheme performs better than
NC and CacheData schemes at all values of Tq. At small value
of Tq, the query generate rate is high and system workload is

more. This results in high value of average query latency.
When Tq increases, fewer queries are generated and average
query latency drops. If Tq keeps increasing, the average query
latency drops slowly or even increases slightly due to decrease
in cache byte hit ratio. Under extreme high Tq, most of the
queries are served by the remote data server and the difference
between different schemes is not very large. Figure 6 shows
that NC has worst message overhead among all the schemes.

Cache size (KB)

200 400 600 800 1000 1200 1400

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(s

ec
)

0.10

0.15

0.20

0.25

0.30

0.35

NC scheme
CacheData scheme
GCC scheme

Figure 3. Effects of cache size on average query latency

Cache size (KB)

200 400 600 800 1000 1200 1400

N
um

be
r

of
 m

es
sa

ge
s

6

7

8

9

10

11

12

13
NC scheme
CacheData scheme
GCC scheme

Figure 4. Effects of cache size on message overhead

c. Effects of mobility

Figure 7 and Figure 8 show the comparison of caching
strategies, where each node is moving with a speed uniformly
distributed between 0 and a given value along x-axis. We vary
the maximum speed of nodes from 2, 4, 8, 12, 16, to 20 m/sec.

From Figure 7, we see that performance of all the caching
strategies degrades with increasing mobility. This is due to
overheads caused by mobility induced route failures and route
re-computations. If mobility increases, the frequency of nodes
with different data affinity leaving/joining a cluster increases
thus degrading the GCC caching performance in terms of

ISSN : 0975-3397 2271

Naveen Chauhan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2268-2273

average query latency.
Figure 8 shows that the message overhead increases with

increasing mobility. In GCC, the number of messages due to
CSN role change/election and new registration of cache states
with CSN increases with the node mobility. Experiments show
that the overall performance degrades with higher mobility.

Mean query generate time (sec)

2 5 10 20 50 100

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(s

ec
)

0.10

0.15

0.20

0.25

0.30

0.35
NC scheme
CacheData scheme
GCC scheme

Figure 5. Effects of query generate time on average query latency

Mean query generate time (sec)

2 5 10 20 50 100

N
um

be
r

of
 m

es
sa

ge
s

4

6

8

10

12

14
NC scheme
CacheData scheme
GCC scheme

Figure 6. Effects of query generate time on message overhead

Mobility speed (m/sec)

2 4 8 12 16 20

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(s

ec
)

0.10

0.15

0.20

0.25

0.30

0.35

NC scheme
CacheData scheme
GCC scheme

Figure 7. Effects of node mobility on average query latency

Mobility speed (m/sec)

2 4 8 12 16 20

N
um

be
r

of
 m

es
sa

ge
s

6

8

10

12

14

16

18

20
NC scheme
CacheData scheme
GCC scheme

Figure 8. Effects of node mobility on message overhead

d. Effects of transmission range

 Figure 9 shows that increase in transmission range
increases the expected progress of the packet towards its final
destination but at the expense of a higher energy consumption
per transmission. On the other hand, a shorter transmission
range consumes less per transmission energy, but it requires a
large number of hops for the packet to reach its destination.

ISSN : 0975-3397 2272

Naveen Chauhan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2268-2273

Transmission range (m)

25 75 125 175 225 250

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(s

ec
)

0.10

0.15

0.20

0.25

0.30

0.35

NC scheme
CacheData scheme
GCC scheme

Figure 9. Effects of transmission range on average query latency

Transmission range (m)

25 75 125 175 225 250

N
um

be
r

of
 m

es
sa

ge
s

6

8

10

12

14
NC scheme
CacheData scheme
GCC scheme

Figure 10. Effects of transmission range on message overhead

Figure 10 shows that for all the strategies the message
overhead decreases with increasing transmission range because
smaller numbers of hops are needed for packet to reach their
destination.

V. CONCLUSION

In this paper, we have addressed cache cooperation issue in
mobile ad hoc networks. We have presented a caching strategy
named GCC. This strategy is unique such that in a cluster, the
information about what all other clusters are retaining with
themselves is available. All this is possible due to the
emergence of powerful mobile nodes along with advances in
wireless communication technology. As there is no dearth of
storage and computing capabilities in mobile nodes, GCC fits
best in present scenario. GCC is capable of supporting efficient
data retrieval in ad hoc networks. This scheme exploits
clustering for efficient data caching. Simulation results
demonstrate that the proposed scheme reduces the message
overheads and enhances the data accessibility as compared to

other strategies.

REFERENCES

[1] L. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc
Networks,” IEEE INFOCOM, pp. 77-89, March 2004.

[2] Narottam Chand, R.C. Joshi and Manoj Misra, “A Zone Co-operation
Approach for Efficient Caching in Mobile Ad Hoc Networks,”
International Journal of Communication Systems, Vol. 19, Issue 9, pp.
1009-1028, Nov 2006.

[3] Ge-Ming Chiu and Cheng-Ru Young, “Exploiting In-Zone Broadcast
for Cache Sharing in Mobile Ad Hoc Networks,” IEEE Transactions
on Mobile Computing, Vol. 8, No. 3, pp. 384-396, March 2009.

[4] Bin Tang, Himanshu Gupta and Samir Das,“Benefit-Based Data
Caching in Ad Hoc Networks,” IEEE Transaction on Mobile
Computing, Vol. 7, No. 3, pp. 289-303, March 2008.

[5] Takahiro Hara and Sanjay K. Madria,“Data Replication for Improving
Data Accessibility in Ad Hoc Networks,” IEEE Transaction on
Mobile Computing, Vol. 5, No. 11, pp. 1515-1532, Nov 2006.

[6] Narottam Chand, R.C. Joshi and Manoj Misra, “Cooperative Caching
Strategy in Mobile Ad Hoc Networks Based on Clusters,” International
Journal of Wireless Personal Communication, Vol. 43, Issue 1, pp. 41-
63, Oct 2007.

[7] C. Bettstetter, G. Resta and P. Santi, “The Node Distribution of the
Random Waypoint Mobility Model for Wireless Ad Hoc Networks,”
IEEE Transactions on Mobile Computing, Vol. 2, No. 3, pp. 257–269,
2003.

[8] R. Malpani, J. Lorch and D. Berger, “Making World Wide Web
Caching Servers Cooperate,” World Wide Web Journal, Vol. 1, No. 1,
1996.

[9] C.Y. Chow, H.V. Leong and A Chan, “Peer-to-Peer Cooperative
Caching in Mobile Environments,” Proceedings of 24th International
Conference on Distributed Computing Systems Workshop (ICDCSW),
pp. 528-533, 2004.

[10] C.Y. Chow, H.V. Leong and A Chan, “Cache signature for Peer-to-
Peer Cooperative Caching in Mobile Environments,” Proceedings of
18th International Conference on Advanced Information Networking
and Applications (AINA), pp. 96-101, 2004.

ISSN : 0975-3397 2273

