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Abstract— Handwritten Character Recognition is software used 
to identify the handwritten characters and receive and interpret 
intelligible handwritten input from sources such as manuscript 
documents. The recent past several years has seen the 
development of many systems which are able to simulate the 
human brain actions. Among the many, the neural networks and 
the artificial intelligence are the most two important paradigms 
used. In this paper we propose a new algorithm for recognition of 
handwritten texts based on the spline function and neural 
network is proposed. In this approach the converse order of the 
handwritten character structure task is used to recognize the 
character. The spline function and the steepest descent methods 
are applied on the optimal notes to interpolate and approximate 
character shape. The sampled data of the handwritten text are 
used to obtain these optimal notes. Each character model is 
constructed by training the sequence of optimal notes using the 
neural network. Lastly the unknown input character is compared 
by all characters models to get the similitude scores.  

Index Terms—Artificial Neural Network, Back propagation 
algorithm, Optimal knots, Splines. 

I. INTRODUCTION 

Handwriting recognition is the ability of a computer to 
receive and interpret intelligible handwritten input from 
sources such as paper documents, photographs, touch-screens 
and other devices. The image of the written text may be sensed 
"off line" from a piece of paper by optical scanning (optical 
character recognition) or intelligent word recognition. 
Alternatively, the movements of the pen tip may be sensed "on 
line", for example by a pen-based computer screen surface. 

There has been a lot of research on handwritten character 
recognition in recent years, resulting in a number of proposed 
pattern recognition techniques. One such method uses 
Mahalanobis generalized distance of a feature vector calculated 
from a character image [6, 4].  A pattern recognition approach 
using statistical processing based on Bayes’ theorem was 
proposed by Graham for distinguishing spam (junk) mail [3, 2]. 
Handwritten character recognition method using the Bayesian 
filter algorithm was proposed by [8]. Techniques using a 

machine-learning approach such as a neural network (NN) and 
a support vector machine (SVM) are also well known [1, 5, 7]. 

Good recognition rates are achieved for character or 
numeral recognition, where the number of classes is rather 
small. But as the number of classes increases, as for example in 
isolated word recognition, the recognition rates drop 
significantly. An even more difficult task is the recognition of 
general handwritten text lines or sentences. Here, the lexicon 
usually contains a huge amount of word classes and the correct 
number of words in the image is unknown in advance, which 
leads to additional errors. In this field, recognition rates 
between 50% and 80% are reported in literature, depending on 
the experimental setup [9, 10, 11, 12, 13]. A novel approach of 
on-line handwritten character recognition using natural spline 
is discussed in [14]. 

The various methods for character recognition have already 
been published. But the method presented here is advanced 
than those methods since cursive handwriting can be 
recognized with the help of a combination of spline function 
and artificial neural networks, this becomes the primary 
advantage of the method over other existing methods.  

The purpose of our proposed method is to recognize 
characters using spline function. The continuous image of the 
character acquired is converted into discrete image using 
Digital Image Processing Techniques such as thinning, image 
filtering, rotate and converting a colored image into black 
white. 

The Spline curves of all the characters were obtained 
together with their error function. The Spline matrices obtained 
were then used as inputs to the Artificial Neural Network 
(ANN). And the outputs of the network were character 
matrices.  

ANN was then trained using Multilayer Back propagation 
algorithm, to correspond various spline curve to their 
respective characters. Hence the character can be recognized.  

The flowchart in “fig.1” shows the various steps used in 
this method. 
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character with distinct nodes. The redundant nodes were 
eliminated.  

The character hence obtained is then interpolated using 
Spline functions to produce a character curve. Spline is a 
piecewise polynomial function, hence piecewise curves are 
obtained.  

Artificial Neural Network is then implemented and trained 
to produce various character matrix, corresponding to their 
respective Spline matrices. 
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