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Abstract— A computer based method to reduce the complexity of 
the higher order controller, based on the minimization of integral 
square error (ISE) and Dominant Pole Retention method 
pertaining to unit step input is presented in this paper. In this 
order-reduction technique, dominant pole of the higher order 
plant is retained and reduced order model of the plant is obtained 
using ISE Minimization Technique. Using this reduced order 
plant a reduced order controller is obtained. The method has 
built in stability – preserving feature. 
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I.  INTRODUCTION  

The simulation and design of controllers for higher-order 
systems is a difficult problem. The cost and complexity of the 
controller increases as the system order goes high. This 
problem can be overcome if a “good” reduced-order model is 
available for the original higher-order system and if it is 
possible to design a controller using a lower-order model, 
which will stabilize the original higher-order system when 
placed in the closed loop. Hence, for cost and time saving in 
design, and for simplifying implementation, reduced-order 
models are highly desirable for engineers in analysis, synthesis 
and simulation of complicated higher-order systems [1]. 
A review of concepts and approaches for controller reduction 
has been presented by Anderson and Liu [2]. Basically, the 
approaches can be divided into direct and indirect ones [3]: 
direct methods seek to obtain a low-order controller directly 
[4] in which, generally, a quadratic optimization problem is 
posed with an order constraint and a closed loop stability 
constraint; indirect methods are two types [5]: (a) a high-order 
controller can be derived from the assigned high-order plant, 
by using some LQG or H∞ design method, and then an 
approximation of the controller is obtained, and (b) a low-
order plant can be computed from the original one, and then a 
low-order controller is designed to be used with the original 
plant. 
In [2], indirect strategies of type (a) using the methods of 
balanced realization [6, 7, 8], Hankel norm optimal 

approximation [2,9,10], and q-covariance equivalent 
realization [11, 12] have been discussed. In their usual form, 
these techniques replace one stable high-order model by a 
second stable low-order model that usually is not an optimal 
L∞ approximation; further, usually no frequency weighting is 
employed [2]. However, some frequency weighted versions of 
the first two methods are available [13]. 
In the following, the indirect strategy of type (b) is used to 
design a low-order controller. The plant is first approximated 
by a low-order model using the Integral Square Error 
Minimization Technique[14] and Dominant Pole Retention 
method. Integral Square Error was calculated with the help of 
Luss-Jakola Algorithm [15, 16]. The controller is then 
designed for this low-order plant and attached to the original 
plant. 

II. BACKGROUND 

Consider the control system [17] as shown in Fig. 1. Given Gn 
(s) and H(s), the problem is to derive the transfer function of 
the controller Cf (s) which yields the desired response of the 
closed loop system. A classical approach to the design of the 
controller Cf(s) is to specify the desired (also called reference) 
closed loop transfer function Gref (s), equate it to the closed-
loop transfer function, and solve for the controller [17]. 
The overall closed-loop transfer function in Fig. 1 is  

ሻݏ௢௢௢ሺܩ ൌ
ሻݏ௡ ሺܩሻݏ௙ሺܥ

1 ൅ ሻݏሺܪሻݏ௡ ሺܩሻݏ௙ሺܥ
ൌ  ሻݏ௥௘௙ ሺܩ 

       
    (1) 
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Fig. 1 Controll configuration 

 
On simplification for controller, (1) yields: 

ሻݏ௙ሺܥ  ൌ
ሻݏ௥௘௙ ሺܩ

ሻሾ1ݏ௡ሺܩ െ ሻሿݏሺܪሻݏ௥௘௙ሺܩ
 

(2) 
By approximating Gn (s) by a reduced-order transfer function 

 ෠r(s), Fig.3 is obtained. In other words, the system of Fig. 2 isܩ
approximated by that of Fig. 3, where H(s) is assumed to be 
same in both these figures.  

 
Fig. 2 A closed – loop system 

 

 
Fig. 3 A reduced-order approximant of the system of Fig. 2 

The closed-loop control configuration with reduced-order 
model and reduced-order controller is shown in Fig. 4. 

 

Fig. 4 closed loop control with ࡳ෡ r (s) and ࡯෡r (s) 

The overall closed-loop transfer function in Fig. 4 is  

ሻݏ௢௥௥ሺܩ ൌ
ሻݏ෠௥ ሺܩሻݏመ௥ ሺܥ

1 ൅ ሻሿݏሺܪሻݏ෠௥ ሺܩሻݏመ௥ ሺܥ
 

(3) 
If original plant is along with reduced order controller, the 
closed loop system is shown in Fig. 5. 
The overall transfer function in Fig. 5 takes the form 

ሻݏ௢௥௢ሺܩ ൌ
ሻݏ௡ሺܩሻݏመ௥ ሺܥ

1 ൅ ሻሿݏሺܪሻݏ௡ሺܩሻݏመ௥ ሺܥ
 

(4) 

 

Fig. 5 Closed loop configuration with ࡳn (s) and ࡯෡r (s) 

The procedure to obtain a reduced-order controller, ܥመ r (s) for 
the system shown in Fig. 5 is explained with the help of 
following example. 

III. REDUCTION PROCEDURE EXAMPLE: 

Suppose Gn(s) and H(s), See Fig 1 are given as: 
ସሺsሻܩ

ൌ
ଷݏ18.439 ൅ ଶݏ14.446 ൅ ݏ11.454 ൅ 1.3765

ସݏ35.83 ൅ ଷݏ40.388 ൅ ଶ ൅ݏ32.541 ݏ13.94 ൅ 1
 

(5) 
And H(s) =1, The problem is to obtain a reduced order 

controller ܥመ r (s) (Fig. 4)  
Step 1: Choose a reference model which satisfies the 
control specification. In this example, a standard second-order 
transfer function is chosen with damping ratio ߝ =0.7 and 
natural frequency wn=1.5 rad/sec. Thus,  

ሻݏ௥௘௙ሺܩ ൌ
2.25

ଶݏ ൅ ݏ2.1 ൅ 2.25
. 

(6) 
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Step 2: Derive a second-order model of (5). Using the Integral 
Square Error Minimization Technique and Luss-Jakola 
Algorithm, the following second-order approximant is found: 

ሻݏଶሺܩ ൌ
ݏ0.5683 ൅ 0.06965

ଶݏ ൅ ݏ0.70038 ൅ 0.506
 

(7) 
Also, by retaining the dominant pole of (5), which is at s = -
0.088, we have obtained the reduced second order model of 
(5) as 

ሻݏ෠ଶሺܩ ൌ
ݏ0.69611 ൅ 0.0984

ሺݏ ൅ 0.088ሻሺݏ ൅ 0.8123ሻ

ൌ
ݏ0.69611 ൅ 0.0984

ଶݏ ൅ ݏ0.90035 ൅ 0.0719
 

(8) 
Step 3:  Derive the reduced-order controller from (3) and (6) 
together with H(s)=1, one obtains 

ሻݏመ௥ሺܥ ൌ
ሻݏ௥௘௙ሺܩ

ሻሾ1ݏ෠ଶሺܩ െ ሻሿݏ௥௘௙ሺܩ
 

(9) 

Therefore, ܥመ r (s) is obtained as 

ሻݏመ௥ሺܥ ൌ
ଶݏ2.25 ൅ ݏ2.02579 ൅ 0.16085

ଷݏ0.69611 ൅ ଶݏ1.56023 ൅ ݏ0.20664
 

(10) 
Note that, by contrast, the controller transfer function without 
reducing G4(s), Eqn. (2) turns out to be 

ሻݏ௙ሺܥ ൌ

ସݏ80.6175 ൅ ଷݏ90.873 ൅
ଶݏ73.2172 ൅ ݏ31.365 ൅ 2.25

ହݏ18.439 ൅ ସݏ53.1679 ൅
ଷݏ41.7906 ൅ ଶݏ25.4294 ൅ ݏ2.8896

 

(11) 
which is of fifth-order. 
 The overall closed loop transfer function with 

reduced-order controller ܥመ௥ሺݏሻ  and reduced-order model 

 :෠2(s) (Fig. 4) takes the following formܩ

ሻݏ௢௥௥ሺܩ ൌ

ଷݏ1.56635 ൅ ଶݏ1.63157

൅0.31131ݏ ൅ 0.01583
ହݏ0.69611 ൅ ସݏ2.186974 ൅ ଷݏ3.22392

൅1.9298ݏଶ ൅ ݏ0.32617 ൅ 0.01583

 

(12) 
If the original plant G4(s) along with reduced-order controller 

መܥ r(s) (Fig. 5), then overall closed loop transfer function turns 
out to be  

ሻݏ௢௥௢ሺܩ

ൌ

ହݏ41.48775 ൅ ସݏ69.85704 ൅
ଷݏ58.00196 ൅ ଶݏ28.62416 ൅

ݏ4.63087 ൅ 0.22141
଻ݏ24.94162 ൅ ଺ݏ84.01753 ൅ ହݏ134.55834 ൅

ସݏ138.67803 ൅ ଷݏ87.17194

൅33.06495ݏଶ ൅ ݏ4.83751 ൅ 0.22141

 

(13) 

And if the original plant (G4(s)) along with full-order 
controller (Cf(s)) (fig. 1), then overall closed loop transfer 
function takes the form 
ሻݏ௢௢௢ሺܩ

ൌ  

଻ݏ1486.5061          ൅ ଺ݏ2840.2077 ൅ ହݏ3586.1962 ൅
2787.8642. ସݏ ൅ ଷݏ1458.3030  ൅ ଶݏ492.5417 ൅

ݏ68.9454 ൅ 3.097125
ଽݏ660.6694 ൅ ଼ݏ2649.7202 ൅ ଻ݏ5731.2319 ൅

଺ݏ7426.3581 ൅ ହݏ6836.2805  ൅ ସݏ4367.7964 ൅
ଷݏ1948.61 ൅ ଶݏ558.2521 ൅ ݏ71.8350 ൅

3.097125

 

(14) 
The step responses of (13) and (14) are shown in figure 3.17. 
It can be observed that the response of the system with 
reduced order controller is satisfactory. 
 

 
 

 

IV. CONCLUSIONS 

A computer based method for controller design based on 
minimization of integral square error (ISE) and Dominant Pole 
Retention method pertaining to unit step has been developed. 
The method retains dominant pole and allow rest of the 
numerator and denominator coefficients of the controller/plant 
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as free parameter in the process of order reduction. This 
reduces the high order complexity of the plant/controller to 
have low order plant/controller. The step response of the 
original plant with reduced order controller is almost similar to 
original plant with original controller.  
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