
Vipula Singh et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2366-2374

An Algorithmic Approach for Efficient Image
Compression using Neuro-Wavelet Model and

Fuzzy Vector Quantization Technique

Vipula Singh1*, Navin Rajpal2, K. Srikanta Murthy3

1. Electronics and communication department, Geethanjali College of Engineering Hyderabad India
2. School of Information Technology GGSIP University New Delhi, India.

3. Information science department PESIT BSK III Bangalore 560085 India.

Abstract: Applications, which need to store large database
and/or transmit digital images requiring high bit-rates over
channels with limited bandwidth, have demanded improved
image compression techniques. This paper describes
practical and effective image compression system based on
neuro-fuzzy model which combines the advantages of fuzzy
vector quantization with neural network and wavelet
transform. The emphasis here is on the usefulness of fuzzy
vector quantization when it is combined with conventional
image coding techniques. The implementation consists of
three steps. First, the image is decomposed at different
scales using wavelet transform to obtain an orthogonal
wavelet representation of the image Each band can be
subsequently processed in parallel. Thus, the processing
speed can be much faster than otherwise. Different
quantization and coding schemes are used for different sub
bands based on their statistical properties. At the second
step, wavelet coefficients corresponding to lowest frequency
band are compressed using differential pulse code
modulation. Neural network is used to extract the principal
components of the higher frequency band wavelet
coefficients. Finally, results of the second step are used as
input to the fuzzy vector quantization algorithm. Our
simulation results show encouraging results and superior
reconstructed images are achieved. The effect of noise on
the compression performance is also studied.
Keywords: Image Compression, Fuzzy Vector
Quantization, Multiresolution Analysis, Neural Network,
noise.

1. Introduction

Digital image presentation requires a large amount of data
and its transmission over communication channels is time
consuming. Numerous lossy image compression techniques
have been developed in the past years[2, 5, 6, 11]. The
transform based coding techniques, and in particular block-
transform coding, have proved to be the most effective in
obtaining large compression ratios while retaining good
visual quality. Cosine transform based techniques (JPEG)
have been found to obtain excellent results in many digital
image compression applications [16]. Vector quantization

(VQ) offers good performance when high compression rates
are needed [9]. In practice, however, the existing VQ
algorithms, often, suffer from a number of serious problems,
e.g., long search process, codebook initialization, and
getting trapped in local minima, inherent to most iterative
processes. To eliminate these problems, a multi-resolution
codebook is generated using fuzzy clustering techniques.
These clustering techniques integrate fuzzy optimization
constraints with the fuzzy- c-means algorithm [3, 13]. The
resulting multi resolution codebooks generated from the
wavelet decomposed images yield significant improvement
in the coding process. Noise degrades the performance of
any image compression algorithm [21, 22, 23]. Noise can
occur during the image capture, transmission or processing
and may be dependent on or independent of image content.
The main objective of this paper is to present a Neuro-Fuzzy
model based on wavelet transform and study the effect of
noise on the image compression algorithm. The paper is
organized as follows: Section 2 discusses the compression
method in detail. Section 3 reports sample simulation results
and section 4 provides concluding remarks.

2. Image compression model

Fig 1 shows the block diagram of the image encoder. The
multiresolution nature of discrete wavelet transform is a
powerful tool to represent images decomposed along the
vertical and horizontal directions using the pyramidal
multiresolution scheme. The wavelet transform decomposes
the images into a set of sub images with different resolutions
corresponding to different frequency bands.

2.1 Discrete Wavelet Transform

In the first step, wavelet transform is used to decompose the
image into seven sub-bands. A typical 2-D DWT, used in
image compression, generates the hierarchical pyramidal
structure. Fig 2 shows a two-level wavelet decomposition
scheme for a 512*512 digital image. This decomposition
scheme produces three side bands of size 256*256
corresponding to resolution level 1 and three side bands of
size 128*128, corresponding to resolution level 2. Sub-band

ISSN : 0975-3397 2366

Vipula Singh et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2366-2374

1 represents the lowest frequency components of the
original image. Much of the energy of image is concentrated
here. Sub-band 2 to sub-band 7 contains detail information
of edge, outline of image at different decomposition layers.
Sub- band 3 and 5 denote coefficients of image at vertical
edge after the first and second layers wavelet
decomposition. Sub-band 2 and 6; denote coefficients of
image at horizontal edge. Sub-band 4 and 7, denote the
coefficients of image on the cross edge.

2.2 Neural Network for Image Compression



 


otherwise

xdiscxdisif
xu iji

ij 0

)(),(1
)(min

 (4)

 Because the human visual system has different sensitivity
to different frequency bands, the following strategy is
adapted for image encoding. A predetermined compression
ratio is used for each sub image in the pyramidal structure.
The lowest frequency band, band 1 (fig 2) is encoded with
Differential Pulse Code Modulation (DPCM). After that
these coefficients are scalar quantized. The remaining
frequency bands, sub-band 2 to 6 are coded using neural
network. As sub-band 2 and 3 contain the similar frequency
contents for different orientation, both the bands are
encoded using the same neural network with eight units
input layer nodes, eight output layer nodes and 6 hidden
layer nodes (fig 3) i.e 8-6-8 neural network. Sub-band 5 and
6 have the similar frequency contents for different
orientation and are coded using 16-1-16 network. Sub-band
4 coefficients are coded using separate 8-4-8 neural
networks as frequency characteristics of these bands do not
match with other band. Sub-band 7 information is discarded
as it contains little information to contribute to the image.
From this stand, this band can be assumed to be zero with
little effect on the quality of reconstructed image.
If we denote the weight from xi to hj as wij, then the k
elements of hidden vector h are related to n elements of
input vector x by equation (1).

The weight between hj and yi is wij, then the n elements of
hidden vector h by equation (2).





k

i
jiji hwy

1

 =1, 2, ……n

(2)

The weights of neural network are chosen to minimize the
distortion between the input vector and output vector. Back
propagation algorithm is used to minimize the squared error
between input vector and output vector for the training set.

]1,1[x denotes the normalized values of the wavelet

coefficients. With back propagation neural network,

compression is achieved in two phases, training phase and
encoding.
To train a single network corresponding to a series of
images having similar properties and statistics at first, and
then transmit the output of the hidden layer only for a new
presented and compressed image. Given that the network is
already trained in advance (off-line), the problems of real-
time training and convergence are circumvented. After
training, the network is ready for operational use. The
wavelet coefficients are presented to the network one at a
time. The outputs of the hidden layer nodes constitute the
compressed features of an input block. To achieve
compression in a practical sense, the outputs of the hidden
layer nodes are quantized.

2.3. Quantization

The output of the hidden layer of neural network is
quantized to achieve further compression. Various vector
quantization algorithms like k-means, FVQ1, FVQ2 and
FVQ3 were used for code book design in different sets of
experiments. Finally these quantized values are entropy
encoded. Huffman encoding is used here.

2.3.1 k-means Algorithm
 The k-means algorithm partitions a collection of N vector
into k clusters Cj, j=1,....,k. The aim of the algorithm is to
find cluster centers (centroids) for each group. The
algorithm minimizes a dissimilarity (or distance) function
which is given in equation (3).








N

i
ji

Cj

N

i
i cxdis

N
xdis

N
D

11
min),(min

1
)(

1
(3)

 cj is the centroid of cluster j; dis(xi , cj) is the distance
between jth centroid cj and ith data point xi. For simplicity,
the Euclidian distance is used as dissimilarity measure.
 Partitioned groups can be defined by a k x n binary
membership matrix (u), where the element uij is 1 if the ith

data point xi belongs to group j and 0 otherwise as shown in
equation (4)
Where dismin is the minimum distance between xi and cj.
Codebook vectors are evaluated by a distortion measure
defined in equation (5)

Centroids are computed as the mean of all vectors in group
j:

kj
xu

xxu
c

N

i ij

N

i iij

j ,,2,1
)(

)(

1

1 







The k-means algorithm is summarized in table I

(6)





n

i
iiji xwh

1

 j=1, 2, ……k

(1)

2

1 1

)(
 


k

j

N

i
jiij cxxuJ

(5)

ISSN : 0975-3397 2367

Vipula Singh et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2366-2374

Table I
 k-means Algorithm

 start
1. Select Randomly C = {cj, j = 1,2,. . . , k}
2. Evaluate u using (4).
3. Compute J using (5). Stop if its

improvement over previous iteration is
below a threshold.

4. Update cj according to (6). Go to step 2.
 stop

While the k-means algorithm converges to a local minimum,
it is not guaranteed to reach the global minimum. In
addition, the algorithm is very sensitive to the initial
codebook. Furthermore, the algorithm is slow since it
requires an exhaustive search through the entire codebook
during each iteration.

2.3.2 Fuzzy Vector Quantization Algorithms

These algorithms were developed by evolving a fuzzy
codebook design process strategy for the transition from soft
to crisp decision and defining conditions for constructing a
family of membership functions [13]. In the start of the
algorithm, the training vectors are assigned to the codebook
vectors that are included in a hemisphere centered at the
training vector. The membership function tells the
possibility of the training vector belonging to a certain
cluster. Thus membership function is a decreasing function
of distance and takes values between 0 and 1. Let)(t

iP be the

set of the codebook vectors belonging to the hemisphere
centered at the training vector during the tth iteration.
Initially during the start of the clustering process, each
training vector is assigned to every cluster i.e. CPi )0(,

where c is a finite set containing k codewords. After the tth
iteration, the hemisphere located at training vector xi the
includes the vectors)(t

ij Pc  whose distance from xi is less

than equal to the average distance between xi and)(t
ij Pc 

given by





)(

),(
)(

1
)(

)(

)(

t
ij Pc

jit
i

i
t

avg cxdis
PN

xdis (7)

where)()(t
iPN is the total number of elements in the set)(t

iP .

The set)1(t
iP is formed by

)}(),(:{)()()1(
i

t
avgji

t
ij

t
i xdiscxdisPcP  (8)

By gradually reducing the radius of the hemisphere, the
transition from fuzzy to crisp mode is achieved during the
algorithm. When the codebook vector contains a single
element, the training vector is assigned to that cluster with
the closest center. i.e. if)()(t

iPN < 2 training set xi is

transferred from fuzzy to crisp mode.

The membership value indicates the extent to which a
training vector belongs to a particular cluster. A valid
membership function must follow the following properties:
1. If the hemisphere centered at xi includes a single

codebook vector cj*, the xi is assigned to j*th cluster.

),(),(0)(

),(),(1)(

*

*

jijiij

jijiij

cxdiscxdisifxu

cxdiscxdisifxu





2 If the number of elements in the set)(t

iP is more than

one, then the membership function depends on the
distance between xi and)(t

ij Pc  , that is

)),,(()()(t
ijjiij Pccxdisfxu 

uj(xi) must satisfy following requirements
 a) uj(xi) is a decreasing function of dis(xi,cj)
 b) uj(xi) approaches unity as dis(xi,cj) approaches zero.
 c) uj(xi) approaches zero as dis(xi,cj) approaches dismax(xi)

where),(max)()(max jiPci cxdisxdis t
ij

 .

 Using different membership functions and different methods
for codebook calculation, three FVQ algorithms are
explained as follows.

 a) Fuzzy Vector Quantization 1 (FVQ1)
This algorithm was developed by constructing a family of
membership functions satisfying the conditions proposed in
the section 2.3.2 [17]. FVQ1 algorithm uses the
membership function given in equation (9)

 )(

),(

max

max
1

))(),,(()(

i

ji

xdis

cxdis

ijiij xdiscxdisfxu





(9)

where µ is a positive integer. The vector assignment is based
on crisp decisions toward the end of the algorithm. This is
guaranteed by the minimizing the discrepancy measure J
defined in equation (5) with respect to cj which results in the
equation (6) for the computation of cj. This selection ensures
that the algorithm reduces to crisp k-means algorithm after
all the training vectors are transferred from fuzzy to crisp
mode. The Fuzzy Vector Quantization 1 (FVQ1) algorithm
is summarized in table II.

b) Fuzzy Vector Quantization 2 (FVQ2)
This algorithm uses the membership function of equation
(10) which satisfies the conditions proposed in the section
2.3.2.

 













k

l

m

li

ji

ij

cxdis

cxdis
xu

1

1

1

),(

),(

1
)(

(10)

The codebook vectors are evaluated by equation (11),
resulting from the minimization of J=J (cj , j = 1, 2,.. . , k).

kj
xu

xxu
c

N

i

m
ij

N

i i
m

ij

j ,,2,1
)(

)(

1

1 







(11)

ISSN : 0975-3397 2368

Vipula Singh et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2366-2374

In this algorithm, toward the end of the algorithm, the
training vector assignment is entirely based on crisp
decision and uj(xi) takes the value zero and one, regardless of
the value of m, uj(xi)

m = uj(xi). The Fuzzy Vector
Quantization 2 (FVQ 2) algorithm is summarized in table II.

c) Fuzzy Vector Quantization 3 (FVQ3)
This algorithm uses the membership function of equation
(10) which satisfies the conditions proposed in section 2.3.2.
The codebook vectors are evaluated using crisp formula in
equation (6) which guarantees that the codebook vectors are
not affected by the training vectors that are assigned a
membership value smaller than unity. i.e. if m ≈ 1, uj(xi)≈1
and uj(xi)

m ≈ uj(xi) and for fixed m, (uj(xi)
m - uj(xi))

increases as uj(xi) approaches zero. Another advantage of
using equation (6) over the equation (11) is that the former
is less computationally demanding. The Fuzzy Vector
Quantization 3 (FVQ 3) algorithm is summarized in table II.

Table II
THE FVQ 1, FVQ2, AND FVQ3 ALGORITHMS

start
Select  and ’ (’ > )
Select Randomly C = {cj, j = 1,2,. . . , k)
Set Q =  ; Pi = C  i = 1,2, ..., N
Evaluate D according to (3)
1 D* = D
 i=0
2 i  i + l
 if xi  Qi; then:
 Evaluate uj(xi) based on the nearest neighbor condition
 go to 3
 else:
 if xi  Q and)()(t

iPN >2; then:

 if cj  Pi ; then: uj(xi) = 0
 if cj  Pi; then: Evaluate uj(xi) using (9)
 [FVQl algorithm]
 if cj  Pi; then: Evaluate uj(xi) using (10)
 [FVQ2 & FVQ3 algorithms]
 Evaluate disavg(xi) according to (7)
 Update the set Pi according to (8)
 else:
 if xi  Q and)()(t

iPN < 2; then:

 Q  Q  { xi }
 Evaluate uj(xi) based on the nearest neighbor
 condition
3 if i < N ; then: go to 2
 Evaluate cj using (6) [FVQI & FVQ3 algorithms]
 Evaluate cj using (11) [FVQ2 algorithm]
 Evaluate D according to (3)
 if Q = X; then: go to 4
 if (D – D*)/D* >’ ; then: go to 1
 Q = X
4 if (D – D*)/D* > ; then: go to 1

 stop

3. Experimental results and discussion

In this section, we evaluate compression performance of our
image encoder and compare its performance with state of
the art image encoders like JPEG and JPEG2000. The
influence of noise on compression performance is also
studied. The image encoder and decoder was implemented
in Matlab 7 on an intel Pentium 2.66 GHz machine with 448
MB RAM. Experiments were conducted using different
standard test images of size 512 x 512, with 28 = 256 gray
levels. A set of experiments evaluated the effect of different
wavelet filters on the quality of the reconstructed image.
Images were decomposed using Daubechies’ 1- coefficient
filter (DAUB 1), 6- coefficient filter (DAUB 6) and 18
coefficient filter (DAUB 18), coiflet-5 coefficient filter and
biorthogonal-9 coefficient filter [1]. In different sets of
experiments, k-means algorithm and FVQ1, FVQ2 and
FVQ3 algorithms were used for vector quantization on the
coefficients of hidden layer. For FVQ1, the membership
function was evaluated using equation (9) with μ ranging
from 1 to 5. The membership function for FVQ2 and FVQ3
was evaluated using equation (10). The parameter m was
evaluated as m = 1 + 1/ λ, where λ = 1 to 5. Data
independent additive white Gaussian noise with zero mean
and variance varying from 0.001 to 0.02 and salt & pepper
noise with density varying from 0.01 to 0.2 was added to the
standard test images. Noisy input images were presented to
the algorithm and effect of noise on the performance was
evaluated.

3.1 Image quality evaluation

The image quality can be evaluated objectively and
subjectively. A standard objective measure of image quality
is reconstruction error. Two of the error metrics used to
compare the various image compression techniques are the
mean square error (MSE) and the Peak Signal to Noise
Ratio (PSNR). The MSE is the cumulative squared error
between the compressed and the original image, whereas
PSNR is a measure of the peak error. The mathematical
formulae for the computation of MSE & PSNR is


 


M

i

N

j
ijij II

MN
MSE

1 1

2)'(
1 (12)

PSNR = 20 * log10 (255 / sqrt(MSE)) (13)

where I(x,y) is the original image, I'(x,y) is the
approximated version (which is actually the decompressed
image) and M, N are the dimensions of the images, 255 is
the peak signal value. Subjective quality is measured by
psychophysical tests and questionnaires.

3.2 Comparative Study

This set of experiments evaluates the performance of
various vector quantization algorithms for codebook design

ISSN : 0975-3397 2369

Vipula Singh et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2366-2374

on various test images. Table III presents PSNR(db) and
compression(bpp) of different test images compressed by
db18 and codebook designed using k-means, FVQ1, FVQ2
and FVQ3 algorithms The image compression system was
trained using the image “lena” and different standard test
images were tested on it. It is observed that FVQ algorithms
for codebook designing resulted in better SNR values with
better visual quality of the reconstructed image as compared
to k-means algorithm. This can be accounted to that the
fuzzy vector quantization algorithms make use of the
uncertainty to the benefit of the clustering process. The
algorithm is based on a flexible strategy allowing the
transition from soft to crisp decisions which eliminates the
effect of initial codebook selection on the quality of
clustering. FVQ2 and FVQ3 algorithms achieve best
codebook design among all the algorithms used here with
FVQ3 algorithm resulting in a slightly better codebook than
that provided by FVQ2 algorithm. On an average, the
performance of FVQ1 algorithm is comparable to that of
FVQ2 and FVQ3 algorithms, which are computationally
more demanding than the FVQ1 algorithm. FVQ3 algorithm
requires slightly less arithmetic operations per iteration as
compared to the FVQ2 algorithm. Figure 5 illustrates the
results. It is interesting to note that PSNR of the test images
‘woman with dark hair’ and ‘house’ is higher than the
training image ‘Lena’. One possible interpretation for this
result is that the network trained on a much complex image
Lena which contains richer features that have been
represented so effectively that it is capable of producing
better results to simpler images. Same is true for more
complex images like ‘peppers’ where the resulting PSNR
value is lower than the test image.

3.3 Effect of noise on compression

If an image has been corrupted by additive noise, the idea of
using a lossy compression algorithm to denoise the signal is
proposed in several works. Ai-Shaykh [21] et al. studied the
effect of noise on image compression using the JPEG lossy
image processing standard, where it was found that at higher
compression rates the coders filtered out most of the noise,
but also degraded the image quality measured by Peak
Signal to Noise Ratio (PSNR). Cosman et al. [22] noticed in
their evaluation of the quality of compressed medical
images, that slightly vector-quantized images are often
superior to the originals because noise is suppressed by a
clustering algorithm. Lo et al [23] discussed the effect of
noise on lossless medical image compression. They
concluded that noise decreases the compression ratio. This
is because the noise reduces inter-pixel correlation.
In most cases, the quality of the decompressed image is
closer to the original image than that of input of the coder.
When compressing degraded images, we should be
concerned with preserving original information in the image
not preserving the noise. When the images are noisy, the
fidelity criterion should depend on the original image, not

on the input of the coder. One main question which arises is
how much has noise influence on the compression
performance? To study the effect of noise on compression,
the 512 x 512 Lena image is corrupted by data independent,
additive Gaussian noise and salt and pepper noise.
Following three scenarios are considered to test the noise
reduction capability of the neural network in the algorithm.
Case I) Noiseless input image and noiseless target image:
This is the case that was considered in the previous section.
Case II) Noisy input image and noisy target image: This
case is more relevant in practice, as the images are generally
corrupted by noise to a certain degree.
Case III) Noisy input image and noiseless target image: This
case is considered to assess the performance of the
algorithm for its compression and noise reduction capability.

PSNR values are computed with respect to the original noise
free images. Fig 9 (a) shows Lena image corrupted by
Gaussian white noise with PSNR 23.167 db. Fig 9 (d) shows
image reconstructed by our method, with PSNR 26.7db at
0.1382 bpp when the network was trained using case I. Fig 9
(a-b) plots PSNR versus noise density for the three cases
discussed above to train the network in the algorithm on
image Lena. The following are the observations:
1) The algorithm using the network trained using noiseless

input and noiseless target images (case I) filters out the
additive noise of the input image to some extent.

2) The algorithm using the network trained using noisy
input and noisy target images (case II) does not
demonstrate any ability in filtering the additive noise of
the input image. PSNR values are comparatively lower.

3) In the case III, when the network is trained using noisy
input and noiseless target images. Obviously, the
algorithm can remove the noise in the input image to
some degree.

Fuzzy vector quantization algorithms perform marginally
better than vector quantization algorithm in case of noisy
images also. Among FVQ1, FVQ2 and FVQ3, on an
average the performance of the three algorithms is similar.
Fig 7 (a-b) compares various vector quantization algorithms
in our method in case of noisy images.

3.4 Comparison with JPEG

In this subsection, the comparison of the performance of the
proposed algorithm with the most commonly used still
image encoders JPEG has been discussed. JPEG was
implemented in Matlab 7. Comparison is made in terms of
the visual quality and PSNR of the reconstructed images.
Our encoder has achieved better performance in low bit rate
environment. It is seen that our encoder consistently
outperforms the JPEG encoder for all the test images.
Results are tabulated in table IV. The subjective image
quality of our method is better with lesser bits than JPEG
and its artifacts are harder to find in the decoded image fig 8
(a) & (c). Further our method is capable of handling noise
much better. Fig 10 (a-b) shows the plot of PSNR verses

ISSN : 0975-3397 2370

Vipula Singh et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2366-2374

increased noise strength with 0.1382 bpp in our method and
in case of JPEG the bit rate varies from 0.296 to 0.4215 bpp.
PSNR values are computed with respect to the original noise
free images. It can be seen that our method outperforms
JPEG encoder at least by 5 db. The image quality of our
method is much superior from that of JPEG. The results are
shown in fig 9 (b) & (d).

3.5 Comparison with JPEG2000
In this section, our algorithm is compared with still image
compressor JPEG2000. JPEG2000 image encoder we used
in this performance evaluation is the Jasper JPEG2000
encoder [20]. Comparison is done in terms of visual quality
and PSNR of the reconstructed images versus their
compression ratios. Results are in table IV. Fig 8 (a-b)
shows that at similar rate for JPEG2000, the coding artifacts
are slightly more visible in our method than JPEG2000.
However, in case of training image “lena” the performance
of our encoder matches with that of JPEG2000 encoder. Fig
11 (c-d) plots PSNR versus noise strength comparing our
method and JPEG2000. Our method is capable of handling
noise much better. This is due to the fact that neural
network and vector quantizer is capable of filtering noise
from the image corrupted with noise. The visual quality of
the reconstructed image is much better in our method as
compared to JPEG2000 when it is tested on noisy image.
Results are shown in fig 9 (c-d).

7. Conclusion

This paper presents a neuro-wavelet based approach using
various fuzzy vector quantization algorithms for codebook
design for image compression at low bit rates. Various
experiments were conducted on 512 x 512 x 8 bit images.
Fuzzy vector quantization makes use of uncertainty to the
benefit of the clustering process. Use of FVQ algorithms on
the hidden layer coefficients improves the SNR and the
visual quality of the reconstructed image, but it is
computationally more demanding than the k-means
algorithm. The average performance of FVQ1 algorithm is
comparable as that of the performance of FVQ2 and FVQ3.
The proposed image encoder outperforms the JPEG encoder
by 40 -50% in terms of compression ratio for same PSNR
for all test images. In terms of subjective quality, the
proposed method is better with fewer bits as compared to
JPEG but coding artifacts of our method are slightly more
visible than JPEG2000 at the same bit rate. The
experimental results show that the proposed technique
outperforms the well known JPEG and JPEG2000 schemes
in case images corrupted with noise. Our method is capable
of filtering out noise from the images.

8. References

[1] V. Singh, N. Rajpal and K. S. Murthy, “A Neuro-Wavelet model
using Fuzzy vector Quantization for efficient Image Compression”,

International Journal of Image and Graphics (IJIG), vol 9, no 2, 2009, pp
299-320.
[2] C.L.Chang and B. Grod, Direction adaptive discrete wavelet
transform for image compression, IEEE Trans. Image Processing, vol. 5,
may (2007), 1289–1302.
[3] K. Sasazaki, H. Ogasawara, S. Saga, J. Maeda, Y. Suzuki, Fuzzy
vector Quantization of Images based on local fractal dimension, IEEE
international conference on Fuzzy Systems Canada, (2006) 16-21.
[4] H Liu, l Zhai, Y Gao, W Li, J Zhou, Image compression based on
biorthogonal wavelet transform, proceedings of ISCIT (2005) 578-581.
[5] L. Ma and K. Kharasani, Application of adaptive constructive neural
networks to image compression, IEEE Trans. Neural networks, vol. 13,
Sept (2002) 1112–1126.
[6] S. Kadono, O. Tahara, N. Okamoto, “Encoding of color still pictures
wavelet transform and vector quantization”, Canadian Conference on
Electrical and Computer Engineering Vol 2 (2001) 931-936.
[7] D.S.Taubman and M.W. Marcellin, JPEG2000: Image Compression
Fundamentals, Standards and Practice, Norvell, MA: kluwer, (2001).
[8] J.C. Burges, Y.P. Simard, and H.S. Malvar, Improving wavelet
compression with neural networks, Proc. Data Compression Conf.,
Snowbird, Utah, Mar (2001) 486-490.
[9] K. Paliwal, V. Ramasubramian, Comments on modified K means
algorithm for vector quantizer design, IEEE trans Image processing Vol 9
No 11 (2000) 1964-1967.
[10] R.D. Dony, S. Haykin, Neural network approaches to image
compression, proc IEEE vol 83 Feb (1999) 288-303.
[11] J. Jiang, Image compression with neural networks–A survey, Signal
processing: Image communication vol 14 no 9 (1999) 737-760.
[12] J.-S. R. Jang, C.-T. Sun, E.Mizutani, Neuro-Fuzzy and Soft
Computing, Prentice Hall (1997).
[13] Karyiannis, Pai, Fuzzy vector quantization algorithms and their
application in image compression, IEEE Trans. Image Processing, vol. 4,
(1995) 1194–1201.
[14] R.Setiono and G.Lu, Image Compression Using a Feedforward
Neural Network, Proc IEEE int conf neural network , (1994) 4761-4765.
[15] T. Denk, K.K. Parhi, and V. Cherkassky, Combining neural networks
and the wavelet transform for image compression, Proc. ICASSP IEEE Int.
Conf. Acoust,, Speech, Signal Processing, Minneapolis, Minn., Apr (1993)
I-637–I-640.
[16] G.K. Wallace, The JPEG Still Picture Compression standard IEEE
trans Consumer Electronics vol 38 no 1 Jan (1992) 18-19.
[17] S. G. Mallat, A theory for multi resolution signal decomposition: The
wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., vol. 11
(1989) 674–693.
[18] N. M. Nasrabadi and R. King, Image coding using vector
quantization: A review, IEEE Trans. Commun., vol. 36, (1988) 957–971.
[19] J . C. Bezdek, R. Ehrlich, and W. Full, FCM: The Fuzzy c-Means
Clustering Algorithm, Computers and Geosciences, Vol. 10, No. 2-3,
(1984) 191-203.
[20] Jasper JPEG2000 encoder [online] available
http://www.ece.uvic.ca/mdadams/jasper/
[21] Al-Shaykh and R. M. Mersereau, Lossy compression of noisy images.
IEEE Trans. on Image Proc 7(12). (1998) 1641-1652.
[22] P. C. Cosman, R. M. Gray, and R. A. Olshen, Evaluation quality of
compressed medical images: SNR, subjective rating, and diagnostic
accuracy, Proc. IEEE, vol. 82, June (1994) 919–932.
[23] S. C. B. Lo, B. Krasner, and S. K. Mun, Noise impact on error-free

image compression, IEEE Trans. Med. Imag., vol. 9, June (1990) 202–206.

ISSN : 0975-3397 2371

Vipula Singh et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2366-2374

Fig 1 Encoding/decoding scheme

Fig 2 a Two Channel Filter Bank Fig 3 A multi layered neural network

Fig 4 Complete Image compression

Table III PSNR(db) and compression(bpp) of different test images compressed by db18 and codebook designed using k-means, FVQ1, FVQ2 and FVQ3
algorithms

Image

PSNR
With

k-
mean

Comp
with
 k-

mean

PSNR
With
FVQ1
with
μ =2

Comp
with

FVQ1
with
μ =2

PSNR
With
FVQ2
with
λ =5

Comp
with

FVQ2
with
λ =5

PSNR
With

FVQ3
with
λ =5

Comp
with

FVQ3
with
λ =5

Lena 29.402 0.1379 30.571 0.1382 30.601 0.1382 30.659 0.1384

House

31.279 0.1373 32.427 0.1387 32.525 0.1385 32.588 0.1386

Woman
dark
hair

34.906 0.1392 35..912 0.1395 35.992 0.1398 35.996 0.1398

Woman
 blonde

26.969 0.1386 28.108 0.1397 28.208 0.1398 28.215 0.1398

Peppers 28.369 0.1384 29.19 0.1393 29.32 0.1395 29.35 0.1395

ISSN : 0975-3397 2372

Vipula Singh et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2366-2374

 (a) (b) (c)

 (d) (e)
Fig 5 Results of different images compressed by db18 and codebook design using FVQ3 algorithm using λ=5. compression ratio is 0.1382 bpp and PSNR values
are given in table X (a) peppers (b) house (c) woman with blonde hair (d) woman with dark hair (f) lena

 (a) (b)
Fig 6 PSNR versus noise strength plot of image ‘lena’ compressed by our algorithm with training of the neural network by three different cases discussed in
section 3.3. (a) with Gaussian noise (b) with salt & pepper noise

 (a) (b)
Fig 7 PSNR versus noise strength plot of image ‘lena’ compressed by our algorithm employing different quantization techniques (a) with Gaussian noise (b) with
salt & pepper noise

23

25

27

29

0.001 0.005 0.01 0.02

Gaussian noise

P
S

N
R

VQ
FVQ1
FVQ2
FVQ3

17

22

27

32

0.001 0.005 0.01 0.02

Gaussian noise

P
S

N
R

case I
case II
case III

18

21

24

27

0.01 0.02 0.05 0.1 0.2

Salt & pepper noise

P
S

N
R

VQ
FVQ1
FVQ2
FVQ3

15

20

25

30

0.01 0.02 0.05 0.1 0.2

Salt & pepper noise

P
S

N
R

case I
case II
case III

ISSN : 0975-3397 2373

Vipula Singh et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 07, 2010, 2366-2374

Table IV Comparison of PSNR(db) and compression (bpp) of different test images compressed by our method, JPEG and JPEG2000

 (a) (b) (c)
Fig 8 lena compressed by (a) our method (b) JPEG2000 (c) JPEG. Compression ratio and PSNR are given in table IV

 (a) (b) (c) (d)

Fig 9 (a) noisy version of lena (the noise is additive white Gaussian with mean 0 and variance 0.005) Results of lena compressed by (b) JPEG with
PSNR=22.143db and 0.296 bpp (c) JPEG2000 with PSNR 22.78db and 0.138bpp (d) our method with PSNR 26.7db and 0.1382bpp

 (a) (b) (c) (d)

Fig 10 (a) –(b)PSNR versus noise strength comparing our method (0.1382 bpp) and JPEG (0.296 to 0.4215 bpp)
 (c) –(d)PSNR versus noise strength comparing our method (0.1382 bpp) and JPEG2000 (0.138 bpp)

Image

PSNR
With

FVQ3
with
λ =5

Comp
with

FVQ3
with
λ =5

PSNR
with
JPEG

Comp
with

JPEG

PSNR
with
JPEG2000

Comp
with

JPEG2000

Lena 30.659 0.1384 30.654 0.62158 30.512 0.138

House

32.588 0.1386 32.527 0.3374 35.138 0.138

Woman
dark
hair

35.996 0.1398 35.421 0.217 40.395 0.138

Woman
 blonde

28.215 0.1398 28.209 0.2936 32.324 0.138

Peppers 29.35 0.1395 29.732 0.513 31.239 0.138

15

20

25

30

0.001 0.005 0.01 0.02
Gaussian noise

P
S

N
R

our method jpeg

15

20

25

30

0.01 0.02 0.05 0.1 0.2

salt & pepper noise

P
S

N
R

our method jpeg

15

20

25

30

1 2 3 4
Gaussian noise

P
S

N
R

our method jpeg2000

15

20

25

30

1 2 3 4 5
salt & pepper noise

P
S

N
R

our method jpeg2000

ISSN : 0975-3397 2374

