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Abstract: Applications, which need to store large database 
and/or transmit digital images requiring high bit-rates over 
channels with limited bandwidth, have demanded improved 
image compression techniques. This paper describes 
practical and effective image compression system based on 
neuro-fuzzy model which combines the advantages of fuzzy 
vector quantization with neural network and wavelet 
transform. The emphasis here is on the usefulness of fuzzy 
vector quantization when it is combined with conventional 
image coding techniques. The implementation consists of 
three steps. First, the image is decomposed at different 
scales using wavelet transform to obtain an orthogonal 
wavelet representation of the image Each band can be 
subsequently processed in parallel. Thus, the processing 
speed can be much faster than otherwise. Different 
quantization and coding schemes are used for different sub 
bands based on their statistical properties. At the second 
step, wavelet coefficients corresponding to lowest frequency 
band are compressed using differential pulse code 
modulation.  Neural network is used to extract the principal 
components of the higher frequency band wavelet 
coefficients. Finally, results of the second step are used as 
input to the fuzzy vector quantization algorithm. Our 
simulation results show encouraging results and superior 
reconstructed images are achieved. The effect of noise on 
the compression performance is also studied. 
Keywords: Image Compression, Fuzzy Vector 
Quantization, Multiresolution Analysis, Neural Network, 
noise.  
 
1. Introduction  
 
Digital image presentation requires a large amount of data 
and its transmission over communication channels is time 
consuming. Numerous lossy image compression techniques 
have been developed in the past years[2, 5, 6, 11]. The 
transform based coding techniques, and in particular block-
transform coding, have proved to be the most effective in 
obtaining large compression ratios while retaining good 
visual quality. Cosine transform based techniques (JPEG) 
have been found to obtain excellent results in many digital 
image compression applications [16]. Vector quantization 

(VQ) offers good performance when high compression rates 
are needed [9]. In practice, however, the existing VQ 
algorithms, often, suffer from a number of serious problems, 
e.g., long search process, codebook initialization, and 
getting trapped in local minima, inherent to most iterative 
processes. To eliminate these problems, a multi-resolution 
codebook is generated using fuzzy clustering techniques. 
These clustering techniques integrate fuzzy optimization 
constraints with the fuzzy- c-means algorithm [3, 13]. The 
resulting multi resolution codebooks generated from the 
wavelet decomposed images yield significant improvement 
in the coding process. Noise degrades the performance of 
any image compression algorithm [21, 22, 23]. Noise can 
occur during the image capture, transmission or processing 
and may be dependent on or independent of image content. 
The main objective of this paper is to present a Neuro-Fuzzy 
model based on wavelet transform and study the effect of 
noise on the image compression algorithm. The paper is 
organized as follows: Section 2 discusses the compression 
method in detail. Section 3 reports sample simulation results 
and section 4 provides concluding remarks. 
 
2. Image compression model 
 
Fig 1 shows the block diagram of the image encoder. The 
multiresolution nature of discrete wavelet transform is a 
powerful tool to represent images decomposed along the 
vertical and horizontal directions using the pyramidal 
multiresolution scheme. The wavelet transform decomposes 
the images into a set of sub images with different resolutions 
corresponding to different frequency bands.  
 
2.1 Discrete Wavelet Transform 
 
In the first step, wavelet transform is used to decompose the 
image into seven sub-bands. A typical 2-D DWT, used in 
image compression, generates the hierarchical pyramidal 
structure. Fig 2 shows a two-level wavelet decomposition 
scheme for a 512*512 digital image. This decomposition 
scheme produces three side bands of size 256*256 
corresponding to resolution level 1 and three side bands of 
size 128*128, corresponding to resolution level 2. Sub-band 
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1 represents the lowest frequency components of the 
original image. Much of the energy of image is concentrated 
here. Sub-band 2 to sub-band 7 contains detail information 
of edge, outline of image at different decomposition layers. 
Sub- band 3 and 5 denote coefficients of image at vertical 
edge after the first and second layers wavelet 
decomposition. Sub-band 2 and 6; denote coefficients of 
image at horizontal edge. Sub-band 4 and 7, denote the 
coefficients of image on the cross edge. 
 
2.2 Neural Network for Image Compression  
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 Because the human visual system has different sensitivity 
to different frequency bands, the following strategy is 
adapted for image encoding. A predetermined compression 
ratio is used for each sub image in the pyramidal structure. 
The lowest frequency band, band 1 (fig 2) is encoded with 
Differential Pulse Code Modulation (DPCM). After that 
these coefficients are scalar quantized. The remaining 
frequency bands, sub-band 2 to 6 are coded using neural 
network. As sub-band 2 and 3 contain the similar frequency 
contents for different orientation, both the bands are 
encoded using the same neural network with eight units 
input layer nodes, eight output layer nodes  and 6 hidden 
layer nodes (fig 3) i.e 8-6-8 neural network. Sub-band 5 and 
6 have the similar frequency contents for different 
orientation and are coded using 16-1-16 network. Sub-band 
4 coefficients are coded using separate 8-4-8 neural 
networks as frequency characteristics of these bands do not 
match with other band. Sub-band 7 information is discarded 
as it contains little information to contribute to the image. 
From this stand, this band can be assumed to be zero with 
little effect on the quality of reconstructed image. 
If we denote the weight from xi to hj as wij, then the k 
elements of hidden vector h are related to n elements of 
input vector x by equation (1). 

 
The weight between hj and yi is wij, then the n elements of 
hidden vector h by equation (2). 
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The weights of neural network are chosen to minimize the 
distortion between the input vector and output vector. Back 
propagation algorithm is used to minimize the squared error 
between input vector and output vector for the training set.  

]1,1[x  denotes the normalized values of the wavelet 

coefficients. With back propagation neural network, 

compression is achieved in two phases, training phase and 
encoding. 
To train a single network corresponding to a series of 
images having similar properties and statistics at first, and 
then transmit the output of the hidden layer only for a new 
presented and compressed image. Given that the network is 
already trained in advance (off-line), the problems of real-
time training and convergence are circumvented. After 
training, the network is ready for operational use. The 
wavelet coefficients are presented to the network one at a 
time. The outputs of the hidden layer nodes constitute the 
compressed features of an input block. To achieve 
compression in a practical sense, the outputs of the hidden 
layer nodes are quantized.  

2.3. Quantization 

 
The output of the hidden layer of neural network is 
quantized to achieve further compression. Various vector 
quantization algorithms like k-means, FVQ1, FVQ2 and 
FVQ3 were used for code book design in different sets of 
experiments. Finally these quantized values are entropy 
encoded. Huffman encoding is used here.  
 
2.3.1 k-means Algorithm 
 The k-means algorithm partitions a collection of N vector 
into k clusters Cj, j=1,....,k. The aim of the algorithm is to 
find cluster centers (centroids) for each group. The 
algorithm minimizes a dissimilarity (or distance) function 
which is given in equation (3).  
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 cj is the centroid of cluster j;  dis(xi , cj) is the distance 
between jth centroid cj  and ith data point xi.  For simplicity, 
the Euclidian distance is used as dissimilarity measure.  
 Partitioned groups can be defined by a k x n binary 
membership matrix (u), where the element uij is 1 if the ith 

data point xi belongs to group j and 0 otherwise as shown in 
equation (4)           
Where dismin is the minimum distance between xi and cj. 
Codebook vectors are evaluated by a distortion measure 
defined in equation (5)  

Centroids are computed as the mean of all vectors in group 
j: 
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The k-means algorithm is summarized in table I  
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Table I 
 k-means  Algorithm 

     start 
1. Select Randomly C = {cj, j = 1,2,. . . , k} 
2. Evaluate u using (4). 
3. Compute J using (5). Stop if its 

improvement over previous iteration is 
below a threshold. 

4. Update cj according to (6). Go to step 2. 
     stop 
 
While the k-means algorithm converges to a local minimum, 
it is not guaranteed to reach the global minimum. In 
addition, the algorithm is very sensitive to the initial 
codebook. Furthermore, the algorithm is slow since it 
requires an exhaustive search through the entire codebook 
during each iteration. 
 
2.3.2 Fuzzy Vector Quantization Algorithms 
 
These algorithms were developed by evolving a fuzzy 
codebook design process strategy for the transition from soft 
to crisp decision and defining conditions for constructing a 
family of membership functions [13].  In the start of the 
algorithm, the training vectors are assigned to the codebook 
vectors that are included in a hemisphere centered at the 
training vector. The membership function tells the 
possibility of the training vector belonging to a certain 
cluster. Thus membership function is a decreasing function 
of distance and takes values between 0 and 1. Let )(t

iP be the 

set of the codebook vectors belonging to the hemisphere 
centered at the training vector during the tth iteration. 
Initially during the start of the clustering process, each 
training vector is assigned to every cluster i.e. CPi )0( , 

where c is a finite set containing k codewords. After the tth 
iteration, the hemisphere located at training vector xi the 
includes the vectors )(t

ij Pc   whose distance from xi is less 

than equal to the average distance between xi and )(t
ij Pc   

given by 
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where )( )(t
iPN is the total number of elements in the set )(t

iP . 
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iP is formed by 

)}(),(:{ )()()1(
i

t
avgji

t
ij

t
i xdiscxdisPcP   (8) 

By gradually reducing the radius of the hemisphere, the 
transition from fuzzy to crisp mode is achieved during the 
algorithm. When the codebook vector contains a single 
element, the training vector is assigned to that cluster with 
the closest center. i.e. if  )( )(t

iPN < 2 training set xi is 

transferred from fuzzy to crisp mode.  

The membership value indicates the extent to which a 
training vector belongs to a particular cluster. A valid 
membership function must follow the following properties: 
1. If the hemisphere centered at xi includes a single 

codebook vector cj*, the xi is assigned to j*th cluster. 
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2  If the number of elements in the set  )(t

iP  is more than 

one, then the membership function depends on the 
distance between xi and )(t

ij Pc  ,   that is 

)),,(()( )(t
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uj(xi) must satisfy following requirements    
 a) uj(xi) is a decreasing function of dis(xi,cj)  
 b) uj(xi) approaches unity as dis(xi,cj)  approaches zero.  
 c) uj(xi) approaches zero as dis(xi,cj)  approaches dismax(xi) 

where ),(max)( )(max jiPci cxdisxdis t
ij

 .

 Using different membership functions and different methods 
for codebook calculation, three FVQ algorithms are 
explained as follows.  
 
 a) Fuzzy Vector Quantization 1 (FVQ1) 
This algorithm was developed by constructing a family of 
membership functions satisfying the conditions proposed in 
the section 2.3.2 [17].  FVQ1 algorithm uses the 
membership function given in equation (9)  
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where µ is a positive integer. The vector assignment is based 
on crisp decisions toward the end of the algorithm. This is 
guaranteed by the minimizing the discrepancy measure J 
defined in equation (5) with respect to cj which results in the 
equation (6) for the computation of cj. This selection ensures 
that the algorithm reduces to crisp k-means algorithm after 
all the training vectors are transferred from fuzzy to crisp 
mode. The Fuzzy Vector Quantization 1 (FVQ1) algorithm 
is summarized in table II. 
 
b) Fuzzy Vector Quantization 2 (FVQ2) 
This algorithm uses the membership function of equation 
(10) which satisfies the conditions proposed in the section 
2.3.2. 
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The codebook vectors are evaluated by equation (11), 
resulting from the minimization of  J=J (cj , j = 1, 2,.. . , k).  
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In this algorithm, toward the end of the algorithm, the 
training vector assignment is entirely based on crisp 
decision and uj(xi) takes the value zero and one, regardless of 
the value of m, uj(xi)

m = uj(xi). The Fuzzy Vector 
Quantization 2 (FVQ 2) algorithm is summarized in table II. 
 
c) Fuzzy Vector Quantization 3 (FVQ3) 
This algorithm uses the membership function of equation 
(10) which satisfies the conditions proposed in section 2.3.2. 
The codebook vectors are evaluated using crisp formula in 
equation (6) which guarantees that the codebook vectors are 
not affected by the training vectors that are assigned a 
membership value smaller than unity. i.e. if m ≈ 1, uj(xi)≈1 
and uj(xi)

m ≈ uj(xi) and for fixed m, (uj(xi)
m - uj(xi) ) 

increases as uj(xi) approaches zero. Another advantage of 
using equation (6) over the equation (11) is that the former 
is less computationally demanding. The Fuzzy Vector 
Quantization 3 (FVQ 3) algorithm is summarized in table II. 
 

Table II 
THE FVQ 1, FVQ2, AND FVQ3 ALGORITHMS 

start 
Select  and ’ (’ > ) 
Select Randomly C = {cj, j = 1,2,. . . , k) 
Set Q =  ; Pi = C  i = 1,2, ..., N 
Evaluate D according to (3) 
1  D* = D 
     i=0 
2   i  i + l 
    if xi  Qi; then: 
    Evaluate uj(xi) based on the nearest neighbor  condition 
    go to 3 
    else: 
    if  xi  Q and )( )(t

iPN >2; then: 

    if  cj  Pi ; then: uj(xi) = 0 
    if  cj  Pi; then: Evaluate uj(xi) using (9)       
    [FVQl algorithm] 
    if  cj  Pi; then: Evaluate uj(xi) using (10)  
    [FVQ2  & FVQ3 algorithms] 
    Evaluate disavg(xi) according to (7) 
    Update the set Pi according to (8) 
    else: 
    if xi  Q and )( )(t

iPN < 2; then: 

    Q  Q  { xi } 
    Evaluate uj(xi) based on the nearest neighbor      
    condition 
3   if i < N ; then: go to 2 
    Evaluate cj using (6) [FVQI & FVQ3 algorithms] 
    Evaluate cj using (11) [FVQ2 algorithm] 
    Evaluate D according to (3) 
    if Q = X; then: go to 4 
    if (D – D*)/D* >’  ; then: go to 1 
    Q = X 
4   if (D – D*)/D* > ; then: go to 1 

    stop 
 
3. Experimental results and discussion 

In this section, we evaluate compression performance of our 
image encoder and compare its performance with state of 
the art image encoders like JPEG and JPEG2000. The 
influence of noise on compression performance is also 
studied. The image encoder and decoder was implemented 
in Matlab 7 on an intel Pentium 2.66 GHz machine with 448 
MB RAM. Experiments were conducted using different 
standard test images of size 512 x 512, with 28 = 256 gray 
levels. A set of experiments evaluated the effect of different 
wavelet filters on the quality of the reconstructed image. 
Images were decomposed using Daubechies’ 1- coefficient 
filter (DAUB 1), 6- coefficient filter (DAUB 6) and 18 
coefficient filter (DAUB 18), coiflet-5 coefficient filter and 
biorthogonal-9 coefficient filter [1]. In different sets of 
experiments, k-means algorithm and FVQ1, FVQ2 and 
FVQ3 algorithms were used for vector quantization on the 
coefficients of hidden layer. For FVQ1, the membership 
function was evaluated using equation (9) with μ ranging 
from 1 to 5. The membership function for FVQ2 and FVQ3 
was evaluated using equation (10). The parameter m was 
evaluated as m = 1 + 1/ λ, where λ = 1 to 5. Data 
independent additive white Gaussian noise with zero mean 
and variance varying from 0.001 to 0.02 and salt & pepper 
noise with density varying from 0.01 to 0.2 was added to the 
standard test images. Noisy input images were presented to 
the algorithm and effect of noise on the performance was 
evaluated. 

3.1 Image quality evaluation  

The image quality can be evaluated objectively and 
subjectively. A standard objective measure of image quality 
is reconstruction error. Two of the error metrics used to 
compare the various image compression techniques are the 
mean square error (MSE) and the Peak Signal to Noise 
Ratio (PSNR). The MSE is the cumulative squared error 
between the compressed and the original image, whereas 
PSNR is a measure of the peak error. The mathematical 
formulae for the computation of MSE & PSNR is   
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PSNR = 20 * log10 (255 / sqrt(MSE)) (13)   
 
where I(x,y) is the original image, I'(x,y) is the 
approximated version (which is actually the decompressed 
image) and M, N are the dimensions of the images, 255 is 
the peak signal value. Subjective quality is measured by 
psychophysical tests and questionnaires. 
 
3.2 Comparative  Study  
 
This set of experiments evaluates the performance of 
various vector quantization algorithms for codebook design 
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on various test images. Table III presents PSNR(db) and 
compression(bpp) of different test images compressed by 
db18 and codebook designed using k-means, FVQ1, FVQ2 
and FVQ3 algorithms The image compression system was 
trained using the image “lena” and different standard test 
images were tested on it. It is observed that FVQ algorithms 
for codebook designing resulted in better SNR values with 
better visual quality of the reconstructed image as compared 
to k-means algorithm. This can be accounted to that the 
fuzzy vector quantization algorithms make use of the 
uncertainty to the benefit of the clustering process. The 
algorithm is based on a flexible strategy allowing the 
transition from soft to crisp decisions which eliminates the 
effect of initial codebook selection on the quality of 
clustering. FVQ2 and FVQ3 algorithms achieve best 
codebook design among all the algorithms used here with 
FVQ3 algorithm resulting in a slightly better codebook than 
that provided by FVQ2 algorithm. On an average, the 
performance of FVQ1 algorithm is comparable to that of 
FVQ2 and FVQ3 algorithms, which are computationally 
more demanding than the FVQ1 algorithm. FVQ3 algorithm 
requires slightly less arithmetic operations per iteration as 
compared to the FVQ2 algorithm.  Figure 5 illustrates the 
results. It is interesting to note that PSNR of the test images 
‘woman with dark hair’ and ‘house’ is higher than the 
training image ‘Lena’. One possible interpretation for this 
result is that the network trained on a much complex image 
Lena which contains richer features that have been 
represented so effectively that it is capable of producing 
better results to simpler images. Same is true for more 
complex images like  ‘peppers’ where the resulting PSNR 
value is lower than the test image.  
 

3.3 Effect of noise on compression 

If an image has been corrupted by additive noise, the idea of 
using a lossy compression algorithm to denoise the signal is 
proposed in several works. Ai-Shaykh [21] et al. studied the 
effect of noise on image compression using the JPEG lossy 
image processing standard, where it was found that at higher 
compression rates the coders filtered out most of the noise, 
but also degraded the image quality measured by Peak 
Signal to Noise Ratio (PSNR). Cosman et al. [22] noticed in 
their evaluation of the quality of compressed medical 
images, that slightly vector-quantized images are often 
superior to the originals because noise is suppressed by a 
clustering algorithm. Lo et al [23] discussed the effect of 
noise on lossless medical image compression. They 
concluded that noise decreases the compression ratio. This 
is because the noise reduces inter-pixel correlation.  
In most cases, the quality of the decompressed image is 
closer to the original image than that of input of the coder. 
When compressing degraded images, we should be 
concerned with preserving original information in the image 
not  preserving the noise. When the images are noisy, the 
fidelity criterion should depend on the original image, not 

on the input of the coder.  One main question which arises is 
how much has noise influence on the compression 
performance? To study the effect of noise on compression, 
the 512 x 512 Lena image is corrupted by data independent, 
additive Gaussian noise and salt and pepper noise. 
Following three scenarios are considered to test the noise 
reduction capability of the neural network in the algorithm.  
Case I) Noiseless input image and noiseless target image: 
This is the case that was considered in the previous section.  
Case II) Noisy input image and noisy target image: This 
case is more relevant in practice, as the images are generally 
corrupted by noise to a certain degree. 
Case III) Noisy input image and noiseless target image: This 
case is considered to assess the performance of the 
algorithm for its compression and noise reduction capability.  
 
PSNR values are computed with respect to the original noise 
free images. Fig 9 (a) shows Lena image corrupted by 
Gaussian white noise with PSNR 23.167 db. Fig 9 (d) shows 
image reconstructed by our method, with PSNR 26.7db at 
0.1382 bpp when the network was trained using case I. Fig 9 
(a-b) plots PSNR versus noise density for the three cases 
discussed above to train the network in the algorithm on 
image Lena. The following are the observations:  
1) The algorithm using the network trained using noiseless 

input and noiseless target images (case I) filters out the 
additive noise of the input image to some extent. 

2) The algorithm using the network trained using noisy 
input and noisy target images (case II) does not 
demonstrate any ability in filtering the additive noise of 
the input image. PSNR values are comparatively lower. 

3) In the case III, when the network is trained using noisy 
input and noiseless target images. Obviously, the 
algorithm can remove the noise in the input image to 
some degree. 

Fuzzy vector quantization algorithms perform marginally 
better than vector quantization algorithm in case of noisy 
images also. Among FVQ1, FVQ2 and FVQ3, on an 
average the performance of the three algorithms is similar. 
Fig 7 (a-b) compares various vector quantization algorithms 
in our method in case of noisy images. 

3.4 Comparison with JPEG 

In this subsection, the comparison of the performance of the 
proposed algorithm with the most commonly used still 
image encoders JPEG has been discussed. JPEG was 
implemented in Matlab 7. Comparison is made in terms of 
the visual quality and PSNR of the reconstructed images. 
Our encoder has achieved better performance in low bit rate 
environment. It is seen that our encoder consistently 
outperforms the JPEG encoder for all the test images. 
Results are tabulated in table IV. The subjective image 
quality of our method is better with lesser bits than JPEG 
and its artifacts are harder to find in the decoded image fig 8 
(a) & (c). Further our method is capable of handling noise 
much better. Fig 10 (a-b) shows the plot of PSNR verses 
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increased noise strength with 0.1382 bpp in our method and 
in case of JPEG the bit rate varies from 0.296 to 0.4215 bpp. 
PSNR values are computed with respect to the original noise 
free images.  It can be seen that our method outperforms 
JPEG encoder at least by 5 db. The image quality of our 
method is much superior from that of JPEG. The results are 
shown in fig  9 (b) & (d). 

3.5 Comparison with JPEG2000 
In this section, our algorithm is compared with still image 
compressor JPEG2000. JPEG2000 image encoder we used 
in this performance evaluation is the Jasper JPEG2000 
encoder [20]. Comparison is done in terms of visual quality 
and PSNR of the reconstructed images versus their 
compression ratios. Results are in table IV.  Fig 8 (a-b) 
shows that at similar rate for JPEG2000, the coding artifacts 
are slightly more visible in our method than JPEG2000. 
However, in case of training image “lena” the performance 
of our encoder matches with that of JPEG2000 encoder. Fig 
11 (c-d) plots PSNR versus noise strength comparing our 
method and JPEG2000. Our method is capable of handling 
noise much better.  This is due to the fact that neural 
network and vector quantizer is capable of filtering noise 
from the image corrupted with noise. The visual quality of 
the reconstructed image is much better in our method as 
compared to JPEG2000 when it is tested on noisy image. 
Results are shown in fig 9 (c-d). 
 
7. Conclusion   
 

This paper presents a neuro-wavelet based approach using 
various fuzzy vector quantization algorithms for codebook 
design for image compression at low bit rates. Various 
experiments were conducted on 512 x 512  x 8 bit images. 
Fuzzy vector quantization makes use of uncertainty to the 
benefit of the clustering process. Use of FVQ algorithms on 
the hidden layer coefficients improves the SNR and the 
visual quality of the reconstructed image, but it is 
computationally more demanding than the k-means 
algorithm. The average performance of FVQ1 algorithm is 
comparable as that of the performance of FVQ2 and FVQ3. 
The proposed image encoder outperforms the JPEG encoder 
by 40 -50% in terms of compression ratio for same PSNR 
for all test images. In terms of subjective quality, the 
proposed method is better with fewer bits as compared to 
JPEG but coding artifacts of our method are slightly more 
visible than JPEG2000 at the same bit rate. The 
experimental results show that the proposed technique 
outperforms the well known JPEG and JPEG2000 schemes 
in case images corrupted with noise. Our method is capable 
of filtering out noise from the images. 
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Fig 1 Encoding/decoding scheme 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2 a Two Channel Filter Bank                             Fig 3  A multi layered neural network          
 
 
 
 
 
 
 
 
 

Fig 4 Complete Image compression 

Table III PSNR(db) and compression(bpp) of different test images compressed by db18 and codebook designed using k-means, FVQ1, FVQ2 and FVQ3 
algorithms 

 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
Image 

PSNR 
With 

k-
mean 

 
Comp 
with 
 k-

mean 

PSNR 
With 
FVQ1 
with     
μ  =2     

Comp 
with 

FVQ1 
with     
μ  =2    

PSNR 
With 
FVQ2 
with   
λ =5 

Comp 
with 

FVQ2 
with  
λ =5 

PSNR 
With 

FVQ3 
with     
λ =5 

Comp 
with 

FVQ3 
with     
λ =5 

Lena 29.402 0.1379 30.571 0.1382 30.601 0.1382 30.659 0.1384 

House 
 

31.279 0.1373 32.427 0.1387 32.525 0.1385 32.588 0.1386 

Woman  
dark 
hair 

34.906 0.1392 35..912 0.1395 35.992 0.1398 35.996 0.1398 

Woman 
 blonde 

26.969 0.1386 28.108 0.1397 28.208 0.1398 28.215 0.1398 

Peppers  28.369 0.1384 29.19 0.1393 29.32 0.1395 29.35 0.1395 
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                      (a)                                                       (b)                                                           (c )                        
              
 
   
 
                               
 
 
 
 
 
 
 
                           (d)                                                         (e)                                                       
Fig 5 Results of different images compressed by db18 and codebook design using FVQ3 algorithm using λ=5. compression ratio is 0.1382 bpp and PSNR values 
are given in table X (a) peppers  (b) house (c) woman with blonde hair  (d) woman with dark hair  (f) lena   

 
 
 
 
 
 
 
 
                                (a)                                                                      (b) 
Fig 6 PSNR versus noise strength plot of image ‘lena’ compressed by our algorithm with training of the neural network by three different cases discussed in 
section 3.3. (a) with Gaussian noise (b) with salt & pepper noise  

 
 
 
 
 
 
 
 
                                (a)                                                                      (b) 
Fig 7 PSNR versus noise strength plot of image ‘lena’ compressed by our algorithm employing different quantization techniques (a) with Gaussian noise (b) with 
salt & pepper noise  
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Table IV  Comparison of  PSNR(db) and compression (bpp) of different test images compressed by our method, JPEG and JPEG2000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
                           (a)                                                   (b)                                                       (c )                                                                                            
Fig 8 lena compressed by (a) our method  (b) JPEG2000 (c) JPEG. Compression ratio and PSNR are given in table IV 
 
 
 
 
 
 
 
 
 
 
 
               (a)                                           (b)                                         (c )                                        (d)   
 
Fig 9  (a) noisy version of lena ( the noise is additive white Gaussian with mean 0 and variance 0.005) Results of lena compressed by (b) JPEG with 
PSNR=22.143db and 0.296 bpp (c) JPEG2000 with PSNR 22.78db and 0.138bpp (d) our method with PSNR 26.7db and 0.1382bpp   
 
 

 
 
 
 
 
                    (a)                                           (b)                                         (c )                                        (d)   
 
Fig 10 (a) –(b)PSNR versus noise strength comparing our method (0.1382 bpp) and JPEG (0.296 to 0.4215 bpp) 
         (c) –(d)PSNR versus noise strength comparing our method (0.1382 bpp) and JPEG2000 (0.138 bpp) 

 
 

 
 
Image 

PSNR 
With 

FVQ3 
with     
λ =5 

Comp 
with 

FVQ3 
with    
λ =5 

PSNR 
with   
JPEG 

Comp 
with 

JPEG 

PSNR 
with   
JPEG2000 

Comp 
with 

JPEG2000 
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