
Vaishali M. Barkade et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2084-2091

ENGLISH TO SANSKRIT MACHINE
TRANSLATOR

 LEXICAL PARSER

Ms.Vaishali M. Barkade
Information Technology Department

Bharati Vidyapeeth University College of Engineering
Pune- 43, Maharashtra, India

Prof. Prakash R. Devale
Information Technology Department

Bharati Vidyapeeth University College of Engineering
Pune- 43, Maharashtra, India

Abstract— Here we propose to develop a converter which
converts English Sentence to Sanskrit sentence. The Proposed
modules are as follows:
 MODULE 1: LEXICAL PARSER
 MODULE 2: SEMANTIC MAPPER
 MODULE 3: ITRANSLATOR
 MODULE 4: COMPOSER
 Here we would concentrate only on the first module that is
Lexical parser which parses a English sentence.

Keywords: machine translation, word order, lexical parser,
grammar, tree.

I. INTRODUCTION

Machine translation is one of the most important
applications of Natural Language Processing. Machine
translation helps people from different places to understand an
unknown language without the aid of a human translator. The
language to be translated is the Source Language (SL). The
language to which source language translated is Target
Language (TL). The major machine translation techniques are
Rule Based Machine Translation Technique [1], Statistical
Machine Translation Technique (SMT) and Example-based
machine translation (EBMT). One of the effective techniques
for machine translation is Rule Based Machine Translation. In
India, different machine translation systems are implemented.
AnglaUrdu (AnglaHindi based) Machine Translation System
for English to Urdu [2], HindiAngla Machine Translation
Systems form Hindi to English, English-Assamese Machine
Translation System (Machine Translation System from English
to Assamese, MaTra: Human Aided Machine Translation
System, AnglaHindi: An English to Hindi Machine-Aided
Translation System [3] and AnglaBharti Technology for
machine aided translation from English to Indian
Languages[4], these are some of the machine translation works
implemented in India. Here we are describing about Machine
Translation Technique for translating English to Sanskrit.
While translating, the syntactic structure and semantics
structure of both source language and target language should be
considered. Here we are using the Source language as English
and Target Language as Sanskrit. We are concentrating on first
module that accepts input as English sentence and we parse it
to generate a Semantic tree.

II. COMPARISON OF ENGLISH AND SANSKRIT WORD

ORDER

English is well known language and Sanskrit is an ancient
language. The English sentence always has an order of
Subject-Verb-Object, while Sanskrit sentence has a free word
order. A free order language is a natural language which does
not lead to any absurdity or ambiguity, thereby maintaining a
grammatical and semantic meaning for every sentence
obtained by the change in the ordering of the words in the
original sentence. For example, the order of English sentence
(ES) and its equivalent translation in
Sanskrit sentence (SS) is given as below.

ES: Ram reads book.
 (Subject) (Verb) (Object)

SS: Raamah pustakam pathati.
 (Subject) (Object) (Verb)
 or
 Pustakam raamah pathati.
 (Object) (Subject) (Verb)
 or
 Pathati pustakam raamah
 (Verb) (Object) (Subject)
Thus Sanskrit sentence can be written using SVO, SOV and
VOS order.

III. PARSER

A parser breaks data into smaller elements, according to a set
of rules that describe its structure
Parsing is the process of analyzing a text, made of a sequence
of tokens (for example, words), to determine its grammatical
structure with respect to a given grammar.
Following are the Steps to generate a Parse Tree
Step 1: Input is a English sentence.
Step 2: Lexical Analyzer
 Creates Tokens
Step3: Tokens generated acts as an input to Semantic analyzer
Step 4: Semantic analyzer
 Creates a parse tree
Step 5: Output is a parse tree

ISSN : 0975-3397 2084

Vaishali M. Barkade et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2084-2091

 Figure 1 Stages of creating a Parse Tree

IV. LEXICAL PARSER

 The semantic standard representation was designed to provide
a simple description of the grammatical relationships in a
sentence that can easily be understood and effectively used by
people without linguistic expertise who want to extract textual
relations. The sentence relationships are represented uniformly
as semantic standard relations between pairs of words. For the
sentence:
Bell, based in Los Angeles, makes and distributes electronic,
computer and building products.

A. The Semantic representation is:
nsub j (makes-8, Bell-1)

nsubj (distributes-10, Bell-1)

partmod (Bell-1, based-3)

nn (Angeles-6, Los-5)

prep in (based-3, Angeles-6)

conj and (makes-8, distributes-10)

amod (products-16, electronic-11)

conj and (electronic-11, computer-13)

amod (products-16, computer-13)

conj and (electronic-11, building-15)

amod (products-16, building-15)
dobj (makes-8, products-16)

dobj (distributes-10, products-16)

The above relations maps straightforwardly onto a directed
graph representation, in which

 NODES - words in the sentence
 EDGES - grammatical relations are edge labels.

 Figure 2 gives the graph representation for the example
sentence above.

Figure 2
Graphical representation of the Semantic standard for the sentence “Bell,
based in Los Angeles, makes and distributes electronic, computer and building
products”

B. Definition of Semantic Standard

The dependencies are all binary relations: a grammatical
relation holds between a governor and a dependent.
The grammatical relations are as follows

1. abbrev : abbreviation modifier
An abbreviation modifier of an NP is a parenthesized
NP that serves to abbreviate the NP (or to define an
abbreviation).

 e.g.
“The Australian Broadcasting Corporation (ABC)"

 abbrev (Corporation, ABC)

2. acomp : adjectival complement

ISSN : 0975-3397 2085

Vaishali M. Barkade et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2084-2091

An adjectival complement of a VP is an adjectival
phrase which functions as the complement (like an
object of the verb);
an adjectival complement of a clause is the adjectival
complement of the VP which is the predicate of that
clause.

 e.g.
“She looks very beautiful"

 acomp (looks, beautiful)

3. advcl : adverbial clause modifier
An adverbial clause modifier of a VP is a clause
modifying the verb (temporal clause, consequence,
conditional clause, etc.).

 e.g.
“The accident happened as the night was falling"
 advcl (happened, falling)

4. advmod: adverbial modifier

An adverbial modifier of a word is a (non-clausal)
RB or ADVP that serves to modify the meaning of
the word.
e.g.
“Genetically modified food"
 advmod (modified, genetically)

5. agent: agent
An agent is the complement of a passive verb which
is introduced by the preposition “by" and does the
action.
e.g.
“The man has been killed by the police"
agent (killed, police)

6. amod : adjectival modifier

An adjectival modifier of an NP is any adjectival
phrase that serves to modify the meaning of the NP.
e.g.
“Sam eats red meat" amod(meat, red)

7. appos: appositional modifier
An appositional modifier of an NP is an NP
immediately to the right of the first NP that serves to
define or modify that NP.
e.g.
“Sam, my brother"
 appos (Sam, brother)

8. attr: attributive
An attributive is the complement of a copular verb
such as “to be", “to seem", “to appear".
e.g.
“What is that?" attr (is, What)

9. aux: auxiliary
An auxiliary of a clause is a non-main verb of the
clause, e.g. modal auxiliary, “be" and “have" in a
composed tense.

e.g.
“Reagan has died"
aux (died, has)

10. auxpass : passive auxiliary

A passive auxiliary of a clause is a non-main verb of
the clause which contains the passive information.
e.g.
“Kennedy has been killed"
auxpass (killed, been)
aux (killed,has)

11. cc: coordination
A coordination is the relation between an element of
a conjunct and the coordinating conjunction word of
the conjunct.
e.g.

 “Bill is big and honest"
 cc (big, and)

12. ccomp : clausal complement
A clausal complement of a VP or an ADJP is a clause
with internal subject which functions like an object of
the verb or of the adjective; a clausal complement of
a clause is the clausal complement of the VP or of the
ADJP which is the predicate of that clause. Such
clausal complements are usually finite (though there
are occasional remnant English subjunctives).
e.g.
“He says that you like to swim"
ccomp (says, like)

13. complm : complementizer
A complementizer of a clausal complement (ccomp)
is the word introducing it. It will be the subordinating
conjunction “that" or “whether".
e.g.
“He says that you like to swim"
 complm (like, that)

14. conj : conjunct
A conjunct is the relation between two elements
connected by a coordinating conjunction, such as
“and", “or", etc. We treat conjunctions
asymmetrically: The head of the relation is the first
conjunct and other conjunctions depend on it via the
conj relation.
e.g.
“Bill is big and honest"
conj (big, honest)

15. cop: copula
A copula is the relation between the complement of a
copular verb and the copular verb.
e.g.
“Bill is big"
 cop (big, is)

16. csubj : clausal subject

ISSN : 0975-3397 2086

Vaishali M. Barkade et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2084-2091

A clausal subject is a clausal syntactic subject of a
clause, i.e. the subject is itself a clause. The governor
of this relation might not always be a verb: when the
verb is a copular verb, the root of the clause is the
complement of the copular verb.
e.g. “what she said" is the subject.
“What she said makes sense"
 csubj (makes, said)

17. csubjpass: clausal passive subject
A clausal passive subject is a clausal syntactic subject
of a passive clause.
e.g. “that she lied" is the subject.
“That she lied was suspected by everyone"
csubjpass (suspected, lied)

18. det: determiner
A determiner is the relation between the head of an
NP and its determiner.
e.g.
“The man is here"
det (man, the)

19. dobj : direct object
The direct object of a VP is the noun phrase which is
the (accusative) object of the verb; the direct object of
a clause is the direct object of the VP which is the
predicate of that clause.
e.g.
 “She gave me a raise"
dobj (gave, raise)

20. expl: expletive
This relation captures an existential “there". The main
verb of the clause is the governor.

 e.g.
“There is a ghost in the room"
expl (is, There)

21. infmod: infinitival modifier
An infinitival modifier of an NP is an infinitive that
serves to modify the meaning of the NP.
e.g.
 “I don't have anything to say"
infmod (anything, say)

22. iobj : indirect object
The indirect object of a VP is the noun phrase which
is the (dative) object of the verb; the indirect object of
a clause is the indirect object of the VP which is the
predicate of that clause.
e.g.
“She gave me a raise"
iobj (gave, me)

23. mark: marker

A marker of an adverbial clausal complement (advcl)
is the word introducing it. It will be a subordinating
conjunction difierent from “that" or “whether": e.g.
“because", “when", “although",etc.
e.g.
“Forces engaged in fighting after insurgents attacked"
mark (attacked, after)

24. measure: measure-phrase modifier
The measure-phrase modifier is the relation between
the head of an ADJP/ADVP and the head of a
measure-phrase modifying the ADJP/ADVP.
e.g.
“The director is 65 years old"
measure (old, years)

25. neg : negation modifier
The negation modifier is the relation between a
negation word and the word it modifies.
e.g.
“Bill is not a scientist"
 neg (scientist, not)

26. nn : noun compound modifier
A noun compound modifier of an NP is any noun that
serves to modify the head noun.
e.g.
“Oil price futures"
 nn (futures, oil)

 nn (futures, price)

27. nsubj : nominal subject
A nominal subject is a noun phrase which is the
syntactic subject of a clause. The governor of this
relation might not always be a verb: when the verb is
a copular verb, the root of the clause is the
complement of the copular verb.
e.g.
“Clinton defeated Dole"
nsubj (defeated, Clinton)

28. nsubjpass: passive nominal subject
A passive nominal subject is a noun phrase which is
the syntactic subject of a passive clause.
e.g.
“Dole was defeated by Clinton"
 nsubjpass (defeated, Dole)

29. num: numeric modifier
A numeric modifier of an NP is any number phrase
that serves to modify the meaning of the NP.
e.g.
“Sam eats 3 sheep"
 num (sheep, 3)

30. number: element of compound number
An element of compound number is a part of a
number phrase or currency amount.

ISSN : 0975-3397 2087

Vaishali M. Barkade et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2084-2091

e.g.
“I lost $ 3.2 billion"
number($, billion)

31. parataxis: parataxis
The parataxis relation (from Greek for “place side by
side") is a relation between the main verb of a clause
and other sentential elements, such as a sentential
parenthetical, a clause after a “:" or a “;".

e.g.
“The guy, John said, left early in the morning"
parataxis (left, said)

32. partmod : participial modifier
A participial modifier of an NP or VP is a participial
verb form that serves to modify the meaning of the
NP or VP.
e.g.
“Trufies picked during the spring are tasty"
partmod (trufies, picked)

33. mp: prepositional complement
The prepositional complement of a preposition is the
head of a clause following the preposition.
e.g.
“They heard about you missing classes"
 pcomp (about, missing)

34. pobj : object of a preposition
The object of a preposition is the head of a noun
phrase following the preposition. (The preposition in
turn may be modifying a noun, verb, etc.)
e.g.
“I sat on the chair"
pobj (on, chair)

35. poss : possession modifier
The possession modifier relation holds between the
head of an NP and its possessive determiner,
or a genitive 's complement.
e.g.
“their offices"
poss (offices, their)

36. possessive: possessive modifier
The possessive modifier relation appears between the
head of an NP and the genitive 's.
e.g.
“Bill's clothes"
possessive (John, 's)

37. preconj : preconjunct
A preconjunct is the relation between t he head of an
NP and a word that is part of a conjunction, an puts
emphasis on it (e.g., “either", “both", “neither").
e.g.
“Both the boys and the girls are here"

preconj (boys, both)

38. predet: predeterminer
A predeterminer is the relation between the head of
an NP and a word that precedes and clarifies the use
of the NP determiner.
e.g.
“All the boys are here"
predet(boys, all)

39. prep/prepc: prepositional modifier
A prepositional modifier of a verb, adjective, or noun
is any prepositional phrase that serves to modify the
meaning of the verb, adjective, or noun. If the
prepositional phrase is a clause, the relation is called
prepc when collapsing takes place .
e.g.
“I saw a cat in a hat"
 prep (cat, in)

40. prt: phrasal verb particle
The phrasal verb particle relation identifies a phrasal
verb, and holds between the verb and its particle.
e.g.
“They shut down the station"
prt (shut, down)

41. punct: punctuation
This is used for any piece of punctuation in a clause,
if punctuation is being retained in the typed
dependencies.
 e.g.
“Go home!"
 punct (Go, !)

42. purpcl : purpose clause modifier
A purpose clause modifier of a VP is a clause headed
by “(in order) to" specifying a purpose.
e.g.
“He talked to him in order to secure the account"
purpcl (talked, secure)

43. quantmod: quantifier phrase modifier
A quantifier modifier is an element modifying the
head of a QP constituent.
e.g.
“About 200 people came to the party"
quantmod (200, About)

44. rcmod: relative clause modifier
A relative clause modifier of an NP is a relative
clause modifying the NP. The relation points from the
head noun of the NP to the head of the relative
clause, normally a verb.
e.g.
“I saw the man you love"
 rcmod (man, love)

ISSN : 0975-3397 2088

Vaishali M. Barkade et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2084-2091

45. ref : referent
A referent of the head of an NP is the relative word
introducing the relative clause modifying the NP.

 e.g.
“I saw the book which you bought"
 ref (book, which)

46. rel : relative
A relative of a relative clause is the head word of the
WH-phrase introducing it.
e.g.
“I saw the man who you love"
rel (love, who)

47. tmod : temporal modifier
A temporal modifier of a VP or an ADJP is any
constituent that serves to modify the meaning of the
VP or the ADJP by specifying a time; a temporal
modifier of a clause is a temporal modifier of the VP
which is the predicate of that clause.
e.g.
“Last night, I swam in the pool"
 tmod (swam, night)

48. xcomp : open clausal complement
An open clausal complement (xcomp) of a VP or an
ADJP is a clausal complement without its own
subject, whose reference is determined by an external
subject.
e.g.
“He says that you like to swim"
xcomp (like, swim)

49. xsubj : controlling subject
A controlling subject is the relation between the head
of a open clausal complement (xcomp) and the
external subject of that clause.
e.g.
“Tom likes to eat fish"
 xsubj (eat, Tom)

C. Different styles of dependency representation

Four variants of the typed dependency representation
are available in the dependency extraction system. The
representations follow the same format: a dependency is
written as abbreviated relation name(governor, dependent)
where the governor and the dependent are words in the
sentence to which the word number in the sentence is append.
The differences are that they range from a more surface-
oriented representation, where each token appears as a
dependent in a tree, to a more semantically interpreted
representation where certain word relationships, such as
prepositions, are represented as dependencies and the set of
dependencies becomes a possibly cyclic graph.

1. Basic Typed Dependencies
The basic typed dependencies use the dependencies and form
a tree structure. Each word in the sentence (except the head of
the sentence) is the dependent of one other word. For the
sentence, “Bell, a company which is based in LA, makes and
distributes computer products", the basic typed dependencies
will be:
nsubj (makes-11, Bell-1)

det (company-4, a-3)

appos (Bell-1, company-4)

rel (based-7, which-5)

auxpass (based-7, is-6)

rcmod (company-4, based-7)

prep (based-7, in-8)

pobj (in-8, LA-9)

cc (makes-11, and-12)

conj (makes-11, distributes-13)

nn (products-15, computer-14)

dobj (makes-11, products-15)

2. Collapsed dependencies
In the collapsed representation, additional dependencies are
considered, even ones that break the tree structure turning the
dependency structure into a directed graph. So in the above
example, the following relations will be added:
ref(company-4, which-5)
nsubjpass(based-7, which-5)

These relations do not appear in the basic representation since
they create a cycle with the rcmod and rel relations. Relations
that break the tree structure are the ones taking into account
elements from relative clauses and their antecedents (as shown
in this example), as well as the controlling (xsubj) relations.
Moreover dependencies involving prepositions, conjuncts as
well as information about the referent of relative clauses are
collapsed to get direct dependencies between content words.
This “collapsing" is often useful in simplifying patterns in
relation extraction applications. For instance, the dependencies
involving the preposition “in" in the above example will be
collapsed into one single relation:

prep(based-7, in-8)

pobj(in-8, LA-9)

will become

ISSN : 0975-3397 2089

Vaishali M. Barkade et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2084-2091

prep in(based-7, LA-9)

The same happens for dependencies involving conjunction:

cc(makes-11, and-12)

conj(makes-11, distributes-13)

will become

conj and(makes-11, distributes-13)

The information about the antecedent of the relative clause

(ref(company-4, which-5))

 will serve to expand the following dependency:

nsubjpass(based-7, which-5)

 becomes

nsubjpass(based-7, company-4)

In the end the collapsed dependencies that the system gives
you for the sentence are:

nsubj (makes-11, Bell-1)

det (company-4, a-3)

appos (Bell-1, company-4)

nsubjpass (based-7, company-4)

rel (based-7, which-5)

auxpass (based-7, is-6)

rcmod (company-4, based-7)

prepfiin (based-7, LA-9)

conjfiand (makes-11, distributes-13)

nn (products-15, computer-14)

dobj (makes-11, products-15)

3. Collapsed dependencies with propagation of
conjunct dependencies.

When there is a conjunction, you can also get propagation of
the dependencies involving the conjuncts. In the sentence here,
this propagation will add two dependencies to the collapsed

representation; due to the conjunction between the verbs
“makes" and “distributes", the subject and object relations that
exist on the first conjunct (“makes") will be propagated to the
second

conjunct (“distributes"):

nsubj(distributes-13, Bell-1)

dobj(distributes-13, products-15)

Since this representation is an extension of the collapsed
dependencies, it does not guarantee a tree structure.

4. Collapsed dependencies preserving a tree
structure

In this representation, dependencies which do not preserve the
tree structure are omitted. As explained above, this concerns
relations between elements of a relative clause and its
antecedent, as well as the controlling subject relation (xsubj).
This also does not allow propagation of conjunct
dependencies. In our example, the dependencies in this
representation will be:
 nsubj (makes-11, Bell-1)

det (company-4, a-3)

appos (Bell-1, company-4)

rel (based-7, which-5)

auxpass (based-7, is-6)

rcmod (company-4, based-7)

prepfiin (based-7, LA-9)

conjfiand (makes-11, distributes-13)

nn (products-15, computer-14)

dobj (makes-11, products-15)

V. WORK DONE BASED ON THIS

In this work we have design our own lexical parser for getting
the typed dependency information POS tag information and
context-free phrase structure grammar representation of source
structure. Translation based on above method is implemented
with the help of Java codes. The nouns, verb, subject etc are
stored in a Data structure i.e. Collection (Array List). We have
a lexical parser on Natural Language Parser we have
customized and abstracted parser algorithm based on our
requirement. This parser is used at lower level of our
application.
Step 1: Tokenize the sentence into various tokens i.e. token list

ISSN : 0975-3397 2090

Vaishali M. Barkade et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2084-2091

Step 2: To find the relationship between tokens we are using
 dependency grammar and binary relation for our
 English language Token list acts as an input to semantic
 class to represent the semantic standard.
 Step 3: Semantic class generates a tree we have a class Tree
 Transform which will create a tree.
Step 4: Sentence is splitted into words that are nouns, verbs
 etc.
The sentence :
Bell, based in Los Angeles, makes and distributes electronic,
computer and building products.
 is broken into tokens.

Noun (nsubj) Token1 Bell
Participial modifier
(partmod)

Token 2 based

Preposition (prep) Token 3 in
Noun (nn) Token 4 Los
Noun (nn) Token 5 Angeles
Verb Token 6 makes
Conjunction (conj) Token 7 and
Verb Token 8 distributes
Adjective (amod) Token 9 electronic
Adjective(amod) Token 10 computer
Conjunction (conj) Token 11 and
Adjective (amod) Token 12 building
Directobject (dobj) Token 13 products

 Table 1 Shows how a sentence is broken into tokens

VI. CONCLUSION

Here more emphasis is on Module 1 LEXICAL PARSER. It
shows how an English statement is parsed into tokens and then
finds the relationship between tokens using dependency
grammar and by using the semantic representation we generate
a tree.

VII. REFERENCES

[1] http://en.wikipedia.org/wiki/machinefitranslation
[2] http://tdil.mit.gov.in/tdil-oct-

2003/machine%20translation%20system%20.pdf
[3] R.M.K. Sinha, A. Jain ‘AnglaHindi:An English to Hindi Machine-Aided

Translation System.’ Indian Institute of Technology, Kanpur, India,
2003

[4] Sinha, R.M.K.; Sivaraman, K.; Agrawal, A.; Jain, R.; Srivastava, R.;
Jain ‘ANGLABHARTI: a multilingual machine aided translation project
on translation from English to Indian languages’. A.Systems, Man and
Cybernetics, 1995. Intelligent Systems for the 21st Century.,IEEE
International Conference on Volume 2, Issue, 22-25 Oct 1995
Page(s):1609 - 1614 vol.2

[5] shu-jie liu1, mu-yun yang1,2,tie-jun zhao1 a cascaded approach to the
optimization of translation Rules 1- 4244-0060-0/06/$20.00 ©2006
IEEE

[6] Rule Based Machine Translation from English to Malayam Rajan, R.;
Sivan, R.; Ravindran, R.; Soman, K.P.; Advances in Computing, Control
& Telecommunication Technologies, 2009. ACT’09, International
Conference on Digital Object Identifier:10.1109/ACT.2009.113
Publication Year:2009, Page(s):439-441

ISSN : 0975-3397 2091

