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Abstract—A large number of problems in artificial intelligence 
and other areas of computer science can be viewed as special 
cases of the Maximum Stable Set Problem (MSSP). In this paper, 
we propose a new approach to solve the MSSP problem using the 
continuous Hopfield network (CHN). The proposed method is 
divided into two steps: the first one involves modeling the MSSP 
problem as a 0-1 quadratic programming, and solving this model 
via the CHN which rapidly gives a local minimum. The second 
step concerns improving the initial solution by adding a linear 
constraint to the first model; then, we use the CHN to solve the 
obtained model. We prove that this approach is able to determine 
a good solution of the MSSP problem. To test the theoretical 
results, some computational experiments solving the MSSP 
problem are shown. 

Keywords- maximum stable set problem; quadratic 0-1 
programming; continuous Hopfield network  

I.  INTRODUCTION  

The Maximum Stable Set Problem (MSSP) consists 
of finding a stable set in graph G  of maximum cardinality 

)(G . Aside from its theoretical interest, the MSSP problem 

arises in applications in information retrieval, experimental 
design, signal transmission, and computer vision [1]. The 
stable set problem is NP-hard in the strong sense, and hard 
even to approximate[11]. The MSSP problem can be solved 
using polynomial time algorithms for special classes of graphs 
such as perfect graphs and t-perfect graphs, circle graphs and 
their complements, claw-free graphs, and graphs with long 
odd cycles [13]. But, the existence of a polynomial time 
algorithm for arbitrary graphs seems unlikely. 

Different approaches have been discussed in the 
literature to solve the maximum stable set problem exactly. An 
implicit enumeration technique of Carrahan's and Pardalos's 
[3], computational results for different stable set linear 
programming relaxations have been reported by Gruber and 
Rendl [10], an effective evolution of the tabu search approach 
is presented in the original work of Friden, Hertz and de Werra 
[8]. The MSSP problem can be solved via the Continuous 
Hopfield Network (CHN). 

The CHN  was proposed by Hopfield and Tank [12] 
to solve combinatorial problems; some authors have treated 
the Quadratic Knapsack Problem )(QKP  through this 

neuronal approach [2],[9],[16]. Within these papers, the 
feasibility of the equilibrium points of the CHN  cannot, for 
the general case, be assured; moreover, the solutions obtained 

are, often, not good enough. To avoid this problem, a general 
methodology was proposed to solve the Generalized Quadratic 
Knapsack Problem )(GQKP  [14]. 

Since the differential equation, which characterizes 
the dynamics of the CHN , is analytically hard to solve, 
many researchers used to make use of the famous Euler 
method. However, this latter proved to be highly sensitive 
with respect to initial conditions, and it requires a lot of CPU 
time for medium or greater size CHN  instances. That is why 
a robust algorithm was proposed to calculate an equilibrium 
point [15]. After these ameliorations, the CHN was used to 
solve the Traveling Salesmen Problem [14], Constraint 
Satisfaction Problem [7] and the Placement of the Electronic 
Circuits Problem [5]. 

In this work, we propose a new approach to solve the 
MSSP problem. The proposed method is divided into two 
steps: the first one involves modeling the MSSP problem as a 
0-1 quadratic programming, and solving this model via the 
continuous Hopfield network, we call the obtained stable set 
the initial solution of the MSSP problem. The second step 
concerns improving the initial solution by adding a linear 
constraint to the first model; then, we use the CHN to solve 
the obtained model. In this approach, we prove that the 
integrated constraint plays a central role for ameliorating the 
initial solution. 

This paper is organized as follows: In section 2, we 
present an introduction of the continuous Hopfield network. 
The maximum stable set problem is modelized as a 0-1 
quadratic program in the section 3. In section 4, we use the 
CHN to calculate an initial stable set in a short time. Section 5 
is devoted to improve the initial solution. Implementation 
details of the proposed approach and experimental results are 
presented in the last section. 

II. THE CONTINUOUS HOPFIELD NETWORK  (CHN) 

In the beginning of the 1980s, Hopfield published 
two scientific papers, which attracted much interest. This was 
the starting point of the new era of neural networks, which 
continues today. Hopfield showed that models of physical 
systems could be used to solve computational problems. 
Moreover, Hopfield and Tank [12] presented the energy 
function approach in order to solve several optimization 
problems including the traveling salesman problem )(TSP , 

analog to digital conversion, signal processing problems and 
linear programming problems. Their results encouraged a 
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number of researchers to apply this network to different 
problems such as object recognition, graph recognition,graph 
coloring problems, economic dispatch problems and constraint 
satisfaction problems.  

The CHN  of size n  is a fully connected neural 

network with n  continuous valued units. Let jiT ,  be the 

strength of the connection from neuron j  to neuron i . Each 

neuron i  has an offset bias of b
ii . 

The dynamics of the CHN  is described by the 
differential equation:  

biTx
u

dt

du



=                                             (1) 

 where u , x  and bi  will be the vectors of neuron states, 

outputs and biases. 

The output function )(= ii ugx  is a hyperbolic tangent, 

which is bounded below by 0 and above by 1. 
 

0>))(tanh(1
2

1
=)( 0

0

uwhere
u

u
ug i

i   

where 0u  is a parameter used to control the gain (or slope) of 

the activation function. 

If, for an input vector 0u , a point eu  exists such that 

e
e ttutu =)( , for some 0et , this point is called an 

equilibrium point of the system defined by the differential 
equation (1). Such an equilibrium point will also be called the 
limit point of the CHN . The existence of equilibrium points 

for the CHN  is guaranteed if a Lyapunov or an energy 
function exists. Hopfield showed that, if matrix T  is 
symmetric, then the following Lyapunov function exists [12]: 

dvvgxiTxxxE tbt )(
1

)(
2

1
=)( 1


 

The CHN  will solve those combinatorial problems, which 
can be expressed as the constrained minimization of:  

xiTxxxE tbt )(
2

1
=)(   (2) 

 
which has its extremes at the corners of the n-dimensional 

hypercube n[0,1] . The idea is that the networks Lyapunov 

function, when  , is associated with the cost function 
which will be minimized in the combinatorial problem. In this 
way, the CHN  output can be used to represent a solution of 
the combinatorial problem. This process has been termed 
mapping the problem onto the Hopfield network and is 
described in the following way for the quadratic assignment 
problem. 
Given the combinatorial optimization problem with n  
variables and m  linear constraints  

 



















nix

bAx

toSubject

xqQxxMin

P

i

tt

1,...,={0,1}

=

2

1

1)(  

To solve the quadratic programming 1)(P , the following sets 

are needed:  
        • H  is a set of the Hamming hypercube :  

}[0,1]{ nxH   

        • CH  is a set of the Hamming hypercube corners :  

                        }1,...,={0,1},:{ nixHxH iC   

 

        • FH  is a set of feasible solutions :  

          }=:{ bAxHxH CF    

  
Remark 1  
Given an instance ),,,,,( bAqQmn  of the problem 1)(P , 

some conditions must be imposed on the mapped problem so 
that its equilibrium points can be associated with local 
minimums of that optimization problem, with m  is the 
number of constraints.  
 
 
An energy function must also be defined by :  

HxxExExE R  )()(=)( 0  (3) 

 Where:   

        • )(0 xE  is directly proportional to the objective 

function of the problem.  

        • )(xE R  is a quadratic function that not only penalizes 

the violated constraints of the problem, but also guarantees the 
feasibility of the solution obtained by the CHN . This 

function must be constant FHx  and an appropriate 

selection of this function is crucial for correct mapping.  
 

The following generalized energy function was previously 
proposed [14]:   

AxxdiagxAxAxxqQxxxE ttttt   ))(1()()(
2

1
)

2

1
(=)(

 
 with the parameters mn IRβ,IRγIR,α   and the 

mm  matrix parameter  . This energy function was 

introduced to overcome the problem observed with the energy 
functions used by other authors, including Aiyer [9] and 
Brandt et al. [2]. 
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In this work, our objective is to solve the maximum stable 

set problem (MSSP) using the continuous Hopfield network. In 
this case, the most important step consists of representing or 
mapping the MSSP problem in the form of an energy function 
associated with the continuous Hopfield network. In the next 
section, we will present a modelization of the MSSP problem 
as a quadratic 0-1 programming. According to this model, this 
step of mapping becomes easy and more general. 

III. FORMULATION OF THE MAXIMUM STABLE SET 

PROBLEM  

Given an undirected graph ),(= EVG  with 

}...,,{= 21 nvvvV . A stable set of a graph G  is a set of nodes 

S  with the property that the nodes of S  are pairwise non 
adjacent. The maximum stable set problem (MSSP) consists to 
find a stable set of maximum size. 
To solve the MSSP problem via the CHN, it must be 
expressed as a linear assignment problem with a quadratic 
constraint. 

Let VS   be a stable set of nodes. For each node iv  of the 

graph G , we introduce the binary variables ix  such that:  

         


 

Otherwise

Svif
x i

i 0

1
=  

  

   • Two adjacent nodes iv  and jv  cannot be in the set S :  

 

0=),( jiji xxEvv   (4) 

 
     The constraints (4) can be aggregated in a single one:  

0==)(
1=1=

jiij

n

j

n

i

xxbxh   (5) 

 

      With 


 

Otherwise

Evvif
b ji

ij 0

),(1
=   

 
   • The objective function of the mathematical programming 
model is:  

                                  i

n

i

xxf 
1=

=)(  

 
 Consequently, the MSSP problem can be expressed in the 
following algebraic form: 
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Example 1  
We consider a sample graph with eight nodes and nine edges, 
which contains tree stable sets:  

 
 

Figure  1: Example of a graph containing tree stable sets 

   
The maximum stable set problem associated with this graph 
can be modelized as the following quadratic programming 

)(QP :  
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Txxxxxxxxxand ),,,,,,,(= 87654321  

 
 In this section, the MSSP problem was modelized as 

a quadratic 0-1 programming which consists in minimizing the 
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linear function subject to quadratic constraints )(QP . To 

solve this model, many different methods are tried and tested 
such as interior point, semidefinite relaxations [6] and 
lagrangian relaxations[17]. In this paper, we introduce the 
continuous Hopfield network for solving the QP  problem.  

IV. A CLASSICAL CONTINUOUS HOPFIELD NETWORK FOR 

THE MSSP PROBLEM 

The main purpose of this section is to apply the CHN 
in order to solve the maximum stable set problem (MSSP). 
First, we formulate the energy function associated with the 
MSSP problem. Then, we select a convenient parameters 
setting of this function. 
To solve the maximum stable problem via CHN, we formulate 
the energy function:  

)(1
2

1
=)(

1=1=1=1=

0
ii

n

i
jiij

n

j

n

i
i

n

i

xxxxbxxE     (6) 

 Basing on a simple comparison between the equation (2) and 
the equation (6), we determine the weights and thresholds as 
follows:  

                









=

2=,
b
i

ijijji

i

bT
 

With       







 jiif

jiif

ij 0

=1

=  is the Kronecker symbol. 

The parameters  ,   and   must be selected such that the 

equilibrium points of the CHN, associated with the MSSP, are 
feasible. 
The parameter-setting procedure is based on the partial 
derivatives of the generalized energy function:  

              )2(1=)(=
)(

1=

0

ijij

n

j
i

i

xxbxE
x

xE



    

The parameters-setting are determined by the hyperplane 
method [15]. This method involves dividing the Hamming 
hypercube H  by a hyperplane containing all feasible 
solutions so that the evolution of CHN verifies two properties: 
any solution not belonging to this hyperplane will be pushed 
on to it and, second, any infeasible solution belonging to the 
hyperplane is ejected from it. 
Before presenting this method, some conditions are imposed 
to simplify the determination of these parameters-setting:  

             00,>   

 • To minimize the objective function, we impose the 
following constraint:  

            0>  
 

 • The following constraint is necessary to avoid the stability 

in the interior points CHHx  :  

            02=, iiT  

 
Since the problem MSSP has only one constraint, we have:  

0}>)(/{= xhHxHH CFC   

Let FC HHx  , in this case, two adjacent nodes iv  and 

jv  are in the stable set S , then 1== ji xx  and therefore the 

value ix  will decrease if )(0 xEi  where 0> . 

The following constraint is obtained:  
                   

Joining all of these parametric constraints yields the following:  

              








 00,>0,>

 

A feasible solution could be the following: 

              










=

00,>0,>
 

Finally, the weights and thresholds of the CHN  can be 
calculated using these parameters setting. Then, the 
continuous Hopfield network converges rapidly to a local 
minimum which is sometimes not good. In order to avoid this 
shortcoming, we propose a new approach basing on the 
integration of a linear constraint in the first model (QP) which 
ensures the improvement of the initial solution. 

V. AMELIORATION OF THE CONTINUOUS HOPFIELD 

NETWORK FOR THE MSSP PROBLEM  

Since an analog neural network converges rapidly to 
a local minimum, we can run the network many times starting 
from different initial conditions within a short period of time; 
eventually, we may find a good solution. Unfortunately, this 
cannot be guaranteed; consequently, the solutions obtained are 
sometimes not good. To improve this solution, we integrate a 
linear and simple constraint to the initial quadratic 
programming problem (QP):  

             
0

1=

> vxi

n

i
                                                (7) 

 where 0v  is the value of the QP  problem given by the CHN 

in the first step. 
Then, we obtain the following problem :  
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In order to map the 1QP  problem onto the continuous 

Hopfield network, the inequality (7) must be transformed into 
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an equation through the slack variable [0,1]1nx . In this 

way, the 1QP  problem is stated as:  
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To solve the 1QP  problem via the CHN, we use the energy 

function defined as follows: 
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 By a simple comparison between the equation (2) and the 
equation (8), we obtain:  

 



























)(=

1,...,==

)(=

1,...,=)(==

1,...,=,2=

01

2
011,

01,1,

,,

vni

nii

vnT

nivnTT

njibT

b
n

b
i

nn

inni

jiijji









 
The selection of the parameters  ,  ,  ,   and   must 

give a stable set 1S  which contains more nodes than 0S . But 

for simplicity reasons, the following parameter constraints are 
first assigned:  

 00,0,0,>    

The parameter-setting procedure, which ensures the feasibility 
of the solution, is based on the partial derivatives of the 
generalized energy function: 

}{1,..., ni    
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  • To minimize the objective function, we impose the 
following constraint:  

0>  

 
 • The following constraint is necessary to avoid the stability 
of the interior points:  

           niT ii 1,...,=02=,    

 

 Since the 1QP  problem has two constraints, The partition of 

FC HH   is defined as : 1,11,00,0= WWWHH FC        

• 0}>)({=0,0 xhW , in this case, two adjacent nodes iv  and 

jv  are in the stable set S , then 1== ji xx  and 1=ijb . 

Therefore, the value ix  will decrease if 
 ix

xE )(1

 where 

0> . Then, The following constraint is obtained:  

          )(2 0vn  
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In this case, the slack variable 1nx  must be decreased so that 

the partial derivative 0>
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1
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xE
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constraint is obtained:  
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 • }<)({= 0101=1,1 vxvnxW ni
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i
  . In this case, the 

slack variable 1nx  must be decreased so that the partial 

derivative 0<
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                       00  v  

 
Joining all of these parametric constraints yields the following:  
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These parameters setting are determined by fixing  ,  ,   

and computing the rest of the parameters  ,  and  :   

                     •  2= ,  

                     • 0= v ,  

                     •   3)(2= n .  
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The following theorem prove that the integration of the linear 
constraint ensures the improvement of the solution given by 
CHN in the first step.  
Theorem 1  

Let 10 SandS  be, respectively, the stable set obtained 

by solving the problem QP  and 1QP  using the CHN. We 

have ||<|| 10 SS  

Where || iS  presents the the number of elements in the set 

iS .  

 Proof 

If 0S  presents the stable set associated with the solution 0x  

of the QP  problem, then 
0

1=0 |=| i

n

i
xS  . 

If 1S  presents the stable set associated with the solution 1x  of 

the 1QP  problem, then 
1

1=1 |=| i

n

i
xS  . 

Since 1x  satisfied the constraints of the 1QP  problem, we 

have  

         |>||=| 0
1

1=
1 SxS i

n

i
  

Thus  

                ||>|| 01 SS  

 
Remark 2 
- If the initial solution is a global one, then the set of feasible 

solutions of the 1QP  problem is empty; in this case, the 

algorithm which calculates the equilibrium point converges 
based on the number of iterations. This convergence is 
characterized by the repetition of the unstable point [15]. 
Consequently, we keep the initial solution because it is a 
global one.  
 
- We can repeat this process several times in order to solve the 
max stable set problem. But, we want, only, to improve the 
solution of the maximum stable set problem in a short time. 

VI. COMPUTATIONAL EXPERIMENTS  

        In order to show the practical interest of the approach 
proposed in this paper, we have worked on a series of 
experimentations to solve the max stable set problem. Most of 
the graphs are taken from the 2nd DIMACS Challenge [4]. 
These graphs were contributed as test problems for solving the 
maximum clique problem. For these graphs, we took the 
complement of these graphs and applied our maximum stable 
set approach. the results are supplied in table 1. The CPU time 
was recorded using an IBM compatible PC (Pentium IV, 1.82 
GHz and 512 MB of RAM) running through 

languageJava . 

 
The initial states are randomly generated: 

     w
n

in
xi

510
1

0.999= 
  

Where ni 1,...,=  and w  is a random uniform variable in 

the interval 0.5,0.5][ . 

Recall that, n  is the number of the nodes. 
-In the first step: 

   We choose the parameters 1.0250= , 610=   and 
0.7= ; the parameter   was computed from the equation 

 = . 

  -In the second step: 

We choose the parameters 10.3329= , 410=   and 
4.34001= ; the parameters  ,   and   were computed 

from the equations  2= , 0= v  and 

  3)(2= n    

TABLE I.  NUMERICAL RESULTS 

  Legend of the Table I   
  • - : the repetition of the unstable point.  

  • )(Gi  : the size of the stable set obtained by CHN  in the 

step i .  
   

The result in the theorem 1 is reinforced with the experimental 
results. In fact, the columns five and seven of the table 1 show 

that )(<)( 21 GG   when )()(1 GG   . 

As it is shown in the table 1, our method gives the maximum 
stable set in the first step for some instances graphs, for 

example )(=)(1 fatcfatc   . Finally, the best results 

are obtained by this approach. From theoretical point of view, 

Graph 
 

V  
 

|| E  )(G
 

 CHN1   CHN2 
)(1 G

 

 time(s) )(2 G
 

time
(s) 

brock200-2 200 10024 12 8 0.312 10 0.423 
brock200-3 200 7852 15 10 0.297 11 0.401 
brock400-4 400 20035 33 18 1.250 25 0.378 

C.125.9 125 787 34 32 0.046 34 0.098 
C.250.9 250 3141 44 34 0.047 36 0.108 

c-fat200-1 200 18336 12 12 0.281 - 0.473 
c-fat200-2 200 16665 24 24 0.265 - 0.413 
c-fat200-5 200 11427 58 58 0.125 - 0.272 
DSJC125.1 125 736 34 30 0.125 34 0.212 
DSJC125.5 125 3891 10 9 0.087 10 0.193 
DSJC125.9 125 6961 4 4 0.031 - 0.072 

mann-a9 45 72 16 12 0.0 31 15 0.063 
mann-a27 378 702 126 117 0.656 122 0.732 

gen200-p0.9-44 200 1990 44 31 0.031 33 0.043 
gen400-p0.9-65 400 7980 65 41 0.641 59 0.802 

hamming6-2 64 192 32 32 0.047 - 0.063 
hamming6-4 64 1312 4 3 0.015 4 0.027 
johnson8-2-4 28 186 4 4 0.031 - 0.045 
johnson8-4-4 70 560 14 9 0.047 11 0.063 
johnson16-2-4 120 1620 8 8 0.125 - 0.198 

keller4 171 5100 11 6 0.188 9 0.256 
p-hat300-1 300 33917 8 6 0.688 8 0.931 
p-hat300-2 300 22922 25 22 0.688 24 0.734 
p-hat300-3 300 11460 36 31 0.578 34 0.712 

san200-0.7-2 200 5970 18 12 0.078 16 0.056 
san200-0.9-3 200 1990 44 31 0.015 40 0.021 
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our approach is very powerful, as it can solve the large MSSP 
problems in a short time. 
 

VII. CONCLUSION  

 
In this paper, we have proposed a new approach to 

solve the MSSP problem using the continuous Hopfield 
network (CHN). The proposed method is divided in two steps: 
the first one involves modeling the MSSP problem as a 0-1 
quadratic programming, and solving this model via the CHN 
which gives, rapidly, a local minimum. The second step 
concerns improving the initial solution by adding a linear 
constraint to the first model; then, we use the CHN to solve 
the obtained model. We have proved that the proposed 
approach is able to determine a good solution of the MSSP 
problem. To test the theoretical results, some computational 
experiments solving the MSSP problem were presented. A 
future direction of this research is to apply this approach to 
improve the solution of the Graph Coloring Problem [14] 
given by the CHN; moreover, this method can be generalized 
to improve the solution of the problems which have a 
quadratic objective function. In the upcoming project, we will 
suggest a new reduction to reduce the time used by CHN to 
calculate a solution for an optimization problem. The new 
reduction and the proposed method will be combined to 
improve the CHN solution in a short time. 
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