
Mallikarjuna Shastry et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2064-2070

Selection of a Checkpoint Interval in Coordinated
Checkpointing Protocol for Fault Tolerant

Open MPI

Mallikarjuna Shastry P.M.#1 ,K. Venkatesh#2

#1Sapthagiri College of Engg., #2M. S. Ramaiah Institute of Technology,
 #Affiliated to Vishweshwaraya Technological University,

 Bangalore, Karnataka, India.,

Abstract— The goal of this paper is to address the selection of
efficient checkpoint interval which reduces the total overhead
cost due to the checkpointing and restarting of the applications in
a distributed system environment.

Coordinated checkpointing rollback recovery protocol is used for
making the application programs fault tolerant on a stand-alone
system under no load conditions using BLCR and OPEN MPI at
system level.

 We have presented an experimental study in which we have
used the optimum checkpoint interval determined by an existing
model to compare the performance of coordinated checkpointing
protocol using two types of checkpointing intervals namely fixed
and incremental checkpoint intervals. We measured the
checkpoint cost, rollback cost and total cost of overheads caused
by the above two methods of checkpointing intervals

 Failures are simulated using the Poisson distribution with one
failure per hour and the inter arrival time between the failures
follow exponential distribution.

 We have observed from the results that, rollback overhead and
total cost of overheads due to checkpointing the application are
very high in incremental checkpoint interval method than in
fixed checkpoint interval method.

 Hence, we conclude that fixed checkpointing interval method
is more efficient as it reduces the rollback overhead and also total
cost of overheads considerably.

 Keywords - Checkpoint; Checkpoint Interval; Fault tolerance,
Marker, Checkpoint Overheads.

 I. INTRODUCTION

 Since, the recent trends in HPC and even stand alone
systems employ a very large number of processors to execute
the large size application programs in a distributed system
environment, it is required to provide the fault tolerance to
such applications. As the complexity of the program increases,
the number of processors to be added to the cluster / HPC /
Super Computer also increases which in turn decreases the
MTBF (mean time between failures) of the processors or the
machines. It means that the probability of failure of one or
more processors will be very high before the completion of the

execution of the long running application being executed
parallely on several processors. When a processor fails, we
need to restart the entire application on all the processors from
the beginning. Hence, it is required to address the issues like
the scalability and fault tolerance.

 Fault tolerance provides the reliability and availability to
the large size applications programs executed in a distributed
system environment. Fault tolerance is achieved using
coordinated checkpointing rollback recovery protocol in which
an initiator takes a checkpoint by synchronizing with all other
processes of MPI application [1]. For MPI applications, a
cluster consisting of a group of processes interacting with each
other is formed and each individual process in the cluster is
checkpointed and a global state is formed out of it.

 The global state contains the “set of checkpoints exactly
one from each processor”. The global state is consistent if and
only if for each message received by a processor (receiver),
there is a corresponding sender. The latest consistent global
state is known as the recovery line [2]. The checkpoint / restart
scheme has been widely used in [3]-[9] to address the failure
of execution of an application.

 Checkpoints can be taken using either fixed checkpoint
interval or variable checkpoint interval [10]. In case of fixed
checkpoint interval, checkpoint interval size remains same
between any two successive checkpoints. But, in case of the
incremental checkpoint interval method discussed in this
paper, the second checkpoint interval size is 2 times the 1st one
and third checkpoint interval is 3 times the 1st one and so on in
each cycle.

 A cycle is the execution time interval of the application
between two successive failures. Since, these two methods of
checkpoint intervals are not compared in the literature as we
understand; we have carried out an experiment to determine
the behavior of the coordinated checkpointing protocol using
the fixed and incremental checkpoint interval methods.

 The rest of the paper is organized as follows. Section 2
introduces the related works carried out in checkpoint and
restart schemes using different checkpoint intervals. Section 3

ISSN : 0975-3397 2064

Mallikarjuna Shastry et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2064-2070

presents the different notations used in this paper. The
implementation of the coordinated checkpointing protocol,
description of fixed and incremental checkpoint intervals are
discussed in section 4. Computation of cost of overheads is
discussed in section 5. Section 6 presents the experimental
setup and results. Section 7 presents the conclusion.

II. RELATED WORKS

 Young [5] has presented an optimum checkpoint and
restart model and has shown that the total waste time due to
checkpointing can be reduced using fixed checkpoint interval.
But, this model [5] does not consider the restart time required
to resume the application from the most recent checkpoint
after a failure.

 An optimal checkpoint / restart model presented by
Yudun liu [11] uses varying checkpoint interval with different
failure distributions. But, varying checkpoint interval does not
yield optimal rollback and checkpoint cost. R. Geist et. Al [12]
discusses the selection of checkpoint interval in a critical task
environment, but it does not present any optimal solution for
selecting the checkpoint interval.

 J.T. Daly [6], [9] presents a method for determining the
optimum checkpoint interval but they do not discuss the
comparison of the performance of the coordinated
checkpointing protocol with respect to fixed and incremental
checkpointing interval methods.

III. NOTATIONS USED

1. Rbi - the cost of rollback in ith cycle.
2. Rb - total rollback cost.
3. R - restart time required to resume the execution of

an application from the most recent checkpoint.
4. F - the number of failures during the execution of the

application.
5. TS - time required to save each checkpoint on to a

local disk.
6. Ni - the number of checkpoints taken in ith cycle.
7. Ci - starting time of ith checkpoint.
8. TC - optimum checkpoint interval size and is used as

fixed checkpoint interval.
9. TCi– i

th checkpoint interval which is incremental.
10. CCi - the cost of checkpoints in ith cycle.
11. CC – total cost of checkpoints
12. P - the number of processes / processors used for

parallelism.
13.  – Number of failures per hour.
14. TF – time to failure.
15. Ti - the time at which the ith failure occurs.

IV. IMPLEMENTATION OF COORDINATED

CHECKPOINTING PROTOCOL

A. Protocol

 Master MPI process with rank i=0 takes the tentative
checkpoint and then sends the marker to MPI process with
rank (i+1) % N. When MPI process i > 0 receives the marker
from (i + N-1) % N, takes its tentative checkpoint and sends
the marker to MPI process with rank (i + 1) % N.

 When the MPI process with rank 0 receives the marker
from MPI process N-1, a global consistent checkpoint is
formed out of all the local checkpoints and then sends the
checkpoint file to the local disk and then initiates the next
checkpoint cycle after the checkpoint interval as specified by
the user. The checkpoint period can be either fixed or
incremental which will be discussed in the following
subsections

B. Optimal Checkpoint Interval

 Knowing the number of processors (P) used for
computation and the failure rate () of the processors, we can
compute the time to failure [14] of the application during run
time as follows.

)1()(/1 PT F 

 Once, we determine the time to failure TF and the
checkpoint overhead TS (time required to save each
checkpoint onto local disk), the checkpoint interval TC can
be computed [5] as follows.

)2(2 FSC TTT 

 The equation (2) is obtained by using second order
approximation for exponential distribution [5]. We have used
the equation (2) to compare the two different checkpoint
interval methods as discussed in the subsequent sections.

C. Fixed Checkpoint Interval

 The total execution time of the application program is
divided into n checkpoint intervals of length TC as computed
in the previous section. The first checkpoint is initiated by the
master MPI process after completion of Tc minutes of
execution of the application program and second checkpoint
is initiated after completion of 2 TC + TS minutes and so on as
shown in figure 1.

 In general, the starting time of ith checkpoint Ci is
computed as follows.

)3()1(SCi TiTiC 
But, the length of each checkpoint interval is fixed.

 In general TCi = TC

ISSN : 0975-3397 2065

Mallikarjuna Shastry et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2064-2070

 C1 C2 CNi

 TC TS TC TS TS

Fig. 1 Fixed Checkpoint Interval

D. Incremental Checkpoint Interval

 Figure 2 shows the checkpointing of the application with
an incremental checkpoint interval. In this case, in each cycle,
the first checkpoint is initiated after (Tc1) or TC minutes of
execution of the application and second checkpoint is initiated
after TC1 + TC2 + TS minutes and the third checkpoint is
initiated after TC1 + TC2 + TC3 + 2TS and so on as shown in
figure 2.

 In general the starting time of ith checkpoint Ci is computed
as follows.

)4()1(
1




i

k
SCKi TiTC

 And the ith checkpoint interval is computed as follows.

)5(CiC TiT 

V. COST OF OVERHEADS DUE TO CHECKPOINTING AND

RESTARTING

 During recovery from failure, the master MPI process
coordinates with all the other MPI processes and restarts by
rolling back the application to the most recent consistent
global checkpoint. The cost of rollback, cost of checkpointing
and the restart cost are the 3 components which are used to
determine the waste time in each cycle of the application. If
the application undergoes F failures, the execution of the
application will have F cycles. We present in the following
sections the determination of these costs using two different
methods of checkpoint intervals such as fixed and incremental
checkpoint intervals.

A. Cost of Overheads in Fixed Checkpoint Interval

 Failure of a fault tolerant application using fixed
checkpoint interval is shown in figure 3. Since, all the
checkpoint intervals have same length; the number of
checkpoints to be taken in ith cycle (before ith failure occurs) is
computed as follows.

 C1 C2 CNi

 TC1 TS TC2 TS TS

Fig. 2 Incremental Checkpoint Interval

 )6()(/ SCii TTTN 

 Then, the cost of checkpoint in ith cycle is computed as
follows.

)7(Sii TNCC 

 The cost of rollback in ith cycle is then computed as follows

)8())((SCiii TTNTRb 

 The time lost in ith cycle TLi due to a failure can be obtained
by adding checkpoint cost, rollback cost, restart cost together
as follows.

)9(RRbCCTL iii 

 The total waste time due to F failures is then computed as
follows.





F

i
iTLTL

1

)10(

 Suppose, if the first failure occurs at 40 minutes of
execution and checkpoint interval size TC is 4 minutes, time to
save a checkpoint is 35 seconds and number of checkpoints
taken before failure occurs is 8, The different overhead costs
are determined as follows.

i) Rollback cost: By applying equation (8), we can determine
the rollback cost as follows.
Rb1 = (2400 – 8 * (240 +35)) = 200 seconds

ii) Checkpoint cost (CC1) = 8 checkpoints * cost of each
checkpoint = 8 * 35 = 280 seconds

iii) It was found from the experimental setup that the time
required to restart an application after a failure is just about 24
seconds. So, the total time lost due to a failure of application
in fixed checkpoint interval case after first failure is

TL1 =cost of rollback (200 seconds) + cost of checkpoints (280
seconds) + restart cost (24 seconds) = 504 seconds (about 21
% of execution time of 1st cycle is wasted due to
checkpointing, rollback and restart). It was observed that, the
cost of rollback is dependent on the amount of time elapsed
since the last checkpoint.

 Time required to restart Restart

 Application Failure

 C1 C2 CNi

 TC TS TC TS TS TC

 Execution time till a failure (Ti)

Cycle i

Fig. 3 Cost of Overheads in Fixed Checkpoint Interval

ISSN : 0975-3397 2066

Mallikarjuna Shastry et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2064-2070

B. Cost of Overheads in Incremental Checkpoint Interval

 Failure of a fault tolerant application using incremental
checkpoint interval is shown in figure 4. In this, method, size
of first checkpoint interval is TC minutes and size of other
checkpoint intervals is TC minutes more than its previous
checkpoint interval in each cycle. Hence, the number of
checkpoints (Ni) to be taken in ith cycle will vary in this
method and it is computed as follows.

)11(0),(.. 111  NTTTifa SC

Fiforandnfor

TnTKT

andTTnTKifb

n

k
sCi

i

n

k
SC

..,3,2,1..,3,2,1

)12())1((

)(..

1

1

1
















 The number of checkpoints to be taken in ith cycle can be
computed as follows.

)13(nNi 

 Though, the checkpoint interval length keeps increasing,
from one checkpoint to another checkpoint, the per checkpoint
cost remains same as per the experimental results that we have
obtained. So, the total checkpoint cost in ith cycle can be
computed as follows.

)14(Sii TNCC 

The cost of rollback in ith cycle is then computed as follows.

)15())((
1




n

k
CSiii TKTNTRb

 The time lost in ith cycle TLi due to a failure can be
obtained by adding checkpoint cost, rollback cost, and restart
cost together using equation (9). Total waste time due to F
failures is computed using equation (10). It was observed that,
the cost of rollback depends on two factors like the time of
failure and the checkpoint interval size. This is because, in this
method, the checkpoint interval size varies from one
checkpoint to another checkpoint. Suppose, if the first failure
occurs at 40 minutes of execution and initial checkpoint
interval TC is 4 minutes,2nd checkpoint interval is 8 minutes
and 3rd checkpoint interval is 12 minutes and the 4th
checkpoint interval is 16 minutes (during which the failure
occurs), time to save a checkpoint is 35 seconds and number
of checkpoints taken before failure occurs is 3 after applying
the equation (12) and (13). Then, the different overhead costs
are determined as follows.

i) rollback cost : after applying the equation (15), we get
Rb1 =(2400 – (105 + 1440)) = 855 seconds
ii) checkpoint cost is (CC1) = 3 checkpoints * cost of each
checkpoint=3*35 = 105 seconds

 Time required to restart
 Restart

 Application Failure

 C1 C2 CNi

 TC1 TS TC2 TS TS TCNi

 Execution time till a failure (Ti)

 Cycle i

FIG. 4 COST OF OVERHEADS IN INCREMENTAL CHECKPOINT INTERVAL

iii) and it was found from the experimental setup that the time
required to restart an application after a failure is just about 24
seconds.

So, the total time lost due to a failure of application in
incremental checkpoint interval case is

TL1 =cost of rollback + cost of checkpoints + restart cost
 = 984 seconds

(41 % of execution time of 1st cycle is wasted due to
checkpointing, rollback and restart).

VI. EXPERIMENTAL SET-UP AND RESULTS

 We have taken the application program that multiplies 2
integer matrices of size 7000 * 7000. The above application is
written in C language and run on a standalone system using
scattered method of MPI under no load conditions.

 In scattered method, one of the matrices, say the matrix B
is broadcasted across all the processors using MPI_Bcast(). The
matrix A is divided equally among the number of processors
used for parallelism and each of the processors gets only a
portion of matrix A allocated for it for the computation using
MPI_Scatter().

 The above application was run on a system with 6 GB of
RAM, Intel ® Core ™ 2 Duo CPU,E7200 @ 2.53 GHz and
110 GB of HDD and the execution time of the application
considered in our experimental setup on this system is 67
minutes without checkpointing.

 The monitor program is written in a shell script which runs
at the background and keeps monitoring whether the MPI
processes grouped under mpirun are running or not. Once,
monitor program learns that an MPI process has failed, it calls
the restart() routine of BLCR to restart the application.

 During the restart or recovery state, the MPI application
rolls back to the most recent checkpoint as discussed and
resumes the execution of the application from that point.

BLCR checkpoint and restart library [13] is used to
implement the blocking coordinated checkpointing protocol to
checkpoint the application. The application was run 10 times
for different number of processors varying from 1 to 10. We
observed that the checkpoint cost and the restart cost increase
linearly with the increase in the number of processors.

ISSN : 0975-3397 2067

Mallikarjuna Shastry et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2064-2070

The results obtained for 10 processors are presented in this

paper. The number of arrivals N (t) in a finite interval of length
t obeys the Poisson (גt) distribution.

!/)(})({ netntNP tn  

The inter arrival times of the failures are independent and
obey the exponential distribution.

otherwise

xforexf x

,0

0)(



  

We have used Poisson distribution with 1 failure per hour
(λ = 1) for 10 processors and generated the probability
distributions for the inter arrival times of failures. Failures are
simulated using these probability distributions and the results
are presented in the form of graphs.

Figures 5a and 5b present the comparison of total cost of all
the overheads due to checkpointing and restarting of the
application with different checkpoint interval sizes when the
application considered in our experimental setup fails at
different timings.

We have tested for 10 different failures (whose failure
timings are generated using Poisson arrival process) and
determined the total cost of overheads incurred due to
checkpointing and restarting using 5 different checkpoint
intervals of size 2,3,4,5 and 10 minutes as shown in figures 5a)
and 5b). In 7 different cases out of 10 failures at different
timings, checkpoint interval size with 4 minutes was found to
be optimal as it yields minimum total cost of all the overheads
as shown in figures 5a and 5b when the application fails at
10,15,20,42,47,50 and 60 minutes of execution of the
application.

 From our experiment, we determined that, per checkpoint
cost TS is 35 seconds for 10 processors and it remains same for
all the other checkpoints taken at different timings for the
same number of processors. Per checkpoint cost is determined
by taking the average value of checkpointing the application at
20 different timings on 10 processors.

 Restart cost is found to be only 24 seconds to resume the
execution of the application on 10 processors after a failure
occurs. This restart cost is determined by taking the average of
20 different restart costs measured when the application failed
at different timings.

 We have used the equations (1) and (2) to determine the
optimum checkpoint interval size when the time to failure TF
and checkpoint cost TS are known. The value of TC obtained
from equation (2) shows that the optimum checkpoint interval
size is 2.64 minutes as shown below.

TF = 1 / (P * λ) = 1 / (10 * (1/60)) minutes = 6 minutes
and TC = sqrt (2 TS TF)
 = sqrt(2 * (35 /60) * 6) = 2.64 minutes

This checkpoint interval value is almost matching with the

optimum checkpoint interval of 4 minutes obtained from the

figures 5a) and 5b) based on our experimental results. The
value of TC calculated should yield almost the exact result, if
the value of TF is quite large in which case R << TF. Hence,
the equations (1), (2) and (3) are validated based on our
experimental results and discussion.

 As, we have obtained 4 minutes as the optimum checkpoint
interval size from our experimental analysis, in our further
analysis and discussion (figures 6 to 9), fixed checkpoint
interval size taken is 4 minutes and in incremental checkpoint
interval method, the first checkpoint interval size taken is 4
minutes, second checkpoint interval size taken is 8 minutes and
third checkpoint interval size is 12 minutes and so on.

We have presented the results in the form of graphs for one
failure in an hour with  = 1 using Poisson distribution for
arrival of failures. Figure 6 presents the comparison of number
of checkpoints taken in fixed and incremental checkpoint
interval methods. Figures 7, 8, and 9 present the comparison of
i) cost of checkpoints, ii) cost of rollback and iii) total cost of
overheads caused by fixed and incremental checkpoint interval
methods respectively.

Fig 5a. Comparison of Total Cost of Overheads with Different
Checkpoint Interval Size.

Fig 5b. Comparison of Total Cost of Overheads with Different Checkpoint

Interval Size.

Comparison of Total Cost of Overheads with Different
Checkpoint Interval Size

0

100

200

300

400

500

600

700

10 12 15 20 30

T
ot

al
 C

os
t

 (
S

ec
)

2 Min. 3 Min. 4 Min. 5 Min. 10 Min.

Comparison of total cost of overheads with different
Checkpoint Interval Size

0
100
200
300
400
500
600
700
800
900

34 42 47 50 60

T
ot

al
 C

os
t

 (
S

ec
)

2 Min. 3 Min. 4 Min. 5 Min. 10 Min.

Failure Time (Min)

Failure Time (Min)

ISSN : 0975-3397 2068

Mallikarjuna Shastry et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2064-2070

Fig 6. Comparison of Number of Checkpoints of Fixed and Incremental
Checkpoint Intervals

Fig 7. Comparison of Checkpoint Cost of Fixed and Incremental
Checkpoint Intervals

Fig 8. Comparison of Rollback Cost of Fixed and Incremental Checkpoint

Intervals

Fig 9. Comparison of Total Cost of overheads caused by Fixed and
Incremental Checkpoint Intervals

VII. CONCLUSIONS

 Figures 5a and 5b show the comparison of total cost of
overheads with different checkpoint interval size. From figures
5a and 5b, it is clear that the total cost of overheads is quite
minimum when checkpoint interval size is 4 minutes. We
have even validated the model developed by Young [5] to
determine the optimum checkpoint interval.

 An approximate estimate of the checkpoint interval can be
calculated from equation (2). From figure 6, we see that the
fixed checkpoint interval method causes more number of
checkpoints than incremental checkpoint interval method. So,
the checkpoint cost is also quite high in fixed checkpoint
interval method as compared to the incremental checkpoint
interval method when the application fails after first
checkpoint as shown in figure 7.

But, the rollback cost and the total cost of overheads
produced by fixed checkpoint interval are quite low as
compared to the incremental checkpoint interval when the
application fails after first checkpoint as shown in figure 8 and
figure 9 respectively. Fixed checkpoint interval reduces more
than 50% of total overhead cost as compared to the incremental
checkpoint interval.

Hence, we conclude that using fixed checkpoint interval for
checkpointing an application would be more advantageous than
using incremental checkpoint interval because fixed checkpoint
interval reduces both rollback cost and the total cost of
overheads significantly.

ACKNOWLEDGMENT

 The authors thank the Head of Research Centre, CSE dept.
and head of ISE dept M.S Ramaiah Institute of Technology,
Bangalore for their constant encouragement. The Computer
system acquired under the project sanctioned by BRNS,
INDIA, bearing sanction No. 2008/37/15/BRNS, has been
used to carry out our experimental work.

0

100

200

300

400

500

5 10 15 20 25 30 35 40 45 50 55 60

Failure Time (Min)

C
he

ck
po

in
t C

os
t

(S
ec

)

Fixed Incremental

Comparison of Checkpoint Cost

Comparison of Number of Checkpoints

0
2
4
6
8

10
12
14

5 10 15 20 25 30 35 40 45 50 55 60

N
um

be
r

of
 C

he
ck

po
in

ts

Fixed Incremental

Failure Time (Min)

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40 45 50 55 60

Failure time (Min)

R
ol

lb
ac

k
C

os
t (

 S
ec

)

Fixed Incremental

Comparison of Rollback Cost

Comparison of Total Cost

0

200

400

600

800

1000

1200

1400

5 10 15 20 25 30 35 40 45 50 55 60

Failure Time (Min)

T
ot

al
 C

os
t

(S
ec

)

Fixed Incremental

ISSN : 0975-3397 2069

Mallikarjuna Shastry et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2064-2070

 REFERENCES

[1] Luis Moura Silva and Joao Gabriel Silva, “The Performance of
Coordinated and Independent Checkpointing”, IEEE Trans, 1999.

[2] G.E. Fagg, A. Bukovsky and J.J. Dongarra, “Harness and Fault
Tolerant MPI”, Parallel Computing, 27(11):1479-1495, 2001.

[3. K.M. Chandy, “A survey of analytic models of roll-back and
recovery strategies,” Computer 8, 5 (May 1975), 40-47.

[4]. K.M. Chandy, J.C. Browne, C. W. Dissly, and W. R. Uhrig,
“Analytic models for rollback and recovery stratagems in data base
systems,” IEEE Trans Software Engg. SE-1, (March 1975), 100-
110

[5] J.W. Young, “A first order approximation to the optimum
checkpoint interval,” Communications of ACM 17, 9(Sept 1974),
530-531.

 [6] J.T.Daly, “A Higher Order Estimate of the Optimum Checkpoint
Interval for Restart Dumps,” Future Generation Computer Systems
[Elsevier], Amsterdam, 2004.

[7] E. Elnozahy, J. Plank, “Checkpointing for Peta Scale Systems: A
Look into the Future of Practical Rollback-Recovery,” IEEE Trans.
Dependable Sec. Comput.1 (2):97-108(2004).

 [8] M.Treaster, “A survey of fault-tolerance and fault-recovery
techniques in parallel systems, “Technical Report cs.DC /
0501002, ACM computing Research Repository (CoRR), January
2005.

[9] J. T. Daly, “A Model for Predicting the Optimum Checkpoint
Interval for Restart Dumps,” ICCS 2003, LNCS 2660, Proceedings
4 (2003) 3-12.

[10] Yudun Liu, Raja Nassar, Chokchai (box) Leangsuksum,
Nichamon Naksinehaboon, Mihaels Paun, Stephen L. Scott, “An
Optimal Checkpoint /Restart Model for a Large Scale High
Performance Computing System,” IEEE Trans. 2008.

[11] Y. Liu, “Reliability Aware Optimal Checkpoint / Restart Model in
High Performance Computing, PhD Thesis,” Louisiana Tech
university, Ruston, LA, USA, May-2007.

[12] R. Geist, R. Reynolds, and J. Westall,” Selection of a checkpoint
interval in a critical-task environment,” IEEE Trans. Reliability,
37, (4), 395-400 (1988).

[13] H. Paul Hargrove and C. Jason Duell, “Berkeley lab checkpoint /
restart (BLCR) for Linux clusters”, Journal of Physics, Conference
series 46 (2006), 494-499, SciDAC 2006.

[14] James S. Plank and MichG.Thomason, “The Average Availability
of Parallel Checkpointing Systems and Its Importance in Selecting
Runtime Parameters”,29th Internatioonal symposium on Fault
Tolerant Computing , Madison WI, Jun-1999, pg 250-259.

AUTHORS PROFILE

MR. Mallikarjuna Shastry P.M has received his B.E. and
M.Tech in Computer Science and Engineering from Karnataka
University Dharwar, and Vishweshwaraiah Technological
University, Belgaum, Karnataka, India respectively. He is
currently pursuing Ph.D on “Analysis of Fault Tolerant
Methods and Performance Evaluation in Distributed Systems “
under the guidance of Prof. Dr. K.Venkatesh at M.S.Ramaiah
Institute of Technology, Bangalore-54, Karnataka, India. He is
working as a Professor in the department of Computer Science
and Engg. at Sapthagiri College of Engg, Bangalore,
Karnataka, India. He has totally 18 years of teaching
experience in Computer Science and Engg.

Prof. Dr. K. Venkatesh has received his M.Sc. in Physics from
Mysore University in 1973 and MS from BITS Pilani in 2001
respectively. He has received Ph.D in 1980 from Mysore
University. He is currently working as a professor at
M.S.Ramaiah Institute of Technology, Bangalore-54 and has
totally 30 years of teaching experience.

ISSN : 0975-3397 2070

