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Abstract : Elliptic curve cryptography plays a crucial role in 
networking and communication security. ECC  have evolved in the 
recent past as an important alternative to established systems like 
RSA. This paper describes the implementation of an elliptic curve 
coprocessor based on the  FPGA , which can provide a significant 
speedup for these cryptosystems. The FPGA configuration file is 
synthesized from VHDL code applying different hardware 
synthesis products. The implementation of ECC lies in three 
levels: scalar multiplication, point addition/doubling and finite 
field modular arithmetic. In this paper, we present a novel fast 
architecture for the point addition/doubling level in the projective 
coordinate. The proposed Architecture is based on Binary Field. 
The Design performs multiplication using Polynomial Basis. 
Analysis shows that, with reasonable hardware overhead, our 
architecture can achieve a high speedup  for the point addition 
operation and point Doubling operation.Furthermore, the 
architecture is parameterized for different data widths to evaluate 
the optimal resource utilization. 
Key words: FPGA, Elliptic curve cryptography, modular arithmetic, 
projective co-ordinates. 

 
1.INTRODUCTION 

 
Digital communication networks, like the Internet, are 

incorporated today in many applications that require secure 
connections. Channels in these networks are often public, i.e. 
eavesdropping or altering of the transmitted data can not be 
prevented. Cryptosystems ensure the detection of altered data 
and prevent the extraction of information from eavesdropped 
data by unauthorized parties. In order to make security 
requiring applications economically feasible, it is necessary to 
implement efficient cryptosystems.  

Modern cryptosystems fall in one of two categories: 
symmetric and asymmetric or public key cryptosystems. In 
symmetric cryptosystems a single key is used for both, the 
encryption and the decryption process. This implies that the key 
must be known by both communicating parties and thus must 
already have been transmitted through some secure channel. All 
communication must be planned beforehand. Spontaneous 
secure communication, which is necessary in many 
applications (for example online shopping) is not possible. The 
most expensive operation applied in elliptic curve based 
cryptosystems is the “multiplication” of a large natural  number 

with a point on an elliptic curve. The coprocessor presented in 
this paper is an elliptic curve multiplier that speeds up the 
multiplication operation significantly in comparison to a purely 
software based implementation. 
 
2.ECC-NEXT GENERATION OF PKC 
  

ECC is much stronger per bit than RSA and is less 
computationally intensive. Elliptic curve cryptography plays a 
crucial role in networking and communication security. Elliptic 
Curve Cryptography (ECC) is a Public Key Cryptography. In 
Public Key Cryptography each user or the device taking part in 
the communication generally have a pair of keys, a public key 
and a private key, and a set of operations associated with the 
keys to do the cryptographic operations. Only the particular 
user knows the private key whereas the public key is distributed 
to all users taking part in the communication. 

 
  ECC is defined over the elliptic curve  

ଶݕ  ൌ ଷ ݔ ݔܽ  ܾ            

 Where    4ܽଷ  27ܾଶ  ് 0 

   Each value of the ‘a’ and ‘b’ gives a different elliptic 
curve. All points (x, y) which satisfies the above equation plus 
a point at infinity lies on the elliptic curve. The public key is a 
point in the curve and the private key is a random number. The 
advantages of ECC are 
 
 *It offers greater security for given key    
  size. 
 
 *The smaller key size also makes possible much more compact 
implementations for a given level of security. 
 
2.1 Elliptic Curve  DISCRETE LOGARITHM PROBLEM 

 
        The security of  ECC relies on the difficulty of 
solving the Elliptic Curve Discrete Logarithm Problem 
(ECDLP), i.e. finding k, given P and Q = kP.  The problem  is  
computationally  intractable for large values of k.  
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2.2 ECC  ARITHMETIC 
 
Elliptic curves are a good candidate for the additive 

group. Elliptic curves have been used for Public Key 
Cryptography. It is believed that Elliptic Curve Cryptography is 
more efficient than other Public Key Cryptography such as 
RSA  in terms of the key length. Finite field is also called 
Galois Field, it means a field that contains finite number of 
elements. Binary field is more efficient for the hardware 
implementation. Therefore, we use binary field in this work. An 
elliptic curve is defined in a standard two dimensional (x,y) 
Cartesian coordinate system by an equation of the form: 

ଶݕ  ൌ ଷ ݔ ݔܽ  ܾ            
 
An elliptic curve is used to define the members of the 

set over which the group is calculated as well as the operation 
between them which define how mathematical operations 
works in the group. A non-super singular curve over Galois 
fields with characteristic two is defined as:  

 
ଶݕ  ݕݔ ൌ ଷ ݔ  ଶݔܽ  ܾ  ---- (1) 

this equation together with a point at infinity  O forms an 
elliptic curve where  a,b belongs to GF(2n ) and b ≠ 0.The set 
GF(2n) forms an additive Abelian group, which is based on the 
following definitions 
 with       ܲ ൌ ሺݔଵ, ܳ  , ଵሻݕ ൌ ሺݔଶ ,  ଶሻݕ
and    ܲ ്  േܳ 
 
Identity: ܲ  O ൌ  O  P ൌ P  
 
Negation:   For ܲ ്  O , െܲ ൌ ሺݔଵ, ଵݔ   ଵሻݕ
 
PointAddition:  

P+Q=R=(x3,y3)  

where (x3,y3) belongs to GF(2n), 

ଷ  ൌݔ ଶߣ   ߣ  ଵݔ  ଶݔ  ܽ  

ଷݕ ൌ ଵݔሺߣ  ଷሻݔ  ଷݔ    ଵ       withݕ

ߣ            ൌ  ሺ௬భା௬మ ሻ

ሺ௫భା௫మሻ
 

Point Doubling:   

2P=R=( x3, y3)  

where (x3,y3) belongs to GF(2n), 

ଷݔ ൌ ଶߣ
  ߣ ܽ ൌ ଵݔ

ଶ 
ܾ

ଵݔ
ଶ 

ଷݕ ൌ ଷݔ
ଶ  ଷݔߣ   with         ,ݔ

ߣ ൌ ଵݔ 
ଵݕ

ଵݔ
 

2.3 Co- ordinates in ECC 
 

 Affine coordinate 
Affine coordinate representation can help reduce 

network bandwidth and memory space for transmission and 
storage. On the other hand, performing ECSM (Elliptic Curve 
Scalar Multiplication) in affine coordinate involves a large 
number of finite field inversion operations. The standard 
formulae for adding two points on an elliptic curve with the 
affine coordinates require 1 inverse operation which is costly in 
the fields of order 2163. The cost ratio of inversion to 
multiplication is more than 8. Since inversion is costly in 
hardware we will consider an alternate point representation. 
This can be done if the elliptic curves are considered with 
projective coordinates. 

Projective Coordinate 

In Projective Coordinate, more efficient ECSM 
algorithms do not involve any finite field inversion operations. 
Therefore, almost all of the recent hardware implementations of 
ECSM are in the projective coordinate.  A projective plane of 
the fixed exponential integers (α,ß) over GF(2n) is defined by 
creating an equivalence relation of the triples(x,y,z)~(X,Y,Z) if 
there exists λ є GF(2n), and λ≠ 0 such that we have 
(x,y,z)=(λαX, λßY,λZ).  

Every point (x,y) on the affine coordinate can be 
mapped to the projective plane with ф: (x,y)→(x,y,1). From the 
above definition, every equivalent class of the triples on the 
projective plane(X,Y,Z),Z≠0 can be mapped back to the affine 
point by x=X/Zα and y=Y/Zß.  Currently, there are three popular 
projective coordinates applied to the ECC system, which are 
a) The Homogenous projective coordinate with α =1 and ß =1 
b)The Jacobian coordinate with α =1 and ß =3 
c)The Lopez Dahab projective   
coordinate with α =1 and ß =2 
In the third case, x=X/Z and y=Y/Z2.  

Projective versus Affine 

The projective and affine implementations share the 
same hardware design and hence occupy the same circuit area. 
The total number of cycles required for an elliptic curve 
multiplication and the execution time required for an elliptic 
curve multiplication at the maximum frequency reduces for 
projective coordinates when compared to affine coordinates.  
The implementation using projective coordinates is always 
faster than using affine coordinates. 
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2.4 Elliptic Arithmetic 

 

 

 

 

 

Fig 1. Arithmetic Hierarchy 

The elliptic curve operations are performed at three 
different layers. The top layer computation of ECC is the scalar 
multiplication, which is based on the point addition and point 
doubling operations. In the middle layer is the point addition 
and point doubling which are denoted as ECC-ADD and ECC-
DOUBLE respectively. At the bottom layer is the finite field 
operations, which include finite field multiplication, finite field 
addition, finite field squaring, and finite field inverse 
operations. 

 
3. Point multiplication 

The core operation in ECC is point multiplication k*P, 
where k is an integer, P is a point on the curve. A single point 
multiplication requires multiple computations of point addition 
(P≠Q) and point doubling(P=Q). The standard method for point 
multiplication is the double and add algorithm. The algorithm is 
as follows: 

 
 1.k is an integer such that k=(kl, kl-1….,  
     k1, k0) is the binary representation of  
     k with most significant bit kl=1.  
 
 2.Copy original point to temporary  
     variable: temp←P.   
 3.For index from (l-1) down to 0 do: 
    a)DOUBLE: temp←temp+temp 
    b) If kindex =1, then also ADD:    
       temp←temp+P 
  4.  Return temp which contains k*P. 

 
This method requires l doublings and wk-1 additions 

where wk is the binary representation of k. It is possible to 
provide an exact count for the number of operations necessary 
to realize point doubling and point addition.  

We can see that saving the inversion required for 
affine coordinate comes at the cost of more multiplications. 
Since the number of multiplications has increased, the designer 
is forced to use more temporary registers for the intermediate 
values as more data dependencies are present. 

 
 4.Lopez-Dahab point     arithmetic 

In the Lopez-Dahab projective coordinate, the point 
(X, Y,Z) (Z≠0) is corresponding to the point (X/Z, Y/Z2) in the 

affine coordinate, and the elliptic curve equation is transformed 
into the following form: 

ܻଶ  ܻܼܺ ൌ  ܺଷܼ  ܽܺଶܼଶ  ܾ ܼସ 
The point addition formula that does not involve the inversion 
operation can be derived by converting the point to affine 
projective as    x = X/Z and y = Y/Z2  at first, then adding the 
affine points with the general equation for point addition, and 
finally clearing the denominators. Similarly, the L-D point 
doubling equation can be derived. 
 
4.1  Lopez-Dahab Algorithm 

        Consider two distinct point P=(X1, Y1, 1) and 
Q=(X0, Y0, Z0) on the elliptic curve, the result 

 R=(X2, Y2, Z2) = P+Q  
A.Point Addition Algorithm 

1.A   ←X1Z0        12.A  ← A.D 
2.B  ← X1+A          13.B ←  A+B 
3.A ←  Z0

2        14.D   ←D2 

4.C  ← a.A        15.B ←  B+D(X2) 
5.A ←  Y1.A            16.F  ← X1.E  
6.D ←  Y0+A        17.G ←  Y1.E 
7.A ←   B.Z0              18.F  ← B+F  
8.B  ← B2        19.G  ← B+G 
9.C  ←  A+C        20.F ←   A.F 
10.B  ← B.C        21.G ←  E.G 
11.E ←  A2(Z2)        22.D ←   F+G(Y2) 
 
B.Point Doubling Algorithm 

Consider a point Q=(X1,Y1, Z1) on the elliptic curve, 
the result R=(X2,Y2,Z2)= 2Q  
1. A  ← Z1

2                   8. D  ← Y1
2 

 2. B ←  c.A          9. E ←   a.A  
 3. B ←  B2         10. D ←  D+E 
 4. C ←  X1

2         11. D ←  D+B 
5. A ←  A.C(Z2)          12. D←   C.D 
 6. C ←  C2         13. B ←  A.B 
 7. C   ←C+B(X2)        14. D  ← B+D(Y2) 

The algorithms discussed above when implemented in 
a Sequential way have the advantage  that the number of finite 
field arithmetic modules can be reduced to minimum (like only 
one adder, one multiplier and one squaring unit are needed for 
point addition and doubling). 

Though the number of arithmetic modules is reduced, 
such designs introduce long latency (difference in the 
availability of the first output data in the pipelined system and 
the sequential system). The latency of the point doubling is 
5TM+5TS+4TA, and the latency of the point addition is 10TM 
+4TS +8TA, where TM, TS, TA denote the latency of the finite 
field multiplier, squaring unit, and adder respectively), which is 
not desirable for the applications where high-speed ECC 
implementation is required. 
5.Parallel Architecture 
 

A popular approach to increase the processing speed 
and to reduce the latency is to apply the parallel processing 

Scalar multiplication kP 

ECC-ADD ECC-DOUBLE 

FF-Add FF-
Multiply 

FF-
Square 

FF-
Inverse 

Layer 

Layer 

Layer 
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technique. By introducing more processing units that can 
operate in parallel, the results can be obtained much faster. In 
parallel processing multiple outputs are computed in parallel in 
a clock period.  

Effective sampling period is increased by the level of 
parallelism. Parallel processing can also be used to reduce the 
power consumption. Parallel processing increases the sampling 
rate by replicating hardware so that several inputs can be 
processed in parallel and several outputs can be produced at the 
same time. 

5.1 Parallel architecture for Point Addition 

The latency for Point Addition is calculated as 
4TM+6TA  , where TM, TA denote the latency of the finite field 
multiplier and adder respectively. The total latency ratio of the 
serial architecture of Point Addition over the Parallel Point 
Addition architecture is        (10r1+4r2+8)/ (4r1+6) =2.52 (when 
r1=15 and r2=2) which is the speedup achieved by using the 
parallel architecture for Point Addition. 

 From the  architecture shown in Fig 2 there are 10 
multipliers, 4 squaring units and 8 adders are used. But 4 
multipliers 1 squaring unit and 2 adders are working in parallel. 
So the modules for multipliers, squaring units and adders are 
reduced. For an efficient L-D coordinate design we can delay 
the addition in step 19 by TA which means Step 19 starts after 
Step 18 completes. In this way, only one finite field adder is 
needed. Thus, the total latency is increased by TA .But  GF(2n) 
adder is a number of XOR gates in parallel, whose latency is 
very small, the         rescheduling discussed above becomes 
meaningful. We can reduce the number of multipliers from 4 to 
2.This method is to advance the multiplication of Step 1 by 
TM−TS, which makes Step 1 complete before Steps 4 and 5 
begin. Also, we need to delay the multiplications of Steps 16 
and 17 so that they start after the completion of Step 10.  

For such a modified architecture, at most two 
multipliers are working in parallel at any time instance. 
Thereby, the total number of multipliers is reduced to two. And 
the total latency becomes 6TM+4TA, which offers another trade-
off between the area and speed. When r1=15 and r2=2, the 
speedup achieved. 
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Fig 2. Parallel Architecture for Point Addition 

 

5.2 Parallel architecture for Point Doubling 
In Fig.3, the parallel architecture of the Lopez-Dahab 

point doubling algorithm is shown. We can see the total latency 
required to compute Y2  is  3TM+ TS+3 TA.   

Assume the timing cost ratio of TM to TA is r1 (usually 
around 15), TS to TA is r2 (around 2), the total latency ratio of 
the serial architecture of point doubling to the corresponding 
parallel architecture is (5r1+5r2+4)/(3r1+ r2 +3)=1.78 (when 
r1=15 and r2=2), which is the speedup we have achieved by 
applying the parallel architecture.  The different modules in 
the Point Doubling architecture shown in Fig 3.1 are: 

 Multipliers-5 
 Squaring units-5 
 Adders-4 

 
 In this architecture at most 2 multipliers, 2 squaring 
units and 2 adders are working in parallel at the same time. 
Hence the number of  arithmetic modules can be reduced to 2 
multipliers, 2 adders and 2 squaring units. 
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5.3 Modified Point Doubling Architecture 
The critical path length in the parallel architecture for 

L-D point doubling is TS+3 TM+3 TA. This critical path length 
can be reduced to TS+3 TM+2 TA by the modified .  

by the modified architecture of the parallel architecture 
for point doubling. Also based on the parallel architecture for 
point doubling totally 5 multipliers, 5 squaring units and 4 
adders are used.  

 
This can be reduced by the modified architecture where at most 
two multipliers are working in parallel. Similarly at most two 
squaring units are needed at the same time. If the point doubling 
implementation has been pipelined and well scheduled, to 
minimize the number of finite field arithmetic units, thereby 
reduce the hardware cost to two multipliers, two squaring units 
and one adder.   
 
6.Results 

                      The Fast Point Architecture for the Elliptic Curve 
Cryptography Point Arithmetic (Point Doubling and Point 
Addition) presents an efficient approach for ECC arithmetic. 
The core operation of ECC is based on Scalar Multiplication 
which involves Point Addition and Point Doubling. The point 
operations in ECC are carried with the projective coordinates 
by using the Lopez-Dahab algorithm where the inversion 
operation is avoided. Codings were developed for different data 
widths  (m= 8,16,32 ) using serial and parallel architecture .The 
results are graphed. 

 
        Serial Vs Parallel Point Addition 

 
 
         Serial Vs Parallel for point doubling 
 
 
 

 
  Point doubling Vs Modified Point doubling time 
consumption 

Table 1.  Synthesis report for different bit sizes for Point Addition(Parallel) 

 
Table 2. Synthesis report for different bit sizes for Point Doubling(Parallel) 

 
  8 16  32 128  163 
Slices  90 110 208 1184 1506 
LUTs 134 262 300 2491 2364 
delay 
(ns) 

4.475 5.145 5.742 6.574 5.128 

 
Table 3. Synthesis report for different bit sizes for Modified Point 
Doubling(Parallel) 

  8 16  32 128  163 
Slices  120 220 416 1587 2000 
LUTs 171 320 640 2620 2871 
delay 
(ns) 

4.385 4.600 5.720 6.351 4.421 
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m  8  16 32 128 163 

slices  270 495 936 3546 4472 

 LUTs 355 640 1269 5072 5439 

Delay 
(ns) 

4.447 5.062 5.100 5.560 5.062 
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Simulation result for m=163 for Point Addition 
 

 
 

Fig 4.3 Point Addition-Wave(m=163) 

 
Simulation result for m=163 for Point Doubling 

 

 
Fig 4.4 Point Doubling-Wave(m=163) 

 
 
 
 
 

Simulation result for m=163 for modified Point Doubling 
using VHDL 

 

 
 

Fig 4.5 Modified Point Doubling-Wave   (m=163) 

 
Table 4. Resource utilization  and time consumption using various  Target  
devices  
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(M
H

z)
 

XC3SD1
800ACS
484 

1592 2036 2861 10.06 246.000 

XC3S10
0E 
VQ100 

1592 2017 2861 8.470 256.707 

XC2VP2 
FG256 1592 2040 2861 6.299 368.793 

XC4VL
X15 
SF363 

1594 2035 2865 6.292 391.203 

XC5VL
X30 
FF324 2000 2871 2000 4.421 613.911 

 
7. Conclusion: 
          The work towards achieving the high speed for he point 
operation is successfully completed and he results are compared 
for various field order  for different target device Thus a novel 
architecture for point  addition and point doubling with the 
parallel architecture in projective coordinates is implemented 
on FPGA.    
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