
Kotrappa Sirbi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2009-2014

Enhancing Modularity in Aspect-Oriented
Software Systems-An Assessment Study

Kotrappa Sirbi
Department of Computer Science & Engineering
K L E‘s College of Engineering & Technology

Belgaum, India
kotrappa06@gmail.com

Prakash Jayanth Kulkarni
Department of Computer Science & Engineering

Walchand College of Engineering
Sangli, India

pjk_walchand@rediffmail.com

Abstract—Aspect-oriented programming (AOP) is rapidly
gaining popularity among research and industry as a
methodology that complements and extends the object-oriented
paradigm.AOP promises to localize the concerns that inherently
crosscut the primary structural decomposition of a software
system. Localization of concerns is critical to parallel
development, maintainability, modular reasoning and program
understanding. However, AOP as it stands today is bringing
problems in exactly these areas, defeating its purpose. Previous
work and experience gleaned from building AOP systems have
identified two points of contention that are impeding the adoption
of AOP. First, the complication arising from the need to open up
systems modules for AOP and the need to protect those modules
against possible fault injection by AOP. Second, the need to have
base system components stabilized before aspect components can
be developed. Clearly, this adversely affects parallel
development. This dependency also causes aspect components to
be sensitive to changes in the base system, complicating
maintainability, already a high-cost element in the software
process. In this review paper, we argue that the AOP provides
better modularity and here main focus is to assess the solution
that affords better modularity to AOP systems.

Keywords-Aspect Oriented Software Development (AOSD),
Aspect Oriented Programming (AOP), Aspect Oriented (AO)
System, AspectJ.

I. INTRODUCTION

Jacobson [1, 2] believes that aspect-oriented software
development (AOSD) will let us gracefully extend an existing
software system iteration-by-iteration and release-by-release
for the system’s entire lifetime. AOSD [7, 9, 10] will have an
impact on most software measures including, cost, quality, and
time-to-market. Costs can see a reduction of at least 20% [1,
2]. This view may find support in the growing array of
application areas where aspects are being deployed. So far,
AOP has reached logging, tracing, profiling, buffering,
pooling, caching, synchronization, error handling, load
balancing, persistence, mobile applications code base
retargeting, schema versioning in databases, security, and
transaction management.

AOP promises to localize crosscutting concerns by
providing language-based mechanisms for explicitly
representing their structure and/or behavior. To fulfill its
promise, AOP relies on the ability to impact a large body of
the base code at once from the aspect code side. We believe

that AOP does provide a cleaner separation of concerns.
However, we also believe that AOP has slowly moving
towards maturity when it comes to the benefits of better
modularity. This view is shared by others in the AOP
community [3].It is important to note that AOP is not a silver
bullet for separating all crosscutting concerns. In fact, all
crosscutting concerns should not be implemented as aspects
and should not be separated from the base code. An example is
given [4] for the concerns of concurrency and failures. The
authors present an example where separation of concerns into
aspects led to an irresolvable deadlock. Applying AOP
mandates an understanding of its limitations by system
designers/developers.

II. BACKGROUND

A. Open Modules

The Open Modules system with the root idea that base
code and AOP code should be protected from one another.
This approach is a shift from pure obliviousness. In Open
Modules, a module exposes pointcuts that can be advised by
external aspects as part of the module’s interface.
OpenModules includes a module system that allows external
aspects to advise the exported interface but prohibits external
aspects from advising calls originating from within the
module. The aspect impact is limited only to calls originating
external to the interface, which provides decoupling of aspect
code from the implementation details of the code it applies to.
Open Modules exposes the module’s entry joinpoints that can
be safely advised. The semantics allow private state to be
advised if the module declares a pointcut allowing
quantification to include private state. Otherwise, private state
is not advisable.

This solution seeks to strike a balance between openness
and modularity. However, in Open Modules, the advice does
not crosscut modules that are non-hierarchically related.
Hence, not all aspects can be implemented easily and there is
no guarantee that existing aspects would not have to change as
the base code incorporates new functionality.While Open
Modules provides better modularity, using Open Modules
approach for the RideArrival system[17] would require
duplication of persistence code for components and it also
require duplication of logging code for components . This is
because Open Modules does not allow advice to crosscut
modules. In addition, this restriction complicates future

ISSN : 0975-3397 2009

Kotrappa Sirbi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2009-2014

functional extensions that are crosscutting in nature, we are
not sure if they are even possible to implement as cleanly
isolated aspects.

B. Aspect-Aware Interfaces

Aspect-Aware Interfaces (AAI) were developed by
Kiczales and Mezini [14] to demonstrate that AOP provides
support for modular reasoning of crosscutting concerns in the
presence of aspects. Similar to Open Modules, AAI move
away from pure obliviousness. Consider the code snippet of
figure1 shown on the following page.

The code is borrowed with minor modifications from
[14].The method moveby(int, int) has three new pieces of
information as part of its interface: the name of the aspect that
may advise the method, the kind of the advice (after
returning), and the name of the pointcut to which the advice is
attached in the aspect code. The aspect’s interface includes the
inverse information about which methods it affects.

The base code interface is now “aware” of two aspect-
related pieces of information:

1. Aspect UpdateSignaling has an after returning advice
that affects the execution of method moveby(int, int) of the
interface.

class Point implements Shape {
void moveby(int deltax, int deltay):
UpdateSignaling - after returning
UpdateSignaling.move();
}
aspect UpdateSignaling {
after returning: UpdateSignaling.move():
Point.setX (int), Point.setY (int),
Point.moveby (int, int);
}

Figure 1: Aspect-Aware Interfaces

2. Aspect UpdateSignaling has a pointcut move() that

selects executions of method moveby(int, int) of class Point as
joinpoints.Now, the base code developer is aware of aspect
advising, the aspects involved are known, and the expected
aspect effect is also known (what type of advice). While this is
better than programming base systems purely oblivious of
aspects, especially for reasoning purposes, this design limits
the effectiveness of modular development for the following
reasons:

i. The aspect is sensitive to base code interface changes
because the pointcuts are coded using base code names
directly. The aspect code has to wait for the interface to be
stabilized before aspect development can start.

ii. The aspect-related information are computed and
attached to methods, but are not part of the code. Unless
comments are included with a class, nothing indicates that it is
being advised.

These limitations, especially (1), made it difficult to adopt
AAI’s approach to implement crosscutting concerns in the
RideArrival system [17].

AAI extend the interfaces of base code modules through
advising as opposed to extending an interface through
implementation or interface inheritance. AAI recognize that

the complete specification of a module’s interface in an AOP
system depends on the complete system configuration. This
means that a module’s interface is dependent on the interfaces
referenced by that interface and the interfaces of aspects
advising it. The “self-contained” property of modules ceases
to hold because of the mutual contribution to the interfaces of
base code and aspects by one another. AAI also recognize the
need to program against crosscutting interfaces, similar to
Crosscutting Interfaces discussed shortly. However, they are
not geared towards loose coupling of aspects and do not
provide control and protection over aspect and base code
interaction, unlike Crosscutting Interfaces.

C. Crosscutting Pointcut Interfaces

Crosscutting Pointcut Interfaces (XPI’s) [11] attempt to
decouple the aspect code from the base code. The idea is to
dissect a traditional aspect into three aspects that cooperate to
realize a crosscutting concern. An aspect is used for specifying
pointcuts and advising constraints. Another aspect is used for
advice implementations, and a third aspect for checking
advising constraints. XPI’s provide better decoupling of
advice implementation from base code changes. An advice
implementation aspect is coded in terms of the exposed
pointcuts of another aspect instead of depending on the base
code directly. Through checking of advising constraints, XPI’s
also provide some level of protection to the base code, even
though the aspect side controls it. The base code is still passive
in this regard. This is problematic for the RideArrival system
[17] implementation of persistence because it requires the base
code components to fully trust the aspect implementation,
which does not guarantee that harmful aspects are kept at bay.

D. Explicit Joinpoints

Explicit joinpoints (EJP’s) are a language mechanism
devised by [13] that also shares AOP community view of a
shift away from pure obliviousness. It is worth noting that this
work was developed independently from EJP. The base code
in this system has to be prepared by inserting syntactic hooks
that look like static method calls at points where advising is
required. Explicit joinpoints have scopes attached to them
which extend AspectJ’s power fundamentally as it allows
advising on arbitrary blocks of code. EJP’s is a more robust
solution than AspectJ because advising is not unilateral
anymore; the base code marks exactly the points of advice
application. The joinpoints are declared in a separate aspect
and then referenced by both, the aspect implementing a
concern and the base code expecting the concern service. This
mechanism avoids the need to refactor the base code for the
sake of exposing joinpoints or simplifying pointcut
expressions. EJP’s modify pointcut expressions to
accommodate matching on the scoped explicit joinpoints’
names instead of the base code names directly. This feature
reduces the effects of the fragile pointcut problem. As in XPI’s
and EJP’s, we maintain that decoupling aspect code from base
code is an important requirement for any real-world AOP
system. Another interesting feature of EJP’s is the handles list;
a list of exception types attached to an explicit joinpoint
declaration that constitutes a promise to the base code that
these exceptions will be handled in some way by the advising
aspect.

ISSN : 0975-3397 2010

Kotrappa Sirbi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2009-2014

E. Modular Aspect with Ownership

Modular Aspects with Ownership (MAO) was developed
by [6] as an extension to AspectJ 5. MAO’s design applies
ideas of ownership and effects annotations to improve modular
reasoning in the presence of aspects. Ownership systems
require programmers to explicitly attach an owner to
instantiated objects in the system. In the context of MAO,
owners are concern domains that are explicitly declared. The
purpose of bringing this idea into AspectJ is to help
programmers and tools identify control and heap effects of
advice. A control effect is a change in the control flow of the
advised code, whether it is base code or another aspect. A
heap effect is a change in object state due to field
mutation.MAO introduces two new annotations to AspectJ,
@surround and @curbing. These annotations can apply to
aspects or advice. Annotating an advice, irrespective of the
particular kind, with either one, turns the advice into a control-
limited advice. This allows the programmer to express that a
particular advice will have no control effects (using
@surround annotation), or that the only allowed effects are
thrown exceptions (using @curbing annotation). Similar
meanings apply to aspects using these annotations. MAO uses
the aspect annotation @surround to differentiate between
spectator (no control effects) and non-spectator aspects. This
is important because spectator aspects can be unconstrained in
their advice and can be excluded instantly when reasoning
about control effects.MAO refers to non-spectator aspects as
assistants to highlight the notion of participation from the
aspect side in modifying the behavior of a base code
component.MAO also uses explicit assistance acceptance,
which means that the base code explicitly announces that it
can receive advising from certain aspects. MAO proposes an
accept declaration for the advised code to use. Two types of
assistance exist. One in which an assistant modifies behavior
for a component directly (implementation utilities), and
another in which an assistant modifies behavior for clients of a
module client utilities. This distinction supports modular
reasoning about behavior in the presence of assistants. When it
comes to heap effects, MAO’s ownership and effects system
uses annotations like @readonly and @writes to express
potential heap effects of the advice application. These
annotations help with associating objects (arguments, target,
etc.) involved in the advice context with their heap effects if
any. MAO also introduces a simple writes pointcut that further
refines advice application by allowing programmers to select
joinpoints that produce heap effects on a particular concern
domain. The concern domain is passed as a parameter to the
writes pointcut.MAO addresses a fundamental impediment to
the adoption of AOP, lack of modular reasoning in the
presence of aspects. MAO supports modular reasoning using a
strong type-theoretic foundation

III. AOP-ASPECTJ

AspectJ an extension to Java is as the representative AOP
language [12, 16], being the defacto standard of AOP
implementation today. A crosscutting concern is a functional
requirement that cannot be implemented in an encapsulated
fashion. The inherent nature of such functionality is that it has
to be delegated to various, possibly unrelated, components in

the system. Hence, it crosscuts the primary structural
decomposition of a software system. Even though those
concerns may have been modeled separately, maintenance is
still a challenge because once implemented they dissolve into
the code. Crosscutting concerns lead to the following two
phenomena in code. Tangling occurs when code implementing
a crosscutting concern is mixed with code implementing
primary functionality of a component. Scattering occurs when
a concern/functionality is assigned to several components
where the assigned concern is unrelated to the key concepts
the components model in the application domain. Aspect
Orientation (AO) started as a mechanism for dealing with
implementation issues pertaining to crosscutting concerns.
Focusing on detangling functionality and isolating code that
used to be scattered. AO provides code locality of the
crosscutting concern implementation using an abstraction
referred to as an aspect. AO is on its way to becoming more of
a methodology and is being integrated into earlier phases of
the software process, as early as requirements specification
[7].An Aspect is a unit of abstraction that represents a
crosscutting concern. Depending on the
implementation/context it has been called a slice as in Hyper/J
[8,9], an aspect as in AspectJ [12,16] and a theme as in
Theme/UML [9].Ideally, all behavior handled by the
crosscutting concern should be localized in the aspect(s)
representing it. In order to realize the original behavior of the
system after eliminating tangling and/or scattering from
primary system components, AOP relies on a core mechanism,
advice.

AOP inherited the concpect of advice from Common Lisp
[5]. AOP can be viewed as the ability to make quantified
statements about sets of points in the program where a piece of
behavior (an advice) needs to be executed [7, 9, 10]. A
pointcut is a quantification mechanism that expresses the
selection of sets of program points where an advice would be
executed. A point in the program selected by a pointcut is
called a joinpoint. Joinpoints include constructor calls, method
calls, accessing/mutating a field, etc. In AspectJ, for example,
given a method call joinpoint j selected by pointcut p, there are
five advising options. These are: before, after, after returning,
after throwing, and around advice kinds. At j, a before/after
advice will execute prior/post to the execution of the body of
method picked by j. Similarly, after returning and after
throwing advices run upon returning/throwing an exception
from the method at the call joinpoint. An around advice allows
wrapping (and possibly replacing altogether) the method at j
within the advice code.

IV. MODULARITY UNDER AOP

Ideally, in a modularly designed system, modules are self-
contained, loosely coupled, amenable to parallel development,
and the system’s composition into a specific configuration can
be computed and verified in a reasonable amount of time.
Modular reasoning has been defined as the ability to anticipate
the behavior of a component, say A, based only on A’s
interface specification and the interfaces of components
referenced by A’s interface[14].

We believe this view of modular reasoning is flawed in the
case of classical AOP (AspectJ-style implementations). Even

ISSN : 0975-3397 2011

Kotrappa Sirbi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2009-2014

in the ideal case, we know from systems engineering that we
cannot completely anticipate the behavior of all components in
the system without considering the specific
configuration/environment where modules are operating. We
agree with the work of aspect-aware interfaces by Kiczales
and Mezini [14]. In [14], the authors indicate that an OOP
program is NOT the same program after AOP advises it.
Neither the class nor the aspect is the unit of modularity
anymore. It is not enough to examine the interface of a
class/aspect to completely anticipate its behavior after
composition. Some subtle interactions between the base code
and aspect code may only be discovered after a certain
configuration has been computed. This understanding drives
this work’s underlying philosophy, that since base code and
aspect code pariticipate in making up a module’s interface,
then they should explicitly cooperate to preserve the module’s
boundary without limiting AO capabilities. We see a module
boundary extending beyond traditional class or aspect module
boundaries with base code modules being responsible for
carving out their module boundaries within the system.

A. A Case Study-RideArrival System

The RideArrival system [17] is a location-based service for
cell phone users under development at Cream City Bitworks,
Inc., Wisconsin. This system used here just for simulation
purpose only and it’s an incomplete system as per the
literature. The system is intended to attract more customers to
the bus transit system by eliminating unnecessary waiting time
at bus stops. The system uses GPS technology to track bus
locations with respect to a set of predefined landmarks. A user
registers for the service using their cell phone or mobile device
and receives an alert (an SMS message) when the bus is, say, 5
minutes away from the user-specified bus stop. There are four
main components in the system:
1. One that handles raw bus location information as it is
coming from the GPS unit. This component runs on a mobile
device and sends “cleaned up” location information to the
server for further processing.
2. A server component that processes location information of
buses. A system policy determined that bus location
information is sensitive, so access and manipulations are
restricted to certain parts of the system.
3. A client that runs on mobile devices of users for signing up
and requesting alerts.
4. A server component that handles users’ incoming requests.
Aspects were suggested for implementing the crosscutting
concerns of logging and persistence. However, an AO solution
had to be dropped because aspects could not afford two main
things:
i. The system is under development, so interfaces are not fully
stable. Changes to the interfaces would trigger more
maintenance on the aspect side, more work and more cost. For
example, changes to the interface for book-marking bus stops
on users’ clients induce changes to the persistence aspect. So
aspects have to wait until the book-marking code is stable and
there is no guarantee that extending functionality in the future
will not break the persistence aspect.
ii. Aspects have the potential of compromising the system’s
integrity because sensitive data is now accessible through
channels outside the interfaces of classes holding them and

simply because everything in the class is fair game for an
aspect.

V. AOP MODULARITY WITH IMAGE INTERFACE
(I2) APPROACH

In AO systems, aspects play the role of structure/behavior
modifiers of base components [17]. Currently, in non-trivial
systems, aspects are tightly coupled to the base code they
operate on. This situation makes independent evolution and
development of aspects and base code almost impossible.
However, AO was primarily motivated and hailed for better
modularity. We would expect better modularity to afford
better evolution instead we ended up with the phenomenon
called, the “aspect evolution paradox”. Even simple changes to
interfaces in base code trigger updates in all dependent aspects
in the system. In order to resolve this paradox, we need a
language-level solution that would allow loose coupling
between base code and aspects. This solution should not limit
aspect capability, should enhance modularity, and should
allow independent evolution of aspects and the base code. The
Interface Image approach [17] is new approach for better
enhanced modularity.

A. What is an Intercafe Image (I2)?

An Interface Image (I2) is a level of indirection through
which all advising requests are carried out. An Interface Image
provides a mechanism by which a class exposes a set of
joinpoints through aliasing base code interface elements. In
addition to aliasing, the image incorporates advising
constraints per joinpoint that aspects are expected to honor.
Aspects are developed against the aliases defined in the
interface images of base code classes. Aspects are not allowed
to advise classes directly. So only classes that declare images
of their interfaces are advisable. This indirection decouples
base code development from aspect development. It also
creates a layer where control over aspect impact can be
implemented without limiting how an aspect can potentially
advise a module.

In this design, an I2 provides the following benefits:
1. A class uses the I2 mechanism to exercise control over what
is advisable without limiting aspect-oriented capabilities. The
class is now an active participant in the advising process since
it is up to the class to expose/hide the joinpoints that help
realize its functionality without compromising its integrity.
For each exposed joinpoint, advising constraints can be
attached to disallow unwanted aspect advising. In addition,
constraints allow more control on code instrumentation by
turning advice execution on/off, which can be of value during
testing and debugging. The I2 semantics is that if a class does
not provide an image then it becomes unadvisable. The
interface image is the gate through which all advising
operations can go into a class. This relates to trait shyness:
minimizing communication channels. The controlled flow of
aspect activity can also help with program understanding and
reasoning in the presence of aspects.
2. If new elements are added to the interface of a class, the
interface image does not need to change if the new elements
are unadvisable. If they are, the image needs to be updated
accordingly, but the aspects are left untouched. Thus

ISSN : 0975-3397 2012

Kotrappa Sirbi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2009-2014

preventing the ripple effects of updating aspects whenever a
class’ interface changes thereby enhancing maintenance.
Parallel development can also benefit from this loose
coupling. Interface images and core functionality can undergo
a relatively short design phase, and then aspect development
and core modules’ development can proceed independently.
3. The I2 serves as a specification of advisable interface
elements for base code and aspect developers alike.

This work studies the interface image approach in the
context of classes only.

B. Banking Authorization

This example is adapted from Laddad’s, AspectJ in Action
[24]. The example was originally developed by Laddad to
showcase modularity of an AspectJ solution over a
conventional Java solution. The context is an authorization
service in a banking system. The example makes calls to the
JAAS (Java Authentication and Authorization Service) API. In
this example, we assume the set of operations requiring
authorization is exactly the same set requiring authentication.
Authentication is confirming to the system that a user entity is
indeed “who” they claim to be. Authorization is deciding if an
authenticated user has enough clearance to perform certain
operations or access certain resources. The base code for this
example is shown in figures 2 and 3. The code is simple,
performing basic operations on bank accounts, including inter-
account funds transfer (figure 3).The AspectJ solution uses an
abstract aspect, AbstractAuthAspect, that provides an
implementation of an authorization protocol using the JAAS
API.

public class AccountSimpleImpl implements Account {
private int accountNumber;
private float balance;
/* constructors and accessors omitted for brevity */
public void credit(float amount) {
balance = balance + amount;
}
public void debit (float amount)
throws InsufficientBalanceException {
if (balance < amount) {
throw new InsufficientBalanceException(
"Total balance not sufficient");
} else {
balance = balance - amount;
}
}
}

Figure 2: Class AccountSimpleImpl [Laddad]

This abstract aspect provides an abstract pointcut
authOperations() as a hook for concrete derived aspects to
quantify which operations in the system they want to apply the
authorization protocol to. A derived concrete aspect,
BankingAuthAspect, that fully implements the authorization
concern.

package banking;
public class InterAccountTransferSystem {
public static void transfer (Account from, Account to,

float amount)
throws InsufficientBalanceException {
from.debit (amount);
to.credit (amount);
}
}

Figure 3: Class InterAccountTransferSystem [Laddad]

Here we included brief about Banking Application, complete
details available in [16].So we use the I2[17] to engage the
base code in the process through the open to clause. Providing
a means for the base code to be involved in regulating
advising crossing its boundary using the image construct
enhances over all system robustness. The image as it is allows
advising without aliasing on all methods for simplicity since
this example focuses more on advising constraints.

VI. CONCLUSIONS

This work attempts to review the AOP shortcoming and
provide a solution to make more room for AOP adoption. The
interface Image (I2) approach [17], an attempt at a design
geared toward solving the AOP modularity problem. We
provide a language-level solution to both problems in the form
of a new construct added to classes. The construct exports a
view of the advisable class interface for aspects to refer to
instead of member method signatures directly. Additionaly,
the new image construct allows classes to attach advising
constraints to joinpoints guiding advice applications coming
from the aspect side. Another interesting extension, is
allowing interfaces and aspects to declare images. Allowing
aspects to declare images should help to reduce coupling
among aspects that advise each other. We argue that interface
images development can benefit from tool support. We believe
that the ease of use of interface images will bring more
adoption of AOP into the software engineering community.

VII. ACKNOWLEDMENTS

We place on records and wish to thank the author Mohamed I
Elbendary PhD. Software Design Engineer, FasTraK
Softworks, Inc., for providing insight about AOP
shortcomings and useful research on Aspect-Oriented
Software Systems Enhancing Modularity.

REFERENCES

[1] Ivan Jacobson. Aspects: The missing link. Software

development Magazine, November 2003.
[2] Ivan Jacobson. A case for aspects. Software development

Magazine, October 2003.
[3] Gary T. Leavens and Curtis Clifton. Multiple concerns in aspect-

oriented language design: A language engineering approach to
balancing benefits, with examples. Technical Report TR 07-01a,
Iowa State University, 2007.

[4] J. Kienzle and R. Guerraoui. Aop: Does it make sense? the case
of concurrency and failures. In 16th. European Conference on
Object-Oriented Programming (ECOOP’02), pages 37–61,
2002.

[5] John Boyland. Remote attribute grammars. Journal of The
ACM, 52(4):627–687, July 2005.

ISSN : 0975-3397 2013

Kotrappa Sirbi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2009-2014

[6] Curtis Clifton, Gary T. Leavens, and James Noble. Mao:
Ownership and effects for more effective reasoning about
aspects. In European Conference on Object-Oriented
Programming 2007 (ECOOP’07), pages 451–475, 2007.

[7] Adrian Colyer. Aspect-Oriented Software Development, chapter
AspectJ, pages 123–143. Addison-Wesley, 2005.

[8] The AspectBench Compiler. The aspectbench compiler for
aspectj.http://www.aspectbench.org/.

[9] Siobhan Clarke and Robert J. Walker. Aspect-Oriented
Software Development, chapter Generic Aspect-Oriented
Design with Theme/UML, pages 425–458. Addison-Wesley,
2005.

[10] R. E. Filman and D. P. Friedman. Aspect-Oriented Software
Development, chapter Aspect-oriented Programming is
Quantification and Obliviousness, pages 21–35. Addison-
Wesley, 2005.

[11] W. G. Griswold, K. Sullivan, Y. Song, Y. Cai, M. Shonle, N.
Tewari, and R. Hridesh. Modular software design with
crosscutting interfaces. IEEE Software, pages 51–60, 2006.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G.Griswold. An overview of aspectj. In 15th. European
Conference on Object-Oriented Programming (ECOOP’01),
pages 327–354, 2001.

[13] I. Kiselev. Aspect-Oriented Programming with AspectJ. Sams
Publishing, 2003. ISBN 0-672-32410-5.

[14] G. Kiczales and M. Mezini. Aspect-oriented programming and
modular reasoning. In Proceedings of the 27th. International
Conference on Software Engineering ICSE’05, pages 49–58,
2005.

[15] G. Kniesel and T. Rho. Generic aspect languages - needs,
options and challenges. In Proceedings of La deuxime Journe
Francophone sur la Programmation Par Aspects JFDLPA 2005,
pages 1–20, 2005.

[16] Ramnivas Laddad. AspectJ IN ACTION, Practical Aspect-
Oriented Programming. Manning Publications Co., 2003. ISBN
1-930110-93-6.

[17] Mohamed I. ElBendary, “Enhancing Modularity in Aspect-
 Oriented Software Systems”, Ph.D Thesis, The University of
 Wisconsin–Milwaukee December 2008

AUTHORS PROFILE

Kotrappa Sirbi having M Tech (CSE) from Visvesvaraya Technological
University Belgaum, M S (Software System) from BITS, Pilani and B .E (EE)
working with Departmenent of Computer Science & Engineering, K L E’s
College of Engineering & Technology, Belgaum since 1985.Presently
working with K L E’s B C A, Belgaum (Deputation).He has 06 International
Journal publications,02 International conference papers and 02 National
Conference papers and 02 workshop papers for his credit. His areas of interest
are Software Engineering, Object Technology and its evolution like. Design
Patterns, AOP (Aspect Oriented Programming).He is member of ISTE,
Members of CSTA, ACM, USA and Member of IAENG.

Prakash Jayanth Kulkarni having Ph.D (Electronics) and M E (Electronics)
by Research from Shivaji University, Kolhapur and B.E (Electronics & Tele)
from Poona University, Poona working with Walchand College of
Engineering, Sangli since 1981 and 1980-81 worked with Trans Lines
Division,M S E B haing 13 international conference papers and 10 National
conference papers and 10 journal papers. His areas of interest are Digital
Communication, Digital Image Processing and Computer vision, Software
Engineering, Artificial Neural Network and Genetic Algorithms. In 2001 he
received a distinguish Samaj Shree Award for rendering service to society.

ISSN : 0975-3397 2014

