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Abstract—Aspect-oriented programming (AOP) is rapidly 
gaining popularity among research and industry as a 
methodology that complements and extends the object-oriented 
paradigm.AOP promises to localize the concerns that inherently 
crosscut the primary structural decomposition of a software 
system. Localization of concerns is critical to parallel 
development, maintainability, modular reasoning and program 
understanding. However, AOP as it stands today is bringing 
problems in exactly these areas, defeating its purpose. Previous 
work and experience gleaned from building AOP systems have 
identified two points of contention that are impeding the adoption 
of AOP. First, the complication arising from the need to open up 
systems modules for AOP and the need to protect those modules 
against possible fault injection by AOP. Second, the need to have 
base system components stabilized before aspect components can 
be developed. Clearly, this adversely affects parallel 
development. This dependency also causes aspect components to 
be sensitive to changes in the base system, complicating 
maintainability, already a high-cost element in the software 
process. In this review paper, we argue that the AOP provides 
better modularity and here main focus is to assess the solution 
that affords better modularity to AOP systems. 

Keywords-Aspect Oriented Software Development (AOSD), 
Aspect Oriented Programming (AOP), Aspect Oriented (AO) 
System, AspectJ. 

I.  INTRODUCTION 

Jacobson [1, 2] believes that aspect-oriented software 
development (AOSD) will let us gracefully extend an existing 
software system iteration-by-iteration and release-by-release 
for the system’s entire lifetime. AOSD [7, 9, 10] will have an 
impact on most software measures including, cost, quality, and 
time-to-market. Costs can see a reduction of at least 20% [1, 
2]. This view may find support in the growing array of 
application areas where aspects are being deployed. So far, 
AOP has reached logging, tracing, profiling, buffering, 
pooling, caching, synchronization, error handling, load 
balancing, persistence, mobile applications code base 
retargeting, schema versioning in databases, security, and 
transaction management. 

AOP promises to localize crosscutting concerns by 
providing language-based mechanisms for explicitly 
representing their structure and/or behavior. To fulfill its 
promise, AOP relies on the ability to impact a large body of 
the base code at once from the aspect code side. We believe 

that AOP does provide a cleaner separation of concerns. 
However, we also believe that AOP has slowly moving 
towards maturity when it comes to the benefits of better 
modularity. This view is shared by others in the AOP 
community [3].It is important to note that AOP is not a silver 
bullet for separating all crosscutting concerns. In fact, all 
crosscutting concerns should not be implemented as aspects 
and should not be separated from the base code. An example is 
given [4] for the concerns of concurrency and failures. The 
authors present an example where separation of concerns into 
aspects led to an irresolvable deadlock. Applying AOP 
mandates an understanding of its limitations by system 
designers/developers.  

II. BACKGROUND 

A. Open Modules 

The Open Modules system with the root idea that base 
code and AOP code should be protected from one another. 
This approach is a shift from pure obliviousness. In Open 
Modules, a module exposes pointcuts that can be advised by 
external aspects as part of the module’s interface. 
OpenModules includes a module system that allows external 
aspects to advise the exported interface but prohibits external 
aspects from advising calls originating from within the 
module. The aspect impact is limited only to calls originating 
external to the interface, which provides decoupling of aspect 
code from the implementation details of the code it applies to. 
Open Modules exposes the module’s entry joinpoints that can 
be safely advised. The semantics allow private state to be 
advised if the module declares a pointcut allowing 
quantification to include private state. Otherwise, private state 
is not advisable. 

This solution seeks to strike a balance between openness 
and modularity. However, in Open Modules, the advice does 
not crosscut modules that are non-hierarchically related. 
Hence, not all aspects can be implemented easily and there is 
no guarantee that existing aspects would not have to change as 
the base code incorporates new functionality.While Open 
Modules provides better modularity, using Open Modules 
approach for the RideArrival system[17] would require 
duplication of persistence code for components and  it also 
require duplication of logging code for components . This is 
because Open Modules does not allow advice to crosscut 
modules. In addition, this restriction complicates future 
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functional extensions that are crosscutting in nature, we are 
not sure if they are even possible to implement as cleanly 
isolated aspects. 

B. Aspect-Aware Interfaces 

Aspect-Aware Interfaces (AAI) were developed by 
Kiczales and Mezini [14] to demonstrate that AOP provides 
support for modular reasoning of crosscutting concerns in the 
presence of aspects. Similar to Open Modules, AAI move 
away from pure obliviousness. Consider the code snippet of 
figure1 shown on the following page. 

The code is borrowed with minor modifications from 
[14].The method moveby(int, int) has three new pieces of 
information as part of its interface: the name of the aspect that 
may advise the method, the kind of the advice (after 
returning), and the name of the pointcut to which the advice is 
attached in the aspect code. The aspect’s interface includes the 
inverse information about which methods it affects. 

The base code interface is now “aware” of two aspect-
related pieces of information: 

1. Aspect UpdateSignaling has an after returning advice 
that affects the execution of method moveby(int, int) of the 
interface. 
 
class Point implements Shape { 
void moveby(int deltax, int deltay): 
UpdateSignaling - after returning 
UpdateSignaling.move(); 
} 
aspect UpdateSignaling { 
after returning: UpdateSignaling.move(): 
Point.setX (int), Point.setY (int), 
Point.moveby (int, int); 
} 
 

Figure 1: Aspect-Aware Interfaces 

 
2. Aspect UpdateSignaling has a pointcut move() that 

selects executions of method moveby(int, int) of class Point as 
joinpoints.Now, the base code developer is aware of aspect 
advising, the aspects involved are known, and the expected 
aspect effect is also known (what type of advice). While this is 
better than programming base systems purely oblivious of 
aspects, especially for reasoning purposes, this design limits 
the effectiveness of modular development for the following 
reasons: 

i. The aspect is sensitive to base code interface changes 
because the pointcuts are coded using base code names 
directly. The aspect code has to wait for the interface to be 
stabilized before aspect development can start. 

ii. The aspect-related information are computed and 
attached to methods, but are not part of the code. Unless 
comments are included with a class, nothing indicates that it is 
being advised. 

These limitations, especially (1), made it difficult to adopt 
AAI’s approach to implement crosscutting concerns in the 
RideArrival system [17]. 

AAI extend the interfaces of base code modules through 
advising as opposed to extending an interface through 
implementation or interface inheritance. AAI recognize that 

the complete specification of a module’s interface in an AOP 
system depends on the complete system configuration. This 
means that a module’s interface is dependent on the interfaces 
referenced by that interface and the interfaces of aspects 
advising it. The “self-contained” property of modules ceases 
to hold because of the mutual contribution to the interfaces of 
base code and aspects by one another. AAI also recognize the 
need to program against crosscutting interfaces, similar to 
Crosscutting Interfaces discussed shortly. However, they are 
not geared towards loose coupling of aspects and do not 
provide control and protection over aspect and base code 
interaction, unlike Crosscutting Interfaces. 

C. Crosscutting Pointcut  Interfaces 

Crosscutting Pointcut Interfaces (XPI’s) [11] attempt to 
decouple the aspect code from the base code. The idea is to 
dissect a traditional aspect into three aspects that cooperate to 
realize a crosscutting concern. An aspect is used for specifying 
pointcuts and advising constraints. Another aspect is used for 
advice implementations, and a third aspect for checking 
advising constraints. XPI’s provide better decoupling of 
advice implementation from base code changes. An advice 
implementation aspect is coded in terms of the exposed 
pointcuts of another aspect instead of depending on the base 
code directly. Through checking of advising constraints, XPI’s 
also provide some level of protection to the base code, even 
though the aspect side controls it. The base code is still passive 
in this regard. This is problematic for the RideArrival system 
[17] implementation of persistence because it requires the base 
code components to fully trust the aspect implementation, 
which does not guarantee that harmful aspects are kept at bay. 

D. Explicit Joinpoints 

Explicit joinpoints (EJP’s) are a language mechanism 
devised by [13] that also shares AOP community view of a 
shift away from pure obliviousness. It is worth noting that this 
work was developed independently from EJP. The base code 
in this system has to be prepared by inserting syntactic hooks 
that look like static method calls at points where advising is 
required. Explicit joinpoints have scopes attached to them 
which extend AspectJ’s power fundamentally as it allows 
advising on arbitrary blocks of code. EJP’s is a more robust 
solution than AspectJ because advising is not unilateral 
anymore; the base code marks exactly the points of advice 
application. The joinpoints are declared in a separate aspect 
and then referenced by both, the aspect implementing a 
concern and the base code expecting the concern service. This 
mechanism avoids the need to refactor the base code for the 
sake of exposing joinpoints or simplifying pointcut 
expressions. EJP’s modify pointcut expressions to 
accommodate matching on the scoped explicit joinpoints’ 
names instead of the base code names directly. This feature 
reduces the effects of the fragile pointcut problem. As in XPI’s 
and EJP’s, we maintain that decoupling aspect code from base 
code is an important requirement for any real-world AOP 
system. Another interesting feature of EJP’s is the handles list; 
a list of exception types attached to an explicit joinpoint 
declaration that constitutes a promise to the base code that 
these exceptions will be handled in some way by the advising 
aspect. 
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E. Modular Aspect with Ownership 

Modular Aspects with Ownership (MAO) was developed 
by [6] as an extension to AspectJ 5. MAO’s design applies 
ideas of ownership and effects annotations to improve modular 
reasoning in the presence of aspects. Ownership systems 
require programmers to explicitly attach an owner to 
instantiated objects in the system. In the context of MAO, 
owners are concern domains that are explicitly declared. The 
purpose of bringing this idea into AspectJ is to help 
programmers and tools identify control and heap effects of 
advice. A control effect is a change in the control flow of the 
advised code, whether it is base code or another aspect. A 
heap effect is a change in object state due to field 
mutation.MAO introduces two new annotations to AspectJ, 
@surround and @curbing. These annotations can apply to 
aspects or advice. Annotating an advice, irrespective of the 
particular kind, with either one, turns the advice into a control-
limited advice. This allows the programmer to express that a 
particular advice will have no control effects (using 
@surround annotation), or that the only allowed effects are 
thrown exceptions (using @curbing annotation). Similar 
meanings apply to aspects using these annotations. MAO uses 
the aspect annotation @surround to differentiate between 
spectator (no control effects) and non-spectator aspects. This 
is important because spectator aspects can be unconstrained in 
their advice and can be excluded instantly when reasoning 
about control effects.MAO refers to non-spectator aspects as 
assistants to highlight the notion of participation from the 
aspect side in modifying the behavior of a base code 
component.MAO also uses explicit assistance acceptance, 
which means that the base code explicitly announces that it 
can receive advising from certain aspects. MAO proposes an 
accept declaration for the advised code to use. Two types of 
assistance exist. One in which an assistant modifies behavior 
for a component directly (implementation utilities), and 
another in which an assistant modifies behavior for clients of a 
module client utilities. This distinction supports modular 
reasoning about behavior in the presence of assistants. When it 
comes to heap effects, MAO’s ownership and effects system 
uses annotations like @readonly and @writes to express 
potential heap effects of the advice application. These 
annotations help with associating objects (arguments, target, 
etc.) involved in the advice context with their heap effects if 
any. MAO also introduces a simple writes pointcut that further 
refines advice application by allowing programmers to select 
joinpoints that produce heap effects on a particular concern 
domain. The concern domain is passed as a parameter to the 
writes pointcut.MAO addresses a fundamental impediment to 
the adoption of AOP, lack of modular reasoning in the 
presence of aspects. MAO supports modular reasoning using a 
strong type-theoretic foundation 

III. AOP-ASPECTJ 

AspectJ an extension to Java is as the representative AOP 
language [12, 16], being the defacto standard of AOP 
implementation today. A crosscutting concern is a functional 
requirement that cannot be implemented in an encapsulated 
fashion. The inherent nature of such functionality is that it has 
to be delegated to various, possibly unrelated, components in 

the system. Hence, it crosscuts the primary structural 
decomposition of a software system. Even though those 
concerns may have been modeled separately, maintenance is 
still a challenge because once implemented they dissolve into 
the code. Crosscutting concerns lead to the following two 
phenomena in code. Tangling occurs when code implementing 
a crosscutting concern is mixed with code implementing 
primary functionality of a component. Scattering occurs when 
a concern/functionality is assigned to several components 
where the assigned concern is unrelated to the key concepts 
the components model in the application domain. Aspect 
Orientation (AO) started as a mechanism for dealing with 
implementation issues pertaining to crosscutting concerns. 
Focusing on detangling functionality and isolating code that 
used to be scattered. AO provides code locality of the 
crosscutting concern implementation using an abstraction 
referred to as an aspect. AO is on its way to becoming more of 
a methodology and is being integrated into earlier phases of 
the software process, as early as requirements specification 
[7].An Aspect is a unit of abstraction that represents a 
crosscutting concern. Depending on the 
implementation/context it has been called a slice as in Hyper/J 
[8,9], an aspect as in AspectJ [12,16] and a theme as in 
Theme/UML [9].Ideally, all behavior handled by the 
crosscutting concern should be localized in the aspect(s) 
representing it. In order to realize the original behavior of the 
system after eliminating tangling and/or scattering from 
primary system components, AOP relies on a core mechanism, 
advice. 

AOP inherited the concpect of advice from Common Lisp 
[5]. AOP can be viewed as the ability to make quantified 
statements about sets of points in the program where a piece of 
behavior (an advice) needs to be executed [7, 9, 10]. A 
pointcut is a quantification mechanism that expresses the 
selection of sets of program points where an advice would be 
executed. A point in the program selected by a pointcut is 
called a joinpoint. Joinpoints include constructor calls, method 
calls, accessing/mutating a field, etc. In AspectJ, for example, 
given a method call joinpoint j selected by pointcut p, there are 
five advising options. These are: before, after, after returning, 
after throwing, and around advice kinds. At j, a before/after 
advice will execute prior/post to the execution of the body of 
method picked by j. Similarly, after returning and after 
throwing advices run upon returning/throwing an exception 
from the method at the call joinpoint. An around advice allows 
wrapping (and possibly replacing altogether) the method at j 
within the advice code. 

IV. MODULARITY UNDER AOP 

Ideally, in a modularly designed system, modules are self-
contained, loosely coupled, amenable to parallel development, 
and the system’s composition into a specific configuration can 
be computed and verified in a reasonable amount of time. 
Modular reasoning has been defined as the ability to anticipate 
the behavior of a component, say A, based only on A’s 
interface specification and the interfaces of components 
referenced by A’s interface[14]. 

We believe this view of modular reasoning is flawed in the 
case of classical AOP (AspectJ-style implementations). Even 
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in the ideal case, we know from systems engineering that we 
cannot completely anticipate the behavior of all components in 
the system without considering the specific 
configuration/environment where modules are operating. We 
agree with the work of aspect-aware interfaces by Kiczales 
and Mezini [14]. In [14], the authors indicate that an OOP 
program is NOT the same program after AOP advises it. 
Neither the class nor the aspect is the unit of modularity 
anymore. It is not enough to examine the interface of a 
class/aspect to completely anticipate its behavior after 
composition. Some subtle interactions between the base code 
and aspect code may only be discovered after a certain 
configuration has been computed. This understanding drives 
this work’s underlying philosophy, that since base code and 
aspect code pariticipate in making up a module’s interface, 
then they should explicitly cooperate to preserve the module’s 
boundary without limiting AO capabilities. We see a module 
boundary extending beyond traditional class or aspect module 
boundaries with base code modules being responsible for 
carving out their module boundaries within the system. 

A. A Case Study-RideArrival System 

The RideArrival system [17] is a location-based service for 
cell phone users under development at Cream City Bitworks, 
Inc., Wisconsin. This system used here just for simulation 
purpose only and it’s an incomplete system as per the 
literature. The system is intended to attract more customers to 
the bus transit system by eliminating unnecessary waiting time 
at bus stops. The system uses GPS technology to track bus 
locations with respect to a set of predefined landmarks. A user 
registers for the service using their cell phone or mobile device 
and receives an alert (an SMS message) when the bus is, say, 5 
minutes away from the user-specified bus stop. There are four 
main components in the system: 
1. One that handles raw bus location information as it is 
coming from the GPS unit. This component runs on a mobile 
device and sends “cleaned up” location information to the 
server for further processing. 
2. A server component that processes location information of 
buses. A system policy determined that bus location 
information is sensitive, so access and manipulations are 
restricted to certain parts of the system. 
3. A client that runs on mobile devices of users for signing up 
and requesting alerts. 
4. A server component that handles users’ incoming requests. 
Aspects were suggested for implementing the crosscutting 
concerns of logging and persistence. However, an AO solution 
had to be dropped because aspects could not afford two main 
things: 
i. The system is under development, so interfaces are not fully 
stable. Changes to the interfaces would trigger more 
maintenance on the aspect side, more work and more cost. For 
example, changes to the interface for book-marking bus stops 
on users’ clients induce changes to the persistence aspect. So 
aspects have to wait until the book-marking code is stable and 
there is no guarantee that extending functionality in the future 
will not break the persistence aspect. 
ii. Aspects have the potential of compromising the system’s 
integrity because sensitive data is now accessible through 
channels outside the interfaces of classes holding them and 

simply because everything in the class is fair game for an 
aspect.  

V.  AOP MODULARITY WITH IMAGE INTERFACE 
(I2) APPROACH 

In AO systems, aspects play the role of structure/behavior 
modifiers of base components [17]. Currently, in non-trivial 
systems, aspects are tightly coupled to the base code they 
operate on. This situation makes independent evolution and 
development of aspects and base code almost impossible. 
However, AO was primarily motivated and hailed for better 
modularity. We would expect better modularity to afford 
better evolution instead we ended up with the phenomenon 
called, the “aspect evolution paradox”. Even simple changes to 
interfaces in base code trigger updates in all dependent aspects 
in the system. In order to resolve this paradox, we need a 
language-level solution that would allow loose coupling 
between base code and aspects. This solution should not limit 
aspect capability, should enhance modularity, and should 
allow independent evolution of aspects and the base code. The 
Interface Image approach [17] is new approach for better 
enhanced modularity. 

A. What is an Intercafe Image (I2)? 

An Interface Image (I2) is a level of indirection through 
which all advising requests are carried out. An Interface Image 
provides a mechanism by which a class exposes a set of 
joinpoints through aliasing base code interface elements. In 
addition to aliasing, the image incorporates advising 
constraints per joinpoint that aspects are expected to honor. 
Aspects are developed against the aliases defined in the 
interface images of base code classes. Aspects are not allowed 
to advise classes directly. So only classes that declare images 
of their interfaces are advisable. This indirection decouples 
base code development from aspect development. It also 
creates a layer where control over aspect impact can be 
implemented without limiting how an aspect can potentially 
advise a module.  

In this design, an I2 provides the following benefits: 
1. A class uses the I2 mechanism to exercise control over what 
is advisable without limiting aspect-oriented capabilities. The 
class is now an active participant in the advising process since 
it is up to the class to expose/hide the joinpoints that help 
realize its functionality without compromising its integrity. 
For each exposed joinpoint, advising constraints can be 
attached to disallow unwanted aspect advising. In addition, 
constraints allow more control on code instrumentation by 
turning advice execution on/off, which can be of value during 
testing and debugging. The I2 semantics is that if a class does 
not provide an image then it becomes unadvisable. The 
interface image is the gate through which all advising 
operations can go into a class. This relates to trait shyness: 
minimizing communication channels. The controlled flow of 
aspect activity can also help with program understanding and 
reasoning in the presence of aspects. 
2. If new elements are added to the interface of a class, the 
interface image does not need to change if the new elements 
are unadvisable. If they are, the image needs to be updated 
accordingly, but the aspects are left untouched. Thus 
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preventing the ripple effects of updating aspects whenever a 
class’ interface changes thereby enhancing maintenance. 
Parallel development can also benefit from this loose 
coupling. Interface images and core functionality can undergo 
a relatively short design phase, and then aspect development 
and core modules’ development can proceed independently. 
3. The I2 serves as a specification of advisable interface 
elements for base code and aspect developers alike. 

This work studies the interface image approach in the 
context of classes only.  

B. Banking Authorization 

This example is adapted from Laddad’s, AspectJ in Action 
[24]. The example was originally developed by Laddad to 
showcase modularity of an AspectJ solution over a 
conventional Java solution. The context is an authorization 
service in a banking system. The example makes calls to the 
JAAS (Java Authentication and Authorization Service) API. In 
this example, we assume the set of operations requiring 
authorization is exactly the same set requiring authentication. 
Authentication is confirming to the system that a user entity is 
indeed “who” they claim to be. Authorization is deciding if an 
authenticated user has enough clearance to perform certain 
operations or access certain resources. The base code for this 
example is shown in figures 2 and 3. The code is simple, 
performing basic operations on bank accounts, including inter-
account funds transfer (figure 3).The AspectJ solution uses an 
abstract aspect, AbstractAuthAspect, that provides an 
implementation of an authorization protocol using the JAAS 
API.  

public class AccountSimpleImpl implements Account { 
private int accountNumber; 
private float balance; 
/* constructors and accessors omitted for brevity */ 
public void credit(float amount) { 
balance = balance + amount; 
} 
public void debit (float amount) 
throws InsufficientBalanceException { 
if (balance < amount) { 
throw new InsufficientBalanceException( 
"Total balance not sufficient"); 
} else { 
balance = balance - amount; 
} 
} 
} 

Figure 2: Class AccountSimpleImpl [Laddad] 

This abstract aspect provides an abstract pointcut 
authOperations() as a hook for concrete derived aspects to 
quantify which operations in the system they want to apply the 
authorization protocol to. A derived concrete aspect, 
BankingAuthAspect, that fully implements the authorization 
concern.  

package banking; 
public class InterAccountTransferSystem { 
public static void transfer (Account from, Account to, 

float amount) 
throws InsufficientBalanceException { 
from.debit (amount); 
to.credit (amount); 
} 
} 

Figure 3: Class InterAccountTransferSystem [Laddad] 

Here we included brief about Banking Application, complete 
details available in [16].So we use the I2[17] to engage the 
base code in the process through the open to clause. Providing 
a means for the base code to be involved in regulating 
advising crossing its boundary using the image construct 
enhances over all system robustness. The image as it is allows 
advising without aliasing on all methods for simplicity since 
this example focuses more on advising constraints. 

VI. CONCLUSIONS 

This work attempts to review the AOP shortcoming and 
provide a solution to make more room for AOP adoption. The 
interface Image (I2) approach [17], an attempt at a design 
geared toward solving the AOP modularity problem. We 
provide a language-level solution to both problems in the form 
of a new construct added to classes. The construct exports a 
view of the advisable class interface for aspects to refer to 
instead of member method signatures directly. Additionaly, 
the new image construct allows classes to attach advising 
constraints to joinpoints guiding advice applications coming 
from the aspect side. Another interesting extension, is 
allowing interfaces and aspects to declare images. Allowing 
aspects to declare images should help to reduce coupling 
among aspects that advise each other. We argue that interface 
images development can benefit from tool support. We believe 
that the ease of use of interface images will bring more 
adoption of AOP into the software engineering community.  
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