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Abstract-Various concurrency control algorithms have been 
proposed for use in distributed database systems. But, the 
number of algorithms available for the distributed 
concurrency control, come into one of three basic classes: 
locking algorithms, Timestamp algorithms and optimistic (or 
certification) algorithms. In this paper we are presenting a 
Distributed Transaction Processing Model and an approach 
for concurrency control in distributed database systems. The 
analysis of our approach is a decomposition of the concurrency 
control problem into two major sub-problems: read-write and 
write-write synchronization. We describe a series of 
synchronization techniques for solving each sub-problem and 
will show how to combine these techniques into algorithms for 
solving the entire concurrency control problem. Such 
algorithms are called "concurrency control methods". Our 
approach concentrates on the structure and correctness of 
concurrency control methods and also the performance of such 
methods up to some extent. 
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I. INTRODUCTION 

Concurrency control is the activity of coordinating 
concurrent accesses to a database in a multi-user Database 
Management System (DBMS). Concurrency control permits 
users to access a database in a multi-programmed manner 
provided each user is executing alone on a dedicated system. 
The main technical difficulty in attaining this goal is to 
prevent database updates performed by one user from 
interfering by another user. The concurrency control is very 
complex problem in Distributed DBMS (DDBMS) because 
(1) users may access data stored in many different 
computers in a distributed system, and (2) a concurrency 
control mechanism at one computer cannot instantaneously 
know about the interactions at other computers. 

Concurrency control has been actively investigated for 
the past several years, and the problem for non-distributed 
DBMSs is well understood. A mathematical theory has been 
developed to analyze the problem, and one approach, called 
two-phase locking, has been accepted as a standard solution. 
Recent research on non-distributed concurrency control is 
mainly focused on improvements to two-phase locking, 

detailed performance analysis and optimization. Distributed 
concurrency control, by contrast, focuses on consistency, 
degree of concurrency and abort ratios. Numbers of 
concurrency control algorithms [1, 2, 3] have been proposed 
for DDBMS, and several have been implemented. These 
algorithms are usually complex, hard to understand, and 
difficult to prove correct because they are described in 
different terminologies and make different assumptions 
about the DDBMS environment. 

Most of the concurrency control algorithms proposed 
previously were concerned with ensuring the atomicity 
property of the transactions in Distributed Database. We are 
proposing a standard model for the DDBMS environment. 
For analysis purpose we decompose the concurrency control 
problem into two major sub-problems, called read-write 
(rw) and write-write (ww) synchronization. Every 
concurrency control algorithm must include a sub-algorithm 
to solve each sub-problem. The first step towards 
understanding a concurrency control algorithm is to isolate 
the sub-algorithm employed for each sub-problem. 
After studying relevant proposed algorithms [4, 5], we find 
that they are composition of only a few sub-algorithms. In 
fact, the sub-algorithms used by all practical DDBMS 
concurrency control algorithms are variations of just two 
basic techniques: two-phase locking and time-stamp 
ordering. 
In the remainder of this paper, section 2 describes the 
concurrency control problems. The structure and 
functionality of our Distributed Transaction Processing 
model are described in section 3 and implementation of 
transaction synchronization and testing on our model in 
section 4. Finally, section 5 summarizes the main conclusion 
of this study and raises questions that we plan to address in 
the future. 

II. CONCURRENCY CONTROL PROBLEM 

A. Concurrency Control Anomalies 

The goal of concurrency control is to prevent 
interference among users who are simultaneously accessing 
the same database. Let us illustrate the problem by 
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presenting two examples of inter-user interference. Both 
examples are based on online electronics funds transfer 
system accessed via remote automated teller machines 
(ATMs). In response to customer requests, ATMs retrieve 
data from a database, perform computations, and store 
results back into the database. 
Anomaly 1: lost updates. Suppose two customers 
simultaneously try to deposit money into the same account. 
In the absence of concurrency control, these two activities 
could interfere (see Figure 1). The two ATMs handling the 
two customers could read the account balance at 
approximately same time, compute new balances in parallel, 
and then store the new balances back into the database. The 
net effect is incorrect. Although two customers deposited 
money, the database only reflects one activity; the other 
deposit is lost by the system. 

 
Anomaly 2: Inconsistent retrievals.  
Suppose two customers simultaneously execute following 
transactions. 
Customer 1: moving $1000 from saving account S to its 
checking account C. 
Customer 2: print the total balance of S and C. 

In the absence of concurrency control, these two 
transactions can interfere (see Figure 2). The first 
transaction might read the savings account balance, subtract 
$1000, and store the result back in the database. Then the 
second transaction might read the savings and checking 
accounts balances and print the total. Then the first 
transaction might finish the funds transfer by reading the 
checking account balance, adding $1000, and finally storing 
the result in the database. Unlike Anomaly 1, the final 
values placed into the database by this execution are correct. 
Still, the execution is incorrect because the balance printed 
by Customer 2 is $1000 short. These two examples are 
typical of the concurrency control problems that arise in 
DBMSs.  

 

 
B. Comparison to Mutual Exclusion Problems 

The concurrency control problem in database system is 
similar in some respects of mutual exclusion in operating 
systems. The latter problem is concerned with coordinating 
access by concurrent processes to system resources such as 
memory, I/O devices, and CPU. Many solution techniques 
have been developed, including locks, semaphores, 
monitors, and serializers [6, 7, 8, 9]. 
Mutual Exclusion is one of the necessary and sufficient 
conditions for concurrency control methods to control 
concurrent accesses to shared resources. However, mutual 
exclusion that works for operating system does not 
necessarily work for DBMS, as illustrated by the following 
example. Suppose processes P1 and P2 require access to 
resources R1 and R2 at different points in their execution. In 
an operating system, the following interleaved execution of 
these processes is perfectly acceptable:  
P1 uses R1  
P2 uses R1 
P2 uses R2  
P1 uses R2  
In a database, however, this execution is not always 
acceptable. Assume, for example, that P2 transfer funds by 
debiting one account (R1), then crediting another (R2). If P2 
checks both balances, it will see R1 after it has been debited, 
but see R2 before it has been credited. Other differences 
between concurrency control and mutual exclusion are 
discussed in [10, 11, 12]. 
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III. DISTRIBUTED TRANSACTION-PROCESSING 

MODEL 

To understand how a concurrency control algorithm 
operates, one must understand how the algorithm fits into an 
overall DDBMS. In this section we propose a simple model 
for DDBMS, emphasizing how the DDBMS processes user 
interactions. Later we will explain how concurrency control 
algorithms operate in the context of this model. Our 
distributed transaction processing model differs from the 
centralized model in two areas: handling private workspaces 
and implementing two-phase commit. 

DDBMS is a collection of sites interconnected by a 
network. It contains four components (see Figure 3):  

 Transactions  
 Transaction Managers (TMs) 
 Data Managers (DMs)  
 Data 
Transactions communicate with TMs, TMs in turn 

communicate with DMs, and DMs manage the data. It is 
important to not that neither TMs communicate with other 
TMs, nor DMs communicate with other DMs.  

 
Each transaction executed in the DDBMS is supervised 

by a single TM, meaning that the transaction issues all of its 
database operations to that TM. Further, any distributed 
computation that is needed to execute transaction is 
managed by TM. TMs supervise interactions between users 
and the DDBMS while DMs manages the actual database.  

Given computer network is assumed to be perfectly 
reliable i.e. if site A sends a message to site B, site B is 
guaranteed to receive the message without error or vice 
versa. In addition, we assume that between any pair of sites 
the network delivers messages in the order they were sent. 
From a user's perspective, a database consists of a collection 
of logical data items, denoted X, Y, Z. A logical database 
state is an assignment of values to the logical data items 
composing a database. Each logical data item may be stored 
at any DM in the system or redundantly at several DMs. A 

stored copy of a logical data item is called a stored data 
item. In this paper, we use the term data item for stored data 
item. The stored copies of logical data item X are denoted 
Xl . . . . . Xm. We typically use X to denote an arbitrary 
stored data item. A stored database state is an assignment of 
values to the stored data items in a database. Users interact 
with the DDBMS by executing transactions. Transactions 
may be on-line queries expressed in a self-contained query 
language, or application programs written in a general-
purpose programming language.  

The concurrency control algorithms we study pay no 
attention to the computations performed by transactions. 
Instead, these algorithms make all of their decisions on the 
basis of the data items a transaction reads and writes, and so 
details of the form of transactions are unimportant in our 
analysis. However we do assume that transactions represent 
complete and correct computations; each transaction, if 
executed alone on an initially consistent database, would 
terminate, produce correct results, and leave the database 
consistent. The logical readset (correspondingly, writeset) 
of a transaction is the set of logical data items the 
transaction reads (or writes). Similarly, stored readsets and 
stored writesets are the stored data items that a transaction 
reads and writes. 

The correctness of a concurrency control algorithm is 
defined relative to users' expectations regarding transaction 
execution. There are two correctness criteria: (1) users 
expect that each transaction submitted to the system will 
eventually be executed; (2) users expect the computation 
performed by each transaction to be the same whether it 
executes alone in a dedicated system or in parallel with 
other transactions in a multi-programmed system. Realizing 
this expectation is the principal issue in concurrency control. 

Four operations are defined at the transaction TM 
interface: 

 READ(X) returns the value of X (a logical data 
item) in the current logical database state 

  WRITE(X, new-value) creates a new logical 
database state in which X has the specified new 
value.  

Since transactions are assumed to represent complete 
computations, we use  
 BEGIN and  
 END operations to bracket transaction executions. 
DMs manage stored database, functioning as back-end 

database processors. In response to commands from 
transactions, TMs issue commands to DMs specifying 
stored data items to be read or written. The details of the 
TM-DM interface constitute the core of our transaction-
processing model.  

In a centralized DBMS we assumed that (1) private 
workspaces were part of the TM, and (2) data could freely 
move between a transaction and its workspace, and between 
a workspace and the DM. These assumptions are not 
appropriate in a DDBMS because TMs and DMs may run at 
different sites and the movement of data between a TM and 
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Figure 3: DDBMS Transaction processing Model  
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a DM can be expensive. To reduce this cost, many 
DDBMSs employ query optimization procedures which 
regulate and reduce the flow of data between sites.  

IV. TRANSACTIONS SYNCHRONIZATION 
BASED ON TWO-PHASE LOCKING 

In this section, we have presented two-phase locking as 
the most widely used technique for Transaction 
Synchronization and implementation of two-phase locking 
(2PL) in Distributed Database. Two-phase locking (2PL) 
synchronizes reads and writes by explicitly detecting and 
preventing conflicts between concurrent operations. Before 
reading data item x, a transaction must "own" a read-lock on 
x. Before writing into x, it must "own" a write-lock on x. 
The locks are granted to transaction by two rules: (1) 
different transactions cannot simultaneously own conflicting 
locks; and (2) once a transaction releases the lock, it may 
never obtain additional locks.  

The definition of conflicting lock depends on the type 
of synchronization being performed. The rw 
synchronization states that if a transaction has read-lock on 
x then no other transaction can have write-lock on x at the 
same time. For rw synchronization two locks conflicts exist 
if: (a) both locks are on the same data item, and (b) one is a 
read-lock and the other is a write-lock. 

On the other hand, the ww synchronization states that if 
a transaction has write-lock on x then no other transaction 
can have write-lock on x at the same time. For ww 
synchronization two locks conflicts if: (a) both locks are on 
the same data item, and (b) both are write-locks.       

The ownership rule of lock states that every transaction 
is to obtain locks in a two-phase manner. During the 
growing phase the transaction obtains locks without 
releasing any locks. By releasing a lock the transaction 
enters the shrinking phase (see Figure 4). During this phase 
the transaction releases locks, and is prohibited from 
obtaining additional locks.  

 

  
 
 
Another variant of two-phase locking (2PL) is the 

strict-two phase locking, which requires not only the locking 
be two phases, but also all locks taken by a transaction be 

held until that transaction commits. When the transaction 
terminates (or aborts), all remaining locks are automatically 
released. 

 
A common variation requires that transactions obtain all 

locks before beginning the main execution. This variation is 
called pre-declaration. Some systems also require that 
transactions hold all locks until termination. 

Two-phase locking is a correct synchronization 
technique, meaning that 2PL attains an acyclic RWR 
(WW) relation when used for rw (ww) synchronization [13, 
14, 15]. The serialization order attained by 2PL is 
determined by the order in which transactions obtain locks. 
The end point of the growing phase, when a transaction 
owns its final lock, is called the locked point of the 
transaction [13] (see Figure 4 & 5). Let E be an execution in 
which 2PL is used for rw (ww) synchronization. The RWR 
(WW) relation induced by E is identical to the relation 
induced by a serial execution E' in which every transaction 
executes at its locked point. Thus the locked points of E 
determine a serialization order for E.  

A. Implementation of 2PL 

The 2PL implementation is a 2PL scheduler, a software 
module that receives lock requests and locks release request, 
processes them according to the 2PL specification. 

To implement 2PL in a distributed database is to 
distribute the schedulers along with the database, placing the 
scheduler for data item X at the DM where X is stored. In 
this implementation read-locks may be implicitly requested 
by dm-reads and write-locks may be implicitly requested by 
pre-writes. If the requested lock cannot be granted, the 
operation is placed on a waiting queue for the desired data 
item. This may produce deadlock, as discussed in Section E. 
Write-locks are implicitly released by dm-writes. However, 
to release read-locks, special lock-release operations are 
required. These lock releases may be transmitted in parallel 
with the dm-writes, since the dm-writes signal the start of 
the shrinking phase. When a lock is released, the operations 
on the waiting queue of that data item are processed in first-
in/ first-out (FIFO) order. 

Note that this implementation "automatically" handles 
redundant data correctly. Suppose logical data item X has m 
copies viz. Xl, . . . , Xm. If basic 2PL is used for rw 
synchronization, a transaction may read any copy and need 
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Read-Lock(X) 
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Write-Lock (Z) 
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Read-Lock(Y) 

T1 T2

T3 

Figure 6: Deadlock 

only obtain a read-lock on the copy of X it actually reads. 
However, if a transaction updates X, then it must update all 
m copies of X, and so must obtain write-locks on all m 
copies of X. 

B. Primary Copy 2PL 
Primary copy 2PL is a 2PL technique that handles the data 
redundancy. One copy of each logical data item is 
designated the primary copy; before accessing any copy of 
the logical data item, the appropriate lock must be obtained 
on the primary copy. 

For read-locks, this technique requires more 
communication than basic 2PL. Suppose Xl is the primary 
copy of logical data item X, and suppose transaction T 
wishes to read some other copy Xi, of X. To read Xi, T must 
communicate with two DMs, the DM where Xl is stored (so 
T can lock Xl) and the DM where Xl. By contrast, under 
basic 2PL, T would only communicate with Xl's DM. For 
write-locks, however, primary copy 2PL does not incur 
extra communication. Suppose T wishes to update X. Under 
basic 2PL, T would issue pre-writes to all copies of X 
(thereby requesting write-locks on these data items) and 
then issue dm-writes to all copies. Under primary copy 2PL 
the same operations would be required, but only the pre-
write (Xl) would request a write-lock. That is, pre-writes 
would be sent for Xl . . . Xm, but the pre-writes for X2 . . . . . 
Xm would not implicitly request write-locks. 

C. 2PL Voting Protocol 
Voting 2PL (or majority consensus 2PL) is another 2PL 
implementation that exploits data redundancy. Voting 2PL 
is derived from the majority consensus technique in and is 
only suitable for ww synchronization.  

To understand voting, we must examine it in the 
context of two-phase commit. Suppose transaction T wants 
to write into X. Its TM sends pre-writes to each DM holding 
a copy of X. For the voting protocol, the DM always 
responds immediately. It acknowledges receipt of the pre-
write and says "lock-set" or "lock blocked". After the TM 
receives acknowledgments from the DMs, it counts the 
number of "lock-set" responses: if the number constitutes a 
majority, then the TM behaves as all locks were set. 
Otherwise, it waits for "lockset" operations from DMs that 
originally said "lock blocked". It will eventually receive 
enough "lockset" operations to proceed. 

Since only one transaction can hold a majority of locks 
on X at a time, only one transaction writing into X can be in 
its second commit phase at any time. All copies of X 
thereby have the same sequence of writes applied to them. A 
transaction's locked point occurs when it has obtained a 
majority of its write-locks on each data item in its write-set. 
When updating many data items, a transaction must obtain a 
majority of locks on every data item before it issues any dm-
writes. 

In principle, voting 2PL could be adapted for rw 
synchronization. Before reading any copy of X transaction 

requests read-locks on all copies of X; when a majority of 
locks are set, the transaction may read any copy. This 
technique works but is overly strong: Correctness only 
requires that a single copy of X be locked-namely, the copy 
that is read-yet this technique requests locks on all copies. 
For this reason we consider that voting 2PL to be 
inappropriate for rw synchronization. 

D. Centralized 2PL 

Instead of distributing the 2PL schedulers, one can 
centralize the scheduler at a single site [16, 17]. Before 
accessing data at any site, appropriate locks must be 
obtained from the central 2PL scheduler. So, for example, to 
perform dm-read(X) where X is not stored at the central site, 
the TM must first request a read-lock on X from the central 
site, wait for the central site to acknowledge that the lock 
has been granted, then send dm-read(X) to the DM that 
holds X. (To save some communication, one can have the 
TM send both the lock request and dm-read (X) to the 
central site and let the central site directly forward dm-
read(X) to X's DM; the DM then responds to the TM when 
dm-read (X) has been processed.) Like primary copy 2PL, 
this approach tends to require more communication than 
basic 2PL, since dm-reads and pre-writes usually cannot 
implicitly request locks. 

E. Deadlock Detection and Prevention 

The implementations of 2PL force transactions to wait if 
locks are not granted. If this waiting is uncontrolled then 
deadlock may arises as shown in Figure 6. 
 

 
 
 

 
 
 
 
 
 
 
 
Deadlock situations can be characterized by waits-for 
graphs [18, 3], and directed graphs that indicate which 
transactions are waiting for which other transactions to 
release the locks. Nodes of the graph represent transactions, 
and edges represent the "waiting-for" relationship: an edge 
is drawn from transaction Ti, to transaction Tj if Ti, is 
waiting for a lock currently owned by Tj. The deadlock 
exists in a system if and only if the waits-for graph contains 
a cycle. Two general techniques can be used for deadlock 
resolution: deadlock prevention and deadlock detection. 

1) Deadlock Prevention: Deadlock prevention scheme 
protect the system from occurring the deadlock, a 
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BEGIN 
T1: 
READ(X1); 
WRITE (Y1); 
T3: 
WRITE (X1); 
END 

BEGIN 
T2: 
READ (Y2); 
WRITE (Z2); 
T1: 
WRITE (Y2); 
END 

BEGIN 
T3: 
READ (Z3); 
T2: 
WRITE (Z3); 
END 
 

Figure 7: Locks are request by the transactions at DMs 

transaction is restarted when the system assume that 
deadlock may occur. To implement deadlock prevention, 
2PL schedulers are modified as follows. When a lock 
request is denied, the scheduler tests the requesting 
transaction (say Ti,) and the transaction that currently owns 
the lock (say Tj). If Ti and Tj pass the test then Ti is 
permitted to wait for Tj as usual. Otherwise, one of the 
transactions is aborted. If Ti is restarted, the deadlock 
prevention algorithm is called non-preemptive; if Tj is 
restarted, the algorithm is called preemptive. The test 
applied by the scheduler must guarantee that if Ti, waits for 
Tj, then deadlock cannot result. One simple approach is 
never to let Ti wait for Tj. This trivially prevents deadlock 
but may forces many restarts. 

A better approach is to assign priorities to transactions 
and to test priorities to decide whether Ti, can wait for Tj. 
For example, we could let Ti, wait for Tj if Ti, has lower 
priority than Tj (if Ti and Tj have equal priorities, Ti, cannot 
wait for Tj, or vice versa). This test prevents deadlock 
because, for every edge (Ti, Tj) in the waits-for graph, Ti, 
has lower priority than Tj. Since a cycle is a path from a 
node to itself and since Ti, cannot have lower priority than 
itself, no cycle can exist. 

One problem with the previous approach is that there 
may be cyclic restart of the transactions because some 
transactions could be continually restarted without ever 
finishing. To avoid this problem, [19] proposes 
"timestamps" as priorities. A transaction's timestamp is the 
time at which it begins executing, so old transactions have 
higher priority than new ones transaction. This technique 
requires that a unique time-stamp should be assigned to each 
transaction by its TM.  

Two timestamp-based deadlock prevention schemes are 
proposed in [18]. Wait-Die is the non-preemptive technique. 
Suppose transaction Ti, tries to wait for Tj. If Ti, has lower 
priority than Tj (i.e., Ti, is younger than Tj), then Ti, is 
permitted to wait. Otherwise, it is aborted ("dies") and must 
be restart. It is important that new time-stamp should not be 
assigned to Ti, when it restarts. Wound-Wait is the 
preemptive and opposite to Wait-Die. If Ti has higher 
priority than Tj, then Ti waits; otherwise Tj is aborted. 

Both Wait-Die and Wound-Wait avoid cyclic restart. 
However, in Wound-Wait an old transaction may be 
restarted many times, while in Wait-Die old transactions 
never restart. It is suggested in [20] that Wound-Wait 
induces fewer restarts in total. 

If we use preemptive deadlock prevention with two-
phase commit then a transaction must not be aborted once 
the second phase of two-phase commit has started. If a 
preemptive technique wishes to abort Tj, it checks with Tj’s 
TM and cancels the abort if Tj has entered in second phase. 
No deadlock can result because if Tj is in the second phase, 
it cannot be waiting for any transactions. 

Deadlock avoidance technique is based on preordering 
of resources which avoids restarts altogether. This technique 
requires pre-declaration of locks (each transaction obtains 

all its locks before execution). Data items are numbered and 
each transaction requests locks one at a time in numeric 
order. The priority of a transaction is the number of the 
highest numbered lock it owns. Since a transaction can only 
wait for transactions with higher priority, no deadlocks can 
occur. In addition to requiring pre-declaration, a principal 
disadvantage of this technique is that it forces locks to be 
obtained sequentially, which increases the response time. 

2) Deadlock Detection in DDBMS: In deadlock 
detection technique, transactions wait for each other in an 
uncontrolled manner and are aborted when deadlock 
actually occurs. Deadlocks are detected by explicitly 
constructing the waits-for graph and searching it for cycles. 
Cycles in a graph can be found efficiently proposed in [21]. 
If a cycle is found, one transaction on the cycle, called the 
victim, is aborted, thereby breaking the deadlock. To 
minimize the cost of restarting the victim, victim selection is 
usually based on the amount of resources used by each 
transaction on the cycle. 

The principal difficulty in implementing deadlock 
detection in a distributed database is constructing the waits-
for graph efficiently. Each 2PL scheduler can easily 
construct the waits-for graph based on the waits-for 
relationships local to that scheduler. However, these local 
waits-for graphs are not sufficient to characterize all 
deadlocks in the distributed system (see Figure 7 & 8). 
Instead, local waits-for graphs must be combined into a 
more "global" waits-for graph. Centralized 2PL does not 
have this problem, since there is only one scheduler. We 
describe two techniques for constructing global waits-for 
graphs: centralized and hierarchical deadlock detection. 
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Figure 8: Deadlock on multi-sites 

 
 

 
 
 
 

 
 
 

 
In the centralized approach, one site is designated the 
deadlock detector for the distributed system [22, 23]. 
Periodically (e.g., every few minutes) each scheduler sends 
its local waits-for graph to the deadlock detector. The 
deadlock detector combines the local graphs into a system 
wide waits-for graph by constructing the union of the local 
graphs. 

In the hierarchical approach, the database sites are 
organized into a hierarchy (or tree), with a deadlock detector 
at each node of the hierarchy. For example, one might group 
sites by region, then by country, then by continent. 
Deadlocks that are local to a single site are detected at that 
site; deadlocks involving two or more sites of the same 
region are detected by the regional deadlock detector; and so 
on. 

Although centralized and hierarchical deadlock 
detection differs in detail, both involve periodic 
transmission of local waits-for information to one or more 
deadlock detector sites. The periodic nature of the process 
introduces two problems. First, a deadlock may exist for 
several minutes without being detected, causing response-
time degradation. The solution, executing the deadlock 
detector more frequently, increases the cost of deadlock 
detection. Second, a transaction T may be restarted for 
reasons other than concurrency control (e.g., its site 
crashed). Until T's restart propagates to the deadlock 
detector, the deadlock detector can find a cycle in the waits-
for graph that includes T. Such a cycle is called a phantom 
deadlock. When the deadlock detector discovers a phantom 
deadlock, it may unnecessarily restart a transaction other 
than T. Special precautions are also needed to avoid 
unnecessary restarts for deadlocks in voting 2PL. 

A major cost of deadlock detection is the restarting of 
partially executed transactions. Pre-declaration can be used 
to reduce this cost. By obtaining a transaction's locks before 
it executes, the system will only restart transactions that 
have not yet executed. Thus little work is wasted by the 
restart. 

V. CONCLUSION 

We have presented a transaction processing model for 
concurrency control in distributed database systems. Our 
approach has two main components: (1) a system model that 
provides common terminology and concepts used in a 
variety of concurrency control algorithms, and (2) a problem 

decomposition that decomposes concurrency control 
algorithms into read-write and write-write synchronization 
sub-algorithms. 

We have considered synchronization sub-algorithms 
outside the context of specific concurrency control 
algorithms. Generally most of the database synchronization 
algorithms are variations of two basic techniques- two-phase 
locking (2PL) and timestamp ordering technique. We have 
described the principal variations for each technique, 
without these variations we cannot claims all possible 
variations. In addition, we have described deadlock 
problems and its resolution that must be solved to make 
each technique effective. 

We have shown how to combine the described 
techniques to form complete concurrency control 
algorithms. We have considered almost all concurrency 
control algorithms described previously in the literature, 
plus several new ones.  

The focal point of this paper has primarily been the 
structure and correctness of synchronization techniques and 
concurrency control algorithms. We have left one important 
issue as performance. The performance factor of 
concurrency control algorithms depends on system 
throughput and transaction response time. Four cost factors 
influence the performance: inter-site communication, local 
processing, transaction restarts, and transaction blocking. 
The impact of these cost factors on system throughput and 
response time varies from algorithm to algorithm, system to 
system, and application to application. The performance 
analysis of algorithm is remains and will be our future work. 
We hope, and really recommend, that future work on 
distributed concurrency control will concentrate on the 
performance of algorithms.  
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