
Arun Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1984-1991

A Distributed Architecture for Transactions
Synchronization in Distributed Database Systems

Arun Kumar Yadav
Associate Professor & Head, Department of Computer

Science & Engineering
Nikhil Institute of Engineering & Management

Mathura (U.P.), India

Dr. Ajay Agarwal

Professor & Head, Department of MCA
Krishna Institute of Engg. & Technology

Ghaziabad (U.P.), India

Abstract-Various concurrency control algorithms have been
proposed for use in distributed database systems. But, the
number of algorithms available for the distributed
concurrency control, come into one of three basic classes:
locking algorithms, Timestamp algorithms and optimistic (or
certification) algorithms. In this paper we are presenting a
Distributed Transaction Processing Model and an approach
for concurrency control in distributed database systems. The
analysis of our approach is a decomposition of the concurrency
control problem into two major sub-problems: read-write and
write-write synchronization. We describe a series of
synchronization techniques for solving each sub-problem and
will show how to combine these techniques into algorithms for
solving the entire concurrency control problem. Such
algorithms are called "concurrency control methods". Our
approach concentrates on the structure and correctness of
concurrency control methods and also the performance of such
methods up to some extent.

Keywords: Distributed Database Management System,
Transaction Manager, Data Manager

I. INTRODUCTION

Concurrency control is the activity of coordinating
concurrent accesses to a database in a multi-user Database
Management System (DBMS). Concurrency control permits
users to access a database in a multi-programmed manner
provided each user is executing alone on a dedicated system.
The main technical difficulty in attaining this goal is to
prevent database updates performed by one user from
interfering by another user. The concurrency control is very
complex problem in Distributed DBMS (DDBMS) because
(1) users may access data stored in many different
computers in a distributed system, and (2) a concurrency
control mechanism at one computer cannot instantaneously
know about the interactions at other computers.

Concurrency control has been actively investigated for
the past several years, and the problem for non-distributed
DBMSs is well understood. A mathematical theory has been
developed to analyze the problem, and one approach, called
two-phase locking, has been accepted as a standard solution.
Recent research on non-distributed concurrency control is
mainly focused on improvements to two-phase locking,

detailed performance analysis and optimization. Distributed
concurrency control, by contrast, focuses on consistency,
degree of concurrency and abort ratios. Numbers of
concurrency control algorithms [1, 2, 3] have been proposed
for DDBMS, and several have been implemented. These
algorithms are usually complex, hard to understand, and
difficult to prove correct because they are described in
different terminologies and make different assumptions
about the DDBMS environment.

Most of the concurrency control algorithms proposed
previously were concerned with ensuring the atomicity
property of the transactions in Distributed Database. We are
proposing a standard model for the DDBMS environment.
For analysis purpose we decompose the concurrency control
problem into two major sub-problems, called read-write
(rw) and write-write (ww) synchronization. Every
concurrency control algorithm must include a sub-algorithm
to solve each sub-problem. The first step towards
understanding a concurrency control algorithm is to isolate
the sub-algorithm employed for each sub-problem.
After studying relevant proposed algorithms [4, 5], we find
that they are composition of only a few sub-algorithms. In
fact, the sub-algorithms used by all practical DDBMS
concurrency control algorithms are variations of just two
basic techniques: two-phase locking and time-stamp
ordering.
In the remainder of this paper, section 2 describes the
concurrency control problems. The structure and
functionality of our Distributed Transaction Processing
model are described in section 3 and implementation of
transaction synchronization and testing on our model in
section 4. Finally, section 5 summarizes the main conclusion
of this study and raises questions that we plan to address in
the future.

II. CONCURRENCY CONTROL PROBLEM

A. Concurrency Control Anomalies

The goal of concurrency control is to prevent
interference among users who are simultaneously accessing
the same database. Let us illustrate the problem by

ISSN : 0975-3397 1984

Arun Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1984-1991

presenting two examples of inter-user interference. Both
examples are based on online electronics funds transfer
system accessed via remote automated teller machines
(ATMs). In response to customer requests, ATMs retrieve
data from a database, perform computations, and store
results back into the database.
Anomaly 1: lost updates. Suppose two customers
simultaneously try to deposit money into the same account.
In the absence of concurrency control, these two activities
could interfere (see Figure 1). The two ATMs handling the
two customers could read the account balance at
approximately same time, compute new balances in parallel,
and then store the new balances back into the database. The
net effect is incorrect. Although two customers deposited
money, the database only reflects one activity; the other
deposit is lost by the system.

Anomaly 2: Inconsistent retrievals.
Suppose two customers simultaneously execute following
transactions.
Customer 1: moving $1000 from saving account S to its
checking account C.
Customer 2: print the total balance of S and C.

In the absence of concurrency control, these two
transactions can interfere (see Figure 2). The first
transaction might read the savings account balance, subtract
$1000, and store the result back in the database. Then the
second transaction might read the savings and checking
accounts balances and print the total. Then the first
transaction might finish the funds transfer by reading the
checking account balance, adding $1000, and finally storing
the result in the database. Unlike Anomaly 1, the final
values placed into the database by this execution are correct.
Still, the execution is incorrect because the balance printed
by Customer 2 is $1000 short. These two examples are
typical of the concurrency control problems that arise in
DBMSs.

B. Comparison to Mutual Exclusion Problems

The concurrency control problem in database system is
similar in some respects of mutual exclusion in operating
systems. The latter problem is concerned with coordinating
access by concurrent processes to system resources such as
memory, I/O devices, and CPU. Many solution techniques
have been developed, including locks, semaphores,
monitors, and serializers [6, 7, 8, 9].
Mutual Exclusion is one of the necessary and sufficient
conditions for concurrency control methods to control
concurrent accesses to shared resources. However, mutual
exclusion that works for operating system does not
necessarily work for DBMS, as illustrated by the following
example. Suppose processes P1 and P2 require access to
resources R1 and R2 at different points in their execution. In
an operating system, the following interleaved execution of
these processes is perfectly acceptable:
P1 uses R1
P2 uses R1
P2 uses R2
P1 uses R2
In a database, however, this execution is not always
acceptable. Assume, for example, that P2 transfer funds by
debiting one account (R1), then crediting another (R2). If P2
checks both balances, it will see R1 after it has been debited,
but see R2 before it has been credited. Other differences
between concurrency control and mutual exclusion are
discussed in [10, 11, 12].

$ 4000
$ 1000
$ 5000
$ 5000

$ 5000
$ 4000
$ 4000

$1000
$2000
$2000

Database
Saving(S) = $ 5000

Checking(C) = $ 1000

Read (S)
S: =S-1000;
Write (Bal)

Read (C)
C:
=C+1000;
Write (Bal)

Read (S)
Read (C)
Total: =S+C;
Print Total

Client 1
Transaction T1

Client 2
Transaction T2

Figure 2: Inconsistent Retrieval Anomaly

$ 5000
$ 7000
$ 7000

$ 5000
$ 6000
$ 6000

Database
BAL= $ 5000

Read (Bal)
Bal:=Bal+1000;
Write (Bal)
(Write result back
to the database)

Read (Bal)
Bal:=Bal+2000;
Write (Bal)
(Write result back
to the database)

Client 1
Transaction T1

Client 2
Transaction T2

Figure 1: Lost update Anomaly

ISSN : 0975-3397 1985

Arun Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1984-1991

III. DISTRIBUTED TRANSACTION-PROCESSING

MODEL

To understand how a concurrency control algorithm
operates, one must understand how the algorithm fits into an
overall DDBMS. In this section we propose a simple model
for DDBMS, emphasizing how the DDBMS processes user
interactions. Later we will explain how concurrency control
algorithms operate in the context of this model. Our
distributed transaction processing model differs from the
centralized model in two areas: handling private workspaces
and implementing two-phase commit.

DDBMS is a collection of sites interconnected by a
network. It contains four components (see Figure 3):

 Transactions
 Transaction Managers (TMs)
 Data Managers (DMs)
 Data
Transactions communicate with TMs, TMs in turn

communicate with DMs, and DMs manage the data. It is
important to not that neither TMs communicate with other
TMs, nor DMs communicate with other DMs.

Each transaction executed in the DDBMS is supervised

by a single TM, meaning that the transaction issues all of its
database operations to that TM. Further, any distributed
computation that is needed to execute transaction is
managed by TM. TMs supervise interactions between users
and the DDBMS while DMs manages the actual database.

Given computer network is assumed to be perfectly
reliable i.e. if site A sends a message to site B, site B is
guaranteed to receive the message without error or vice
versa. In addition, we assume that between any pair of sites
the network delivers messages in the order they were sent.
From a user's perspective, a database consists of a collection
of logical data items, denoted X, Y, Z. A logical database
state is an assignment of values to the logical data items
composing a database. Each logical data item may be stored
at any DM in the system or redundantly at several DMs. A

stored copy of a logical data item is called a stored data
item. In this paper, we use the term data item for stored data
item. The stored copies of logical data item X are denoted
Xl Xm. We typically use X to denote an arbitrary
stored data item. A stored database state is an assignment of
values to the stored data items in a database. Users interact
with the DDBMS by executing transactions. Transactions
may be on-line queries expressed in a self-contained query
language, or application programs written in a general-
purpose programming language.

The concurrency control algorithms we study pay no
attention to the computations performed by transactions.
Instead, these algorithms make all of their decisions on the
basis of the data items a transaction reads and writes, and so
details of the form of transactions are unimportant in our
analysis. However we do assume that transactions represent
complete and correct computations; each transaction, if
executed alone on an initially consistent database, would
terminate, produce correct results, and leave the database
consistent. The logical readset (correspondingly, writeset)
of a transaction is the set of logical data items the
transaction reads (or writes). Similarly, stored readsets and
stored writesets are the stored data items that a transaction
reads and writes.

The correctness of a concurrency control algorithm is
defined relative to users' expectations regarding transaction
execution. There are two correctness criteria: (1) users
expect that each transaction submitted to the system will
eventually be executed; (2) users expect the computation
performed by each transaction to be the same whether it
executes alone in a dedicated system or in parallel with
other transactions in a multi-programmed system. Realizing
this expectation is the principal issue in concurrency control.

Four operations are defined at the transaction TM
interface:

 READ(X) returns the value of X (a logical data
item) in the current logical database state

 WRITE(X, new-value) creates a new logical
database state in which X has the specified new
value.

Since transactions are assumed to represent complete
computations, we use
 BEGIN and
 END operations to bracket transaction executions.
DMs manage stored database, functioning as back-end

database processors. In response to commands from
transactions, TMs issue commands to DMs specifying
stored data items to be read or written. The details of the
TM-DM interface constitute the core of our transaction-
processing model.

In a centralized DBMS we assumed that (1) private
workspaces were part of the TM, and (2) data could freely
move between a transaction and its workspace, and between
a workspace and the DM. These assumptions are not
appropriate in a DDBMS because TMs and DMs may run at
different sites and the movement of data between a TM and

Stored
Data

Stored
Data

Stored
Data

DM1 DM2 DMN

TM1 TM2 TMN

T1.......TN T1.......TN T1.......TN

Figure 3: DDBMS Transaction processing Model

Site 1 Site 2 Site N

ISSN : 0975-3397 1986

Arun Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1984-1991

a DM can be expensive. To reduce this cost, many
DDBMSs employ query optimization procedures which
regulate and reduce the flow of data between sites.

IV. TRANSACTIONS SYNCHRONIZATION
BASED ON TWO-PHASE LOCKING

In this section, we have presented two-phase locking as
the most widely used technique for Transaction
Synchronization and implementation of two-phase locking
(2PL) in Distributed Database. Two-phase locking (2PL)
synchronizes reads and writes by explicitly detecting and
preventing conflicts between concurrent operations. Before
reading data item x, a transaction must "own" a read-lock on
x. Before writing into x, it must "own" a write-lock on x.
The locks are granted to transaction by two rules: (1)
different transactions cannot simultaneously own conflicting
locks; and (2) once a transaction releases the lock, it may
never obtain additional locks.

The definition of conflicting lock depends on the type
of synchronization being performed. The rw
synchronization states that if a transaction has read-lock on
x then no other transaction can have write-lock on x at the
same time. For rw synchronization two locks conflicts exist
if: (a) both locks are on the same data item, and (b) one is a
read-lock and the other is a write-lock.

On the other hand, the ww synchronization states that if
a transaction has write-lock on x then no other transaction
can have write-lock on x at the same time. For ww
synchronization two locks conflicts if: (a) both locks are on
the same data item, and (b) both are write-locks.

The ownership rule of lock states that every transaction
is to obtain locks in a two-phase manner. During the
growing phase the transaction obtains locks without
releasing any locks. By releasing a lock the transaction
enters the shrinking phase (see Figure 4). During this phase
the transaction releases locks, and is prohibited from
obtaining additional locks.

Another variant of two-phase locking (2PL) is the

strict-two phase locking, which requires not only the locking
be two phases, but also all locks taken by a transaction be

held until that transaction commits. When the transaction
terminates (or aborts), all remaining locks are automatically
released.

A common variation requires that transactions obtain all

locks before beginning the main execution. This variation is
called pre-declaration. Some systems also require that
transactions hold all locks until termination.

Two-phase locking is a correct synchronization
technique, meaning that 2PL attains an acyclic RWR
(WW) relation when used for rw (ww) synchronization [13,
14, 15]. The serialization order attained by 2PL is
determined by the order in which transactions obtain locks.
The end point of the growing phase, when a transaction
owns its final lock, is called the locked point of the
transaction [13] (see Figure 4 & 5). Let E be an execution in
which 2PL is used for rw (ww) synchronization. The RWR
(WW) relation induced by E is identical to the relation
induced by a serial execution E' in which every transaction
executes at its locked point. Thus the locked points of E
determine a serialization order for E.

A. Implementation of 2PL

The 2PL implementation is a 2PL scheduler, a software
module that receives lock requests and locks release request,
processes them according to the 2PL specification.

To implement 2PL in a distributed database is to
distribute the schedulers along with the database, placing the
scheduler for data item X at the DM where X is stored. In
this implementation read-locks may be implicitly requested
by dm-reads and write-locks may be implicitly requested by
pre-writes. If the requested lock cannot be granted, the
operation is placed on a waiting queue for the desired data
item. This may produce deadlock, as discussed in Section E.
Write-locks are implicitly released by dm-writes. However,
to release read-locks, special lock-release operations are
required. These lock releases may be transmitted in parallel
with the dm-writes, since the dm-writes signal the start of
the shrinking phase. When a lock is released, the operations
on the waiting queue of that data item are processed in first-
in/ first-out (FIFO) order.

Note that this implementation "automatically" handles
redundant data correctly. Suppose logical data item X has m
copies viz. Xl, . . . , Xm. If basic 2PL is used for rw
synchronization, a transaction may read any copy and need

ISSN : 0975-3397 1987

Arun Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1984-1991

Site 3

Site 1 Site 2

Read-Lock(X)

Read-Lock (Z)

Write-Lock (X)
Write-Lock (Z)

Write-Lock(Y)

Read-Lock(Y)

T1 T2

T3

Figure 6: Deadlock

only obtain a read-lock on the copy of X it actually reads.
However, if a transaction updates X, then it must update all
m copies of X, and so must obtain write-locks on all m
copies of X.

B. Primary Copy 2PL
Primary copy 2PL is a 2PL technique that handles the data
redundancy. One copy of each logical data item is
designated the primary copy; before accessing any copy of
the logical data item, the appropriate lock must be obtained
on the primary copy.

For read-locks, this technique requires more
communication than basic 2PL. Suppose Xl is the primary
copy of logical data item X, and suppose transaction T
wishes to read some other copy Xi, of X. To read Xi, T must
communicate with two DMs, the DM where Xl is stored (so
T can lock Xl) and the DM where Xl. By contrast, under
basic 2PL, T would only communicate with Xl's DM. For
write-locks, however, primary copy 2PL does not incur
extra communication. Suppose T wishes to update X. Under
basic 2PL, T would issue pre-writes to all copies of X
(thereby requesting write-locks on these data items) and
then issue dm-writes to all copies. Under primary copy 2PL
the same operations would be required, but only the pre-
write (Xl) would request a write-lock. That is, pre-writes
would be sent for Xl . . . Xm, but the pre-writes for X2
Xm would not implicitly request write-locks.

C. 2PL Voting Protocol
Voting 2PL (or majority consensus 2PL) is another 2PL
implementation that exploits data redundancy. Voting 2PL
is derived from the majority consensus technique in and is
only suitable for ww synchronization.

To understand voting, we must examine it in the
context of two-phase commit. Suppose transaction T wants
to write into X. Its TM sends pre-writes to each DM holding
a copy of X. For the voting protocol, the DM always
responds immediately. It acknowledges receipt of the pre-
write and says "lock-set" or "lock blocked". After the TM
receives acknowledgments from the DMs, it counts the
number of "lock-set" responses: if the number constitutes a
majority, then the TM behaves as all locks were set.
Otherwise, it waits for "lockset" operations from DMs that
originally said "lock blocked". It will eventually receive
enough "lockset" operations to proceed.

Since only one transaction can hold a majority of locks
on X at a time, only one transaction writing into X can be in
its second commit phase at any time. All copies of X
thereby have the same sequence of writes applied to them. A
transaction's locked point occurs when it has obtained a
majority of its write-locks on each data item in its write-set.
When updating many data items, a transaction must obtain a
majority of locks on every data item before it issues any dm-
writes.

In principle, voting 2PL could be adapted for rw
synchronization. Before reading any copy of X transaction

requests read-locks on all copies of X; when a majority of
locks are set, the transaction may read any copy. This
technique works but is overly strong: Correctness only
requires that a single copy of X be locked-namely, the copy
that is read-yet this technique requests locks on all copies.
For this reason we consider that voting 2PL to be
inappropriate for rw synchronization.

D. Centralized 2PL

Instead of distributing the 2PL schedulers, one can
centralize the scheduler at a single site [16, 17]. Before
accessing data at any site, appropriate locks must be
obtained from the central 2PL scheduler. So, for example, to
perform dm-read(X) where X is not stored at the central site,
the TM must first request a read-lock on X from the central
site, wait for the central site to acknowledge that the lock
has been granted, then send dm-read(X) to the DM that
holds X. (To save some communication, one can have the
TM send both the lock request and dm-read (X) to the
central site and let the central site directly forward dm-
read(X) to X's DM; the DM then responds to the TM when
dm-read (X) has been processed.) Like primary copy 2PL,
this approach tends to require more communication than
basic 2PL, since dm-reads and pre-writes usually cannot
implicitly request locks.

E. Deadlock Detection and Prevention

The implementations of 2PL force transactions to wait if
locks are not granted. If this waiting is uncontrolled then
deadlock may arises as shown in Figure 6.

Deadlock situations can be characterized by waits-for
graphs [18, 3], and directed graphs that indicate which
transactions are waiting for which other transactions to
release the locks. Nodes of the graph represent transactions,
and edges represent the "waiting-for" relationship: an edge
is drawn from transaction Ti, to transaction Tj if Ti, is
waiting for a lock currently owned by Tj. The deadlock
exists in a system if and only if the waits-for graph contains
a cycle. Two general techniques can be used for deadlock
resolution: deadlock prevention and deadlock detection.

1) Deadlock Prevention: Deadlock prevention scheme
protect the system from occurring the deadlock, a

ISSN : 0975-3397 1988

Arun Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1984-1991

T2 & T1 T3 & T2 T1 & T3

Data
X1, Y1

Data
Y2, Z2

Data
Z3

Site 1 Site 2 Site 3

DM1 DM2 DM3

BEGIN
T1:
READ(X1);
WRITE (Y1);
T3:
WRITE (X1);
END

BEGIN
T2:
READ (Y2);
WRITE (Z2);
T1:
WRITE (Y2);
END

BEGIN
T3:
READ (Z3);
T2:
WRITE (Z3);
END

Figure 7: Locks are request by the transactions at DMs

transaction is restarted when the system assume that
deadlock may occur. To implement deadlock prevention,
2PL schedulers are modified as follows. When a lock
request is denied, the scheduler tests the requesting
transaction (say Ti,) and the transaction that currently owns
the lock (say Tj). If Ti and Tj pass the test then Ti is
permitted to wait for Tj as usual. Otherwise, one of the
transactions is aborted. If Ti is restarted, the deadlock
prevention algorithm is called non-preemptive; if Tj is
restarted, the algorithm is called preemptive. The test
applied by the scheduler must guarantee that if Ti, waits for
Tj, then deadlock cannot result. One simple approach is
never to let Ti wait for Tj. This trivially prevents deadlock
but may forces many restarts.

A better approach is to assign priorities to transactions
and to test priorities to decide whether Ti, can wait for Tj.
For example, we could let Ti, wait for Tj if Ti, has lower
priority than Tj (if Ti and Tj have equal priorities, Ti, cannot
wait for Tj, or vice versa). This test prevents deadlock
because, for every edge (Ti, Tj) in the waits-for graph, Ti,
has lower priority than Tj. Since a cycle is a path from a
node to itself and since Ti, cannot have lower priority than
itself, no cycle can exist.

One problem with the previous approach is that there
may be cyclic restart of the transactions because some
transactions could be continually restarted without ever
finishing. To avoid this problem, [19] proposes
"timestamps" as priorities. A transaction's timestamp is the
time at which it begins executing, so old transactions have
higher priority than new ones transaction. This technique
requires that a unique time-stamp should be assigned to each
transaction by its TM.

Two timestamp-based deadlock prevention schemes are
proposed in [18]. Wait-Die is the non-preemptive technique.
Suppose transaction Ti, tries to wait for Tj. If Ti, has lower
priority than Tj (i.e., Ti, is younger than Tj), then Ti, is
permitted to wait. Otherwise, it is aborted ("dies") and must
be restart. It is important that new time-stamp should not be
assigned to Ti, when it restarts. Wound-Wait is the
preemptive and opposite to Wait-Die. If Ti has higher
priority than Tj, then Ti waits; otherwise Tj is aborted.

Both Wait-Die and Wound-Wait avoid cyclic restart.
However, in Wound-Wait an old transaction may be
restarted many times, while in Wait-Die old transactions
never restart. It is suggested in [20] that Wound-Wait
induces fewer restarts in total.

If we use preemptive deadlock prevention with two-
phase commit then a transaction must not be aborted once
the second phase of two-phase commit has started. If a
preemptive technique wishes to abort Tj, it checks with Tj’s
TM and cancels the abort if Tj has entered in second phase.
No deadlock can result because if Tj is in the second phase,
it cannot be waiting for any transactions.

Deadlock avoidance technique is based on preordering
of resources which avoids restarts altogether. This technique
requires pre-declaration of locks (each transaction obtains

all its locks before execution). Data items are numbered and
each transaction requests locks one at a time in numeric
order. The priority of a transaction is the number of the
highest numbered lock it owns. Since a transaction can only
wait for transactions with higher priority, no deadlocks can
occur. In addition to requiring pre-declaration, a principal
disadvantage of this technique is that it forces locks to be
obtained sequentially, which increases the response time.

2) Deadlock Detection in DDBMS: In deadlock
detection technique, transactions wait for each other in an
uncontrolled manner and are aborted when deadlock
actually occurs. Deadlocks are detected by explicitly
constructing the waits-for graph and searching it for cycles.
Cycles in a graph can be found efficiently proposed in [21].
If a cycle is found, one transaction on the cycle, called the
victim, is aborted, thereby breaking the deadlock. To
minimize the cost of restarting the victim, victim selection is
usually based on the amount of resources used by each
transaction on the cycle.

The principal difficulty in implementing deadlock
detection in a distributed database is constructing the waits-
for graph efficiently. Each 2PL scheduler can easily
construct the waits-for graph based on the waits-for
relationships local to that scheduler. However, these local
waits-for graphs are not sufficient to characterize all
deadlocks in the distributed system (see Figure 7 & 8).
Instead, local waits-for graphs must be combined into a
more "global" waits-for graph. Centralized 2PL does not
have this problem, since there is only one scheduler. We
describe two techniques for constructing global waits-for
graphs: centralized and hierarchical deadlock detection.

ISSN : 0975-3397 1989

Arun Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1984-1991

DM3

DM2

DM1

T3 T1

T2 T1

T2 T3

Figure 8: Deadlock on multi-sites

In the centralized approach, one site is designated the
deadlock detector for the distributed system [22, 23].
Periodically (e.g., every few minutes) each scheduler sends
its local waits-for graph to the deadlock detector. The
deadlock detector combines the local graphs into a system
wide waits-for graph by constructing the union of the local
graphs.

In the hierarchical approach, the database sites are
organized into a hierarchy (or tree), with a deadlock detector
at each node of the hierarchy. For example, one might group
sites by region, then by country, then by continent.
Deadlocks that are local to a single site are detected at that
site; deadlocks involving two or more sites of the same
region are detected by the regional deadlock detector; and so
on.

Although centralized and hierarchical deadlock
detection differs in detail, both involve periodic
transmission of local waits-for information to one or more
deadlock detector sites. The periodic nature of the process
introduces two problems. First, a deadlock may exist for
several minutes without being detected, causing response-
time degradation. The solution, executing the deadlock
detector more frequently, increases the cost of deadlock
detection. Second, a transaction T may be restarted for
reasons other than concurrency control (e.g., its site
crashed). Until T's restart propagates to the deadlock
detector, the deadlock detector can find a cycle in the waits-
for graph that includes T. Such a cycle is called a phantom
deadlock. When the deadlock detector discovers a phantom
deadlock, it may unnecessarily restart a transaction other
than T. Special precautions are also needed to avoid
unnecessary restarts for deadlocks in voting 2PL.

A major cost of deadlock detection is the restarting of
partially executed transactions. Pre-declaration can be used
to reduce this cost. By obtaining a transaction's locks before
it executes, the system will only restart transactions that
have not yet executed. Thus little work is wasted by the
restart.

V. CONCLUSION

We have presented a transaction processing model for
concurrency control in distributed database systems. Our
approach has two main components: (1) a system model that
provides common terminology and concepts used in a
variety of concurrency control algorithms, and (2) a problem

decomposition that decomposes concurrency control
algorithms into read-write and write-write synchronization
sub-algorithms.

We have considered synchronization sub-algorithms
outside the context of specific concurrency control
algorithms. Generally most of the database synchronization
algorithms are variations of two basic techniques- two-phase
locking (2PL) and timestamp ordering technique. We have
described the principal variations for each technique,
without these variations we cannot claims all possible
variations. In addition, we have described deadlock
problems and its resolution that must be solved to make
each technique effective.

We have shown how to combine the described
techniques to form complete concurrency control
algorithms. We have considered almost all concurrency
control algorithms described previously in the literature,
plus several new ones.

The focal point of this paper has primarily been the
structure and correctness of synchronization techniques and
concurrency control algorithms. We have left one important
issue as performance. The performance factor of
concurrency control algorithms depends on system
throughput and transaction response time. Four cost factors
influence the performance: inter-site communication, local
processing, transaction restarts, and transaction blocking.
The impact of these cost factors on system throughput and
response time varies from algorithm to algorithm, system to
system, and application to application. The performance
analysis of algorithm is remains and will be our future work.
We hope, and really recommend, that future work on
distributed concurrency control will concentrate on the
performance of algorithms.

REFERENCES
[1] Stonebraker, M. "Concurrency control and consistency of multiple

copies of data in distributed INGRES, IEEE Trans. Soflw. Eng. SE-5,
3 (2003), 188-194.

[2] Thomas, R.H. "A solution to the concurrency control problem for
multiple copy databases," in Proc. 2004 COMPCON Conf. (IEEE),
New York.

[3] King, P. P., and Collmeyer, A J. "Database sharing-an efficient
method for supporting concurrent processes," in Proc. 1974 Nat.
Computer Conf., vol. 42, AFIPS Press, Arlington,Va., 2003.

[4] “The Effects of Concurrency Control on the Performance of a
Distributed Data Management System,” Proc. 4th Berkeley Workshop
on Dist. Data Mgmt. and Comp. Networks, Aug. 2006.

[5] “Distributed Concurrency Control Performance: A Study of
Algorithm, Distribution, Replication”, Comp. Scien. Deptt. Madison,
2008.

[6] Brinch-Hansen, P. Operating system principles, Prentice-Hall,
Englewood Cliffs, N. J., 2003

[7] Dijkstra, E.W. "Hierarchical orderingof sequential processes," Acta
Inf. 1, 2 (2002), 115-138.

[8] Hewitt, C.E. "Protection and synchronization in actor systems,"
Working Paper No. 83, M.I.T. Artificial Intelligence Lab, Cambridge,
Mass., Nov. 2006.

[9] Hoare, C. A.R. "Monitors. An operating system structuring concept,"
Communication. ACM 17, 10 (2004), 549-557.

ISSN : 0975-3397 1990

Arun Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1984-1991

[10] Chamberlin, D. D., Boyce, R. F., and Traiger, I.L. "A deadlock-free

scheme for resource allocation in a database environment," Info.
Proc. 74, North-Holland, Amsterdam, 2002.

[11] Deppe, M. E., and Fry, J. P. "Distributed databases' A summary of
research," in Computer networks, vol. 10, no. 2, North-Holland,
Amsterdam, 2005.

[12] Rothnie, J. B., and Goodman, N. "A survey of research and
development in distributed databases systems," in Proe 3rd Int. Conf.
Very Large Data Bases (IEEE), Tokyo, Japan, 2006.

[13] Bernstein, P. A., Shipman, D. W., and Wono, W.S. "Formal Aspects
of Serializability in Database Concurrency Control," IEEE Trans.
Softw Eng. SE-5, 3 (2002), 203-215.

[14] Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I.L. "The
notions of consistency and predicate locks in a database system."
Communication. ACM 19, 11 (2003), 624-633.

[15] Papadimitriou, C. H. "Serializability of concurrent updates," J. ACM
26, 4 (2002), 631-653.

[16] Alsberg, P. A, and Day, J.D. "A principle for resilient sharing of
distributed resources," in Proc. 2nd Int. Conf. Software Eng., 2002,
pp. 562-570.

[17] Garcia-Molina, H. "Performance of update algorithms for replicated
data in a distributed database," Ph.D. dissertation, Computer Science
Dept., Stanford Univ., Stanford, Calif., 2002.

[18] Holt, R.C. "Some deadlock properties of computer systems," Comput.
Surv. 4, 3 (2002) 179-195.

[19] Rosenkrantz, D. J., Stearns, R E., and Lewis, P.M. "System level
concurrency control for distributed database systems," ACM Trans.
Database Syst. 3, 2 (2002), 178-198.

[20] Reed, D.P. "Naming and synchronization in a decentralized computer
system, Ph.D. dissertation, Dept. of Electrical Engineering, M.I.T.,
Cambridge, Mass., Sept., 2004.

[21] Aho, A. V., Hopcroft, E., and Ullman, J. D. The design and analysis
of computer algorithms, Addison-Wesley, Reading, Mass., 2001.

[22] Gray, J.N. "Notes on database operating systems," in Operating
Systems: An Advanced Course, vol. 60, Lecture Notes in Computer
Science, Springer-Verlag, New York, 2002, pp. 393-481.

[23] Menasce, D. A., and Muntz, R. R. "Locking and deadlock detection in
distributed databases," IEEE Trans. Software Engineering. SE-5, 3
(2004), 195-202.

AUTHORS PROFILE

Arun Kumar Yadav received the B.E. (Computer Science & Engineering)
and M.Tech (Information Technology) degree in 2000 and 2004,
respectively. Presently pursuing Doctorate Degree (Ph.D) in Computer
Science from Singhania University, Rajasthan and working as Associate
Professor & Head in the Department of Information Technology in
Venkteshwar Institute of Technology, Indore (M.P.), India. His research
interest includes Distributed Database Security, Data Structures and
Algorithms. He is a member of IACSIT and IAENG.

Dr. Ajay Agrawal receive his B.Tech and M.E. Degree in Computer
Science & Engineering and Ph.D. Degree in Computer Science &
Engineering from IIT, Delhi and presently working as professor and head
in the department of MCA in Krishna Institute of Engineering &
Technology, Ghaziabad (U.P.), India. His Research interest includes
Wireless Sensor Networks and Distributed Database Security. He has
published more than 30 research papers in National and International
journals and presented number of research papers in National/ International
conferences.

ISSN : 0975-3397 1991

