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Abstract— We propose an algorithm to determine stable connected 
dominating sets (CDS), based on the predicted link expiration time 
(LET), for mobile ad hoc networks (MANETs). The proposed LET-
based CDS algorithm is the first such algorithm that constructs a CDS 
based on edge weights represented by predicted link expiration time, 
rather the traditional approach of using node weights like the well-
known maximum density-based CDS (MaxD-CDS) algorithm. The 
construction of the LET-CDS starts with the inclusion of the edge 
having the largest predicted link expiration time, into the CDS. Once 
an edge is included as the CDS edge list, the two constituent nodes of 
the edge becomes part of the CDS node list. The neighbors and the 
edges incident to either one or both the end nodes of the CDS edge 
are also said to be covered. The covered edges are considered in the 
increasing order of their predicted link expiration time, for inclusion 
in the CDS. If an edge has a higher predicted expiration time and is 
the next candidate edge to be considered for inclusion into the CDS, 
it is added to the CDS edge list if either one or both of the end nodes 
of the edge has at least one neighbor node that is yet to be covered. 
This procedure is repeated until all the nodes in the network are 
covered. Simulation results illustrate that the LET-CDS has a longer 
lifetime compared to the MaxD-CDS, especially in networks of 
moderate and high density. The LET-CDS also has a larger number 
of nodes and edges compared to the MaxD-CDS and this helps to 
reduce the hop count as well as the end-to-end delay and improves 
the fairness of node usage. 

Keywords-Link Expiration Time; Stability; Connected 
Dominating Sets; Mobile Ad hoc Networks; Simulations 

I. INTRODUCTION 

A mobile ad hoc network (MANET) is a dynamic 
distributed system of arbitrarily moving wireless nodes that 
operate on a limited battery charge. The network operates on a 
limited bandwidth and the transmission range of each node is 
limited. As a result, multi-hop communication is very common 
in MANETs. Broadcast communication in MANETs has been 
traditionally accomplished through flooding in which each 
wireless node receives a copy of the broadcast message from 
all of its neighbors and is also responsible for forwarding the 
message exactly once to all of its neighbors. Recent studies 
(e.g., [1][2][3][4][5]) demonstrate the use of connected 
dominating set (CDS)-based virtual backbones to propagate the 
broadcast messages so that they are exchanged only among the 
nodes in the CDS instead of being broadcast by all the nodes in 
the network, thus reducing the number of unnecessary 
retransmissions. 

Ad hoc networks are often represented as a unit disk graph 
[6], in which vertices represent wireless nodes and a bi-
directional edge exists between two vertices if the 
corresponding nodes are within the transmission range of each 
other. A CDS is a sub graph of the undirected graph such that 
all nodes in the graph are included in the CDS or directly 
attached to a node (i.e., covered by the node) in the CDS. A 
minimum connected dominating set (MCDS) is the smallest 
CDS (in terms of number of nodes in the CDS) for the entire 
graph. For a virtual backbone-based broadcast communication, 
the smaller the size of the CDS, the smaller is the number of 
unnecessary retransmissions. If the broadcast messages are 
forwarded only by the nodes in the MCDS, we will have the 
minimum number of retransmissions. Unfortunately, the 
problem of determining the MCDS in an undirected graph like 
that of the unit disk graph is NP-complete. Efficient heuristics 
(e.g., [7][8][9]) that give preference to nodes with high 
neighborhood density (i.e., a larger number of uncovered 
neighbors) for inclusion in the MCDS have been proposed for 
wireless ad hoc networks. The MaxD-CDS algorithm [10] 
studied in this paper is one such density-based heuristic earlier 
proposed by the co-author of this paper. Throughout the paper, 
the terms ‘link’ and ‘edge’, ‘node’ and ‘vertex’, ‘message’ and 
‘packet’, ‘path’ and ‘route’ have been used interchangeably. 
They mean the same. 

In this paper, we show that aiming for the minimum 
number of nodes for the CDS in MANETs results in CDSs 
that are highly unstable, especially with increase in network 
density and node mobility. The CDS itself has to be frequently 
rediscovered and this adds considerable overhead to resource- 
constrained network. Our contribution in this paper is a 
predicted link expiration time (LET)-based CDS construction 
algorithm that gives preference to include links (and their 
associated end nodes) that could exist for a longer time in the 
CDS rather than nodes that have high neighborhood density. 
To the best of our knowledge, ours is the first such approach 
to construct a CDS based on the link weights rather than node 
weights (e.g. the MaxD-CDS algorithm). The proposed LET-
CDS algorithm starts with the inclusion of an edge having the 
largest predicted expiration time, into the CDS Edge List. 
Once an edge is added to the CDS, the two constituent end 
nodes of the edges are part of the CDS Node List and all their 
neighbors and the incident edges are said to be covered. The 
covered edges are considered in the increasing order of their 
predicted LET, for inclusion in the CDS. If an edge has a 
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larger predicted LET and is the next candidate edge to be 
considered for inclusion in the CDS, it is added to the CDS 
Edge List if either of its end nodes can cover at least one of 
their neighbor nodes that is yet to be covered. This procedure 
is repeated until all the nodes in the network are covered. The 
overall time complexity of the LET-CDS algorithm is O(|VE| 
+ |E log E|) where |V| and |E| are the number of nodes and 
edges in the underlying network graph, which could be a 
snapshot of the network at a particular time instant. A CDS is 
used as long as it exists. 

In this paper, we show that aiming for the minimum 
number of nodes for the CDS in MANETs, results in CDSs 
that are highly unstable, especially with increase in network 
density and/or node mobility. The CDS itself has to be 
frequently rediscovered and this adds considerable overhead to 
the resource-constrained network. Our contribution in this 
paper is a predicted link expiration time (LET)-based CDS 
construction algorithm that gives preference to include links 
(and their associated end nodes) that could exist for a longer 
time in the CDS rather than nodes that have high 
neighborhood density. To the best of our knowledge, ours is 
the first such approach to construct a CDS based on the link 
weights rather than node weights (e.g. the MaxD-CDS 
algorithm). The proposed LET-CDS algorithm starts with the 
inclusion of an edge having the largest predicted expiration 
time, into the CDS Edge List. Once an edge is added to the 
CDS, the two constituent end nodes of the edges are part of 
the CDS Node List and all their neighbors and the incident 
edges are said to be covered. The covered edges are 
considered in the increasing order of their predicted LET, for 
inclusion in the CDS. If an edge has a larger predicted LET 
and is the next candidate edge to be considered for inclusion in 
the CDS, it is added to the CDS Edge List if either of its end 
nodes can cover at least one of their neighbor nodes that is yet 
to be covered. This procedure is repeated until all the nodes in 
the network are covered. The overall time complexity of the 
LET-CDS algorithm is O(|E log E|) where |E| are the number 
of nodes and edges in the underlying network graph, which 
could be a snapshot of the network at a particular time instant. 
A CDS is used as long as it exists. 

We compare the performance of LET-CDS with a 
maximum-density (MaxD-CDS) based algorithm that gives 
preference to nodes that have a larger number of uncovered 
neighbors for inclusion in the CDS. Simulation results 
illustrate that LET-CDS has a relatively longer lifetime than 
MaxD-CDS with increase in network density and/or node 
mobility. The tradeoff is an increase in the number of nodes 
and number of edges that are part of the LET-CDS vis-à-vis 
MaxD-CDS. However, this helps the LET-CDS to support a 
relatively lower hop count per source-destination path 
compared to MaxD-CDS.  

The rest of the paper is organized as follows: Section 2 
reviews related work in the literature on stable CDSs. Section 
3 describes our LET-CDS algorithm and also the MaxD-CDS 
algorithm with which the former is compared to. In addition, 
we outline an algorithm to check the existence of a CDS at any 
time instant and also show an example to illustrate the 
working of the LET-CDS and MaxD-CDS. Section 4 presents 
the simulation environment and describes the simulation 

results comparing the performance of LET-CDS with that of 
MaxD-CDS. Section 5 concludes the paper and discusses 
future work. 

II. RELATED WORK 

Very few algorithms are proposed in the literature to 
determine a stable connected dominating set for MANETs. In 
[2], the authors propose a localized algorithm, called maximal 
independent set with multiple initiators (MCMIS), to construct 
stable virtual backbones. MCMIS consists of two phases: In 
the first phase, a forest consisting of multiple dominating trees 
rooted at multiple initiators is constructed. A dominating tree, 
rooted at an initiator node, comprises of a subset of the nodes 
in the network topology. Multiple dominating trees, each 
started by its initiator, are constructed in parallel. In the second 
phase, dominating trees, with overlapping branches are 
interconnected to form a complete virtual backbone. Nodes are 
ranked according to the tuple (stability, effective degree, ID) 
and are considered as candidate nodes to be initiators, in 
decreasing order of importance.  

A novel mobility handling algorithm proposed in [3] 
shortens the recovery time of CDS (i.e., CDS membership 
changes) in the presence of node mobility and also maintains a 
lower CDS size. In [4], the authors describe an algorithm to 
calculate stable CDS based on link-stability for MANETs. 
According to this algorithm, a link is said to be non-weak if 
the strength of the beacon signals received on that link is 
above a threshold. For inclusion in the stable CDS, nodes are 
considered in the decreasing order of the number of non-weak 
links associated with the node. 

In [5], the authors propose a distributed topology 
management algorithm that constructs and maintains a 
minimal dominating set (MDS) of the network. MDS 
members connect to form a CDS, used as the backbone 
infrastructure for network communication. Each node self-
decides the membership of itself and its neighbors in the MDS 
based on the two-hop neighborhood information disseminated 
among neighboring nodes.  

In [10], we had proposed a centralized algorithm, referred 
to as OptCDSTrans, to determine a sequence of stable static 
connected dominating sets for MANETs. Algorithm 
OptCDSTrans operates according to a simple greedy principle, 
described as follows: whenever a new CDS is required at time 
instant t, we choose the longest-living CDS from time t. The 
above strategy when repeated over the duration of the 
simulation session yields a sequence of long-living stable 
static connected dominating sets such that the number of CDS 
transitions (change from one CDS to another) is the global 
minimum. Some of the distinguishing characteristics of 
OptCDSTrans are that the optimal number of CDS transitions 
does not depend on the underlying algorithm or heuristic used 
to determine the static CDSs and the greedy principle behind 
OptCDSTrans is very generic such that it can be applied to 
determine the stable sequence of any communication structure 
(for example, paths or trees) as long as there is a heuristic or 
algorithm to determine that particular communication structure 
in a given network graph [11]. In [12], the co-author had 
proposed a minimum velocity-based stable CDS (MinV-CDS) 

ISSN : 0975-3397 2097



Pervis Fly et. al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No. 06, 2010, 2096-2103 

algorithm according to which slow moving nodes are preferred 
for inclusion into the CDS. The minimum velocity-based 
connected dominating sets existed for a significantly longer 
lifetime compared to the maximum density-based connected 
dominating sets; the tradeoff being a larger number of nodes 
and edges. 

III. ALGORITHMS TO DETERMINE LET-CDS AND MAXD-CDS 

A. Prediction of the Link Expiration Time (LET) 

Given the motion parameters of two neighboring nodes, the 
duration of time the two nodes will remain neighbors can be 
predicted as follows: Let two nodes i and j be within the 
transmission range of each other. Let (xi, yi) and (xj, yj) be the 
co-ordinates of the mobile hosts i and j respectively. Let vi, vj 

be the velocities and Θi, Θj, where (0 ≤ Θi, Θj < 2π) indicate 
the direction of motion of nodes i and j respectively. The 
amount of time the two nodes i and j will stay connected, Di-j, 
can be predicted using the following equation: 

D
ab cd a c r ad bc

a ci j 
     


( ) ( ) ( )2 2 2 2

2 2
  ………….. (1) 

where: a = vi cosΘi – vj cosΘj; b = xi – xj; c = vi sinΘi – vj 

sinΘj; d = yi – yj 

B. Data Structures 

We maintain the following four principal data structures: 
(i) CDS-Node-List – includes all the nodes that are part of the 

CDS. 
(ii) Covered-Node-List – includes nodes that are either in the 

CDS-Node-List or covered by a node in the CDS-Node-
List. 

(iii) CDS-Edge-List – includes all the edges that are part of the 
CDS: i.e., the edges that exist between any two nodes in 
the CDS-Node-List. 

(iv) Covered-Edge-List – includes edges that are not in the 
CDS-Edge-List; but, one of its two end vertices is a node 
in the CDS-Node-List.  

(v) Priority Queue – includes edges that are in the Covered-
Edge-List and are probable candidates for addition to the 
CDS-Edge-List. This list is sorted in the decreasing order 
of the predicted LET of the edges. A dequeue operation 
returns the edge with the largest predicted LET. 

C. Algorithm to Determine the Predicted Link Expiration 
Time (LET)-based CDS 

The LET-CDS (pseudo code in Figure 1) is primarily 
constructed as follows: The Start Edge is the first edge to be 
added to the CDS-Edge-List. As a result of this, all the edges 
that are adjacent to the Start Edge are added to the Covered-
Edge-List and to an appropriate entry in the Priority-Queue; 
both the end nodes of the Start Edge are added to the CDS-
Node-List and their neighbors are added to the Covered-Node-
List. If the size of the Covered-Node-List is less than the 
number of nodes in the network (i.e., not all nodes in the 
network are yet covered) and the Priority-Queue is not empty, 
we dequeue the Priority-Queue to extract an edge (uMaxE, 
vMaxE) that has the largest predicted LET and is not yet in the 
CDS-Edge-List. If there is at least one node that has an edge 

with uMaxE or vMaxE and is not yet part of the Covered-
Node-List, then the edge (uMaxE, vMaxE) is removed from 
the Covered-Edge-List and added to the CDS-Edge-List; the 
nodes that are newly covered with the inclusion of (uMaxE, 
vMaxE) to the CDS-Edge-List are added to the Covered-Node-
List and their associated edges that are adjacent to (uMaxE, 
vMaxE) are added to the Covered-Edge-List. If there is no 
node that could be newly covered through (uMaxE, vMaxE), 
then the edge is not added to the CDS-Edge-List. The above 
procedure is repeated until the size of the Covered-Node-List 
is less than the number of nodes in the network or the Priority-
Queue becomes empty. If the size of the Covered-Node-List is 
equal to the number of nodes in the network, then all the nodes 
in the network are covered. If the Priority-Queue becomes 
empty and the Covered-Node-List does not have at least one 
node in the network, then the underlying network is 
considered to be disconnected. During a dequeue operation, if 
two or more edges have the same maximum predicted LET, 
we choose the edge that can bring in more nodes to the 
Covered-Node-List. If the tie cannot be still broken, we 
randomly choose to dequeue one of these candidate edges. 

 
 

Input: Snapshot of the Network Graph G = (V, E), where V is 
the set of vertices and E is the set of edges 
Auxiliary Variables and Functions:  
CDS-Node-List, CDS-Edge-List, Covered-Node-List, Covered-
Edge-List, Priority-Queue, maxLETEdge 
Neighbors(s) – List of neighbors of node s in graph G 
LET(u–v)  – the predicted link expiration time (in seconds)  of  
                    an edge u – v 
startEdge – the first edge (maximum weight edge) to be added  
                   to CDS-Edge-List 
Sorted-Edge-List = List of edges in E, sorted in the decreasing  
                               order of LET  
Output: CDS-Node-List // contains the list of nodes part of the  
                                            predicted LET-based CDS 
Initialization: 
CDS-Node-List = Φ; CDS-Edge-List = Φ; Covered-Node-List 
= Φ; Covered-Edge-List = Φ; Priority-Queue = Φ 
 
Begin Construction of LET-CDS      
     startEdge = Edge with max. weight in Sorted-Edge-List 
    Priority-Queue = Priority-Queue U {startEdge} 
    Covered-Edge-List = Covered-Edge-List U {startEdge} 
  while (|Covered-Node-List|<|V| && Priority-Queue ≠ Φ) do   
         Extract the maximum weight edge (uMaxE, vMaxE)  
                                                               Priority-Queue 
         boolean additionNeeded-uMaxE = false 
         boolean additionNeeded-vMaxE = false 
         for every edge (a, uMaxE) E or (uMaxE, b) E do 
             if (aCovered-Node-List) or (b Covered-Node- 
                                                                                    List) then 
               Appropriately add node a or b to Covered-Node-List 
               additionNeeded-uMaxE = true 
              Appropriately add (a, uMaxE) or (uMaxE, b) to  
                            Priority-Queue 
              Appropriately add (a, uMaxE) or (uMaxE, b) to  
                            Covered-Edge-List 
              end if 
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          end for      
          for every edge (a, vMaxE) E or (vMaxE, b) E do 
            if (a Covered-Node-List) or (b Covered-Node- 
                                                                                    List) then 
              Appropriately add node a or b to Covered-Node-List 
              additionNeeded-vMaxE = true 
 Appropriately add (a, vMaxE) or (vMaxE, b) to  
                                                                            Priority-Queue 
              Appropriately add (a, uMaxE) or (uMaxE, b) to 
                                                                      Covered-Edge-List 
           end if 
        end for 
    if (additionNeeded-uMaxE || additionNeeded-vMaxE) then 
    CDS-Edge-List = CDS-Edge-List U {(uMaxE, vMaxE)} 
    Covered-Edge-List=Covered-Edge-List–{(uMaxE, vMaxE)} 
         if (uMaxE CDS-Node-List) then 
           CDS-Node-List = CDS-Node-List U {uMaxE} 
           Covered-Node-List = Covered-Node-List U {uMaxE} 
        end if 
        if (vMaxE   CDS-Node-List) then 
           CDS-Node-List = CDS-Node-List U {vMaxE} 
          Covered-Node-List = Covered-Node-List U {vMaxE}                  
       end if 
   end if 
 end While  
  
return CDS-Node-List 
 
 

Figure 1. Pseudo Code for the Algorithm to Construct the LET-based CDS 

D. Time Complexity of the LET-CDS Algorithm 

If we use a binary heap for maintaining the Priority-Queue 
of |E| edges, each dequeue and enqueue operation can be 
completed in O(|logE|) time. There could be O(|E|) of such 
operations/iterations of the outer while loop in Figure 1. 
Cumulative of all the |E| iterations, there would be O(|E|) 
edges explored for addition to the Covered-Edge-List. Hence, 
the overall time complexity of the LET-CDS algorithm is 
O(|E| + |E logE|) = O(|E logE|). 

E. Algorithm to Determine the Maximum Density-based 
Connected Dominating Set (MaxD-CDS) 

The MaxD-CDS algorithm is based on node weights – 
prefers to choose nodes with the maximum number of 
uncovered neighbors until all nodes in the network are 
covered. The condition to check for network connectivity is 
the same as that of the LET-CDS. If the size of the Covered-
Node-List is less than the number of nodes in the network and 
the Priority-Queue that has the list of nodes with the maximum 
number of uncovered neighbors becomes empty, then the 
network is pronounced to be disconnected for that time instant 
and we attempt to determine a CDS for the network snapshot 
at the subsequent time instant. Ties to choose the next node for 
inclusion to the MaxD-CDS are broken arbitrarily. 

F. Algorithm to Check the Existence of a CDS at any Time 
Instant 

The algorithm to check the existence of a CDS at a 
particular time instant t works as follows: Given the CDS-
Node-List and CDS-Edge-List at time t, we run the well-
known Breadth First Search (BFS) algorithm [12] on the CDS-
Node-List and CDS-Edge-List and examine whether the 
underlying CDS is connected or not. If the CDS is not 
connected, the algorithm returns false and a new run of the 
CDS construction algorithm is initiated. If the CDS is 
connected, we then test whether every non-CDS node in the 
network is a neighbor of at least one CDS node. If there exists 
at least one non-CDS node that is not a neighbor of any CDS 
node at time t, the algorithm return false – necessitating the 
instantiation of the appropriate CDS construction algorithm. If 
every non-CDS node has at least one CDS node as neighbor, 
the algorithms return true – the current CDS covers the entire 
network and there is no need to determine a new CDS. 
 

   
          Figure 2.1. Initial Network                      Figure 2.2. Iteration # 1 
 

   
          Figure 2.3. Iteration # 2                           Figure 2.4. Iteration # 3 
 

   
     Figure 2.5. Final Iteration (# 6)                 Figure 2.6. Final LET-CDS 
                                                                      [8 CDS Nodes; 7 CDS Edges] 

Figure 2. Example to Illustrate the Construction of LET-CDS 

G. Example to Illustrate the Construction of LET-CDS and 
MaxD-CDS 

Figures 2 and 3 illustrate examples to demonstrate the 
working of the LET-CDS and MaxD-CDS algorithms 
respectively. In these figures, each circle represents a node. In 
Figure 2, the integer inside the circle represents the node ID 
and the real number besides an edge represents the predicted 
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LET, the weight of the edge. In Figure 3, the integer outside 
the circle represents the number of uncovered neighbors of a 
node. In both these figures, the CDS nodes are represented 
with a thick black-colored circle with no shade inside the 
circle; the covered nodes are represented with double-bordered 
circles and gray-shaded inside; the uncovered nodes are 
represented with plain white circles. The CDS edges (edges 
between any two CDS nodes) are dark and bold; the covered 
edges (edges between a CDS node and a covered node) are 
double-lined; and the rest of the edges are plain. As illustrated 
in the examples, the LET-CDS incurs more nodes and edges 
that are part of the connected dominating set compared to the 
MaxD-CDS. 
 

   
          Figure 3.1. Initial Network                      Figure 3.2. Iteration # 1 
 

   
          Figure 3.3. Iteration # 2                         Figure 3.4. Iteration # 3 
 

  
     Figure 3.5. Final Iteration (# 5)                Figure 3.6. Final MaxD-CDS 
                                                                      [5 CDS Nodes; 5 CDS Edges] 

Figure 3. Example to Illustrate the Construction of MaxD-CDS 

IV. SIMULATIONS 

The simulations have been conducted in a discrete-event 
simulator developed by the authors in Java. The network 
topology is of dimensions 1000m x 1000m. The network 
density is represented as a measure of the average 
neighborhood size, which is calculated as follows: N*πR2/A, 
where N is the number of nodes in the network, R is the 
transmission range of a node and A is the network area. The 
transmission range per node used in all of our simulations is 
250 m. With a fixed transmission range and network area, the 
network density is varied from low to moderate and high by 
altering the number of nodes. We employ 50, 100 and 150 

nodes to represent networks of low (average of 9.8 neighbors 
per node), moderate (average of 19.6 neighbors per node) and 
high (average of 29.4 neighbors per node) respectively. The 
network connectivity observed for these three networks at 
different conditions of node mobility is illustrated in Figure 4. 

We use the Random Waypoint mobility model [13], 
according to which each node starts moving from an arbitrary 
location to a randomly selected destination with a randomly 
chosen speed in the range [vmin .. vmax]. Once the destination is 
reached, the node stays there for a pause time and then 
continues to move to another randomly selected destination 
with a different speed. We use vmin = 0 and pause time of a 
node is also set to 0. The values of vmax used are 5, 25 and 50 
m/s representing low mobility, moderate mobility and high 
mobility levels respectively. 

 

 
Figure 4. Average Percentage Network Connectivity 

We obtain a centralized view of the network topology by 
generating mobility trace files for the simulation time (1000 
seconds) under each of the above conditions. We sample the 
network topology for every 0.25 seconds. Two nodes a and b 
are assumed to have a bi-directional link at time t, if the 
Euclidean distance between them at time t (derived using the 
locations of the nodes from the mobility trace file) is within 
the wireless transmission range of the nodes. If a CDS does 
not exist for a particular time instant, we take a snapshot of the 
network topology at that time instant and run the appropriate 
CDS algorithm.  

A. Performance Metrics 

We measure the following performance metrics. Each data 
point in Figures 4 – 8 is an average computed over 10 mobility 
trace files and 15 s-d pairs from each of the mobility trace 
files. The starting time for each s-d session is uniformly 
distributed between 1 to 20 seconds. 
 CDS Node Size: This is a time-averaged value of the 

number of nodes that are part of the CDS, determined by 
the MaxD-CDS and LET-CDS algorithms. For example, 
if there exists a CDS of size 20 nodes, 23 nodes and 18 
nodes in the network for 5, 10 and 5 seconds respectively, 
then the average CDS Node Size is (20*5 + 23*10 + 
18*5)/(5 + 10 + 5) = 21.0 and not (20 + 23 + 18)/3 = 20.3. 

 CDS Edge Size: This is a time-averaged value of the 
number of edges connecting the nodes that are part of the 
CDS, determined by the MaxD-CDS and LET-CDS 
algorithms. 

 CDS Lifetime: This is the time elapsed between the 
discovery of a CDS and its disconnection, averaged over 
the entire duration of the simulation. 
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 Hop Count per Path: This is the time-averaged hop count 
of individual source-destination (s-d) paths involving the 
CDS nodes as source, intermediate and destination nodes, 
averaged across all s-d paths over the entire simulation 
time. 

B. CDS Node Size 

The LET-CDS, based on the predicted link lifetime, 
includes more nodes (refer Figure 5) compared to the MaxD-
CDS, based on node density. The maximum density-based 
CDS attempts to minimize the number of nodes that are part of 
the CDS as it gives preference to nodes that have a larger 
number of uncovered neighbors over nodes that have a smaller 
number of uncovered neighbors. But, the LET-based CDS 
does not give much importance to the number of uncovered 
neighbors of a node before including the node in the CDS-
Node-List.   

If an edge has a larger predicted LET and is the next 
candidate node to be considered for inclusion (when the 
already covered edges are considered in the decreasing order 
of their predicted lifetime) in the CDS-Edge-List, the larger 
LET edge is added to the CDS-Edge-List if it lead to at least 
one uncovered node in the network to be covered. As a result, 
the number of nodes in the CDS-Node-List is relatively high 
for the CDS based on the predicted LET. 

With respect to the magnitude of the difference in the 
number of nodes in the CDS-Node-List, we observe that the 
Node Size for a LET-CDS is 1.4 (low network density) to 2.0 
(high network density) times larger than that of the Node Size 
for a MaxD-CDS. In the case of a MaxD-CDS, for fixed node 
mobility, as we increase node density from low to high, there 
is only at most a 10% increase in the Node Size. On the other 
hand, for the LET-CDS, for fixed node mobility, as we 
increase the node density from low to high, the Node Size can 
increase as large as by 43%. This can be attributed to the 
relative insensitivity of the LET-CDS based algorithm to 
consider the number of uncovered neighbors of a node before 
including the node in the CDS. A long-living stable CDS is 
eventually formed by including more nodes to be part of the 
CDS. While, even if the network density is tripled, the MaxD-
CDS algorithm manages to cover all the nodes in the high-
density network by incurring only at most a 10% increase in 
the CDS Node Size, compared to that for a low-density 
network. 

C. CDS Edge Size 

The MaxD-CDS algorithm, in its attempt to minimize the 
CDS Node Size, chooses CDS nodes that are far away from 
each other such that each node covers as many uncovered 
neighbors as possible. As the CDS nodes are more likely to be 
away from each other, spanning the entire network, the 
number of edges (Edge Size) between the MaxD-CDS nodes 
is very low. On the other hand, since the LET-CDS algorithm 
incurs a larger Node Size because of its relative insensitivity to 
the number of uncovered neighbors of a node, there is a 
corresponding increase in the number of edges (refer Figure 6) 
between these CDS nodes.  

With respect to the magnitude of the difference in the 
number of edges among the CDS nodes, we observe that the 
Edge Size for a LET-CDS is 2.5 (low network density) to 4.0 
(high network density) times larger than that of the Edge Size 
for a MaxD-CDS. In the case of a MaxD-CDS, for fixed node 
mobility, as we increase the node density from low to high, 
there is only at most a 7% increase in the Edge Size. On the 
other hand, for the LET-CDS, at fixed node mobility, as we 
increase the node density from low to high, the Edge Size 
increases as large as by 70%. This can be attributed to the 
increase in the LET-CDS Node Size, with increase in network 
density. The increase in the number of edges and nodes 
significantly contribute to the increase in the LET-CDS 
lifetime (refer Section 4.4) as the network density is increased.  

D. CDS Lifetime 

In the case of LET-CDS, the relatively larger CDS Node 
Size and Edge Size significantly contribute to a larger lifetime 
of the CDS (refer Figure 7). As the constituent nodes of the 
LET-CDS are chosen based on the larger predicted link 
lifetime metric, the edges between the CDS nodes are bound 
to exist for a relatively longer time and the connectivity of the 
nodes that are part of the LET-CDS is likely to be maintained 
for a longer time. On the other hand, the MaxD-CDS 
algorithm chooses nodes that are far away from each other 
(but still maintain an edge between them) as part of the CDS. 
The edges between such nodes are likely to fail sooner, 
leading to loss of connectivity between the nodes that are part 
of the MaxD-CDS. We thus observe a tradeoff between the 
CDS Node Size and the CDS Lifetime. If we meticulously 
choose stable edges to be part of the CDS, the lifetime of the 
CDS could be significantly improved, at the expense of the 
Node Size. On the other hand, if we aim to select a CDS with 
the minimum number of nodes required to cover all the nodes 
in the network, the lifetime of the CDS would be significantly 
lower. 

With respect to the magnitude, the lifetime per LET-CDS is 
5% (low network density) to 86% (high network density) 
times more than that of the MaxD-CDS. The relatively high 
stability of LET-CDS at high network density can be 
attributed to the inclusion of a significantly larger number of 
stable CDS edges. The relatively poor stability of MaxD-CDS 
at high network density can be attributed to the need to cover a 
larger number of nodes in the network without any significant 
increase in the number of nodes that are part of the CDS.  

E. Hop Count per Source-Destination Path 

The average hop count per path (refer Figure 8) between a 
source-destination (s-d) pair through the nodes that are part of 
the MaxD-CDS is almost the same as that of LET-CDS (even 
sometimes lower) at low network density; but, could be at 
most 16% more than that incurred at high network density. 
The relatively lower hop count per s-d path, in the case of a 
LET-CDS at moderate and high network density, can be 
attributed to the larger CDS Node Size and the presence of a 
larger number of edges connecting the CDS nodes. Hence, the 
LET-CDS can have several s-d paths between any two nodes s 
and d in the network and we choose the minimum hop s-d path 
among them while computing the average hop count per path. 
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Figure 5. CDS Node Size – Average Number of Nodes per MaxD-CDS and LET-CDS 
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Figure 6. CDS Edge Size – Average Number of Edges per MaxD-CDS and LET-CDS 
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Figure 7. Average Lifetime per MaxD-CDS and LET-CDS 
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Figure 8. Average Hop Count per Path in a MaxD-CDS and LET-CDS 
 
On the other hand, with fewer edges in the MaxD-CDS, the 
paths between any two nodes through the nodes of the MaxD-
CDS will have a relatively larger hop count.  

The consequences of having larger hop count per path with 
a fewer number of nodes per MaxD-CDS are a larger end-to-
end delay per data packet and unfairness of node usage. Nodes 
that are path of the MaxD-CDS could be relatively heavily 
used compared to the nodes that are not part of the MaxD-
CDS. This could lead to premature failure of critical nodes, 
mainly nodes lying in the center of the network, resulting in 
reduction in network connectivity, especially in low-density 
networks. With LET-CDS, as multiple nodes are part of the 
CDS, the packet forwarding load can be distributed across 
several nodes and this could enhance the fairness of node 

usage and help to incur a relatively lower end-to-end delay per 
data packet. 

V. CONCLUSIONS AND FUTURE WORK 

Ours is the first work to formulate an algorithm to 
determine stable connected dominating sets for mobile ad hoc 
networks, exclusively based on predicted link expiration time 
represented as edge weights. Through extensive simulations, 
we demonstrate that the proposed algorithm, LET-CDS, can 
determine connected dominating sets that could have a longer 
lifetime compared to that of the maximum density-based 
MaxD-CDS algorithm, especially with increase in network 
density and/or node mobility. The LET-CDS also has a 
relatively larger number of constituent nodes and edges and 
this helps to reduce the hop count per path as well as the end-
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to-end delay and improves the fairness of node usage. We thus 
observe a tradeoff between the CDS Node Size and the CDS 
Lifetime. If we meticulously choose stable edges to be part of 
the CDS, the lifetime of the CDS could be significantly 
improved, at the expense of the Node Size. On the other hand, 
if we aim to choose a CDS with the minimum number of 
nodes required to cover all the nodes in the network, the 
lifetime of the CDS would be significantly lower.  

As future work, we will study the performance of LET-
CDS along with that of the theoretically optimal 
OptCDSTrans algorithm and compare the lifetimes of the 
LET-based connected dominating sets and the stable mobile 
connected dominating sets. We will compare the lifetime of 
LET-CDS with that of a minimum velocity-based CDS 
(MinV-CDS). Future work would also involve developing a 
distributed implementation of the LET-CDS algorithm and 
explore its use as a virtual backbone for unicast, multicast and 
broadcast communication in MANETs. 
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