
Pervis Fly et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2096-2103

Predicted Link Expiration Time Based Connected
Dominating Sets for Mobile Ad hoc Networks

Pervis Fly
Undergraduate Student, Dept. of Computer Science

Jackson State University
Jackson, MS 39217, USA

Natarajan Meghanathan
Assistant Professor, Dept. of Computer Science

Jackson State University
Jackson, MS 39217, USA

Abstract— We propose an algorithm to determine stable connected
dominating sets (CDS), based on the predicted link expiration time
(LET), for mobile ad hoc networks (MANETs). The proposed LET-
based CDS algorithm is the first such algorithm that constructs a CDS
based on edge weights represented by predicted link expiration time,
rather the traditional approach of using node weights like the well-
known maximum density-based CDS (MaxD-CDS) algorithm. The
construction of the LET-CDS starts with the inclusion of the edge
having the largest predicted link expiration time, into the CDS. Once
an edge is included as the CDS edge list, the two constituent nodes of
the edge becomes part of the CDS node list. The neighbors and the
edges incident to either one or both the end nodes of the CDS edge
are also said to be covered. The covered edges are considered in the
increasing order of their predicted link expiration time, for inclusion
in the CDS. If an edge has a higher predicted expiration time and is
the next candidate edge to be considered for inclusion into the CDS,
it is added to the CDS edge list if either one or both of the end nodes
of the edge has at least one neighbor node that is yet to be covered.
This procedure is repeated until all the nodes in the network are
covered. Simulation results illustrate that the LET-CDS has a longer
lifetime compared to the MaxD-CDS, especially in networks of
moderate and high density. The LET-CDS also has a larger number
of nodes and edges compared to the MaxD-CDS and this helps to
reduce the hop count as well as the end-to-end delay and improves
the fairness of node usage.

Keywords-Link Expiration Time; Stability; Connected
Dominating Sets; Mobile Ad hoc Networks; Simulations

I. INTRODUCTION

A mobile ad hoc network (MANET) is a dynamic
distributed system of arbitrarily moving wireless nodes that
operate on a limited battery charge. The network operates on a
limited bandwidth and the transmission range of each node is
limited. As a result, multi-hop communication is very common
in MANETs. Broadcast communication in MANETs has been
traditionally accomplished through flooding in which each
wireless node receives a copy of the broadcast message from
all of its neighbors and is also responsible for forwarding the
message exactly once to all of its neighbors. Recent studies
(e.g., [1][2][3][4][5]) demonstrate the use of connected
dominating set (CDS)-based virtual backbones to propagate the
broadcast messages so that they are exchanged only among the
nodes in the CDS instead of being broadcast by all the nodes in
the network, thus reducing the number of unnecessary
retransmissions.

Ad hoc networks are often represented as a unit disk graph
[6], in which vertices represent wireless nodes and a bi-
directional edge exists between two vertices if the
corresponding nodes are within the transmission range of each
other. A CDS is a sub graph of the undirected graph such that
all nodes in the graph are included in the CDS or directly
attached to a node (i.e., covered by the node) in the CDS. A
minimum connected dominating set (MCDS) is the smallest
CDS (in terms of number of nodes in the CDS) for the entire
graph. For a virtual backbone-based broadcast communication,
the smaller the size of the CDS, the smaller is the number of
unnecessary retransmissions. If the broadcast messages are
forwarded only by the nodes in the MCDS, we will have the
minimum number of retransmissions. Unfortunately, the
problem of determining the MCDS in an undirected graph like
that of the unit disk graph is NP-complete. Efficient heuristics
(e.g., [7][8][9]) that give preference to nodes with high
neighborhood density (i.e., a larger number of uncovered
neighbors) for inclusion in the MCDS have been proposed for
wireless ad hoc networks. The MaxD-CDS algorithm [10]
studied in this paper is one such density-based heuristic earlier
proposed by the co-author of this paper. Throughout the paper,
the terms ‘link’ and ‘edge’, ‘node’ and ‘vertex’, ‘message’ and
‘packet’, ‘path’ and ‘route’ have been used interchangeably.
They mean the same.

In this paper, we show that aiming for the minimum
number of nodes for the CDS in MANETs results in CDSs
that are highly unstable, especially with increase in network
density and node mobility. The CDS itself has to be frequently
rediscovered and this adds considerable overhead to resource-
constrained network. Our contribution in this paper is a
predicted link expiration time (LET)-based CDS construction
algorithm that gives preference to include links (and their
associated end nodes) that could exist for a longer time in the
CDS rather than nodes that have high neighborhood density.
To the best of our knowledge, ours is the first such approach
to construct a CDS based on the link weights rather than node
weights (e.g. the MaxD-CDS algorithm). The proposed LET-
CDS algorithm starts with the inclusion of an edge having the
largest predicted expiration time, into the CDS Edge List.
Once an edge is added to the CDS, the two constituent end
nodes of the edges are part of the CDS Node List and all their
neighbors and the incident edges are said to be covered. The
covered edges are considered in the increasing order of their
predicted LET, for inclusion in the CDS. If an edge has a

ISSN : 0975-3397 2096

Pervis Fly et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2096-2103

larger predicted LET and is the next candidate edge to be
considered for inclusion in the CDS, it is added to the CDS
Edge List if either of its end nodes can cover at least one of
their neighbor nodes that is yet to be covered. This procedure
is repeated until all the nodes in the network are covered. The
overall time complexity of the LET-CDS algorithm is O(|VE|
+ |E log E|) where |V| and |E| are the number of nodes and
edges in the underlying network graph, which could be a
snapshot of the network at a particular time instant. A CDS is
used as long as it exists.

In this paper, we show that aiming for the minimum
number of nodes for the CDS in MANETs, results in CDSs
that are highly unstable, especially with increase in network
density and/or node mobility. The CDS itself has to be
frequently rediscovered and this adds considerable overhead to
the resource-constrained network. Our contribution in this
paper is a predicted link expiration time (LET)-based CDS
construction algorithm that gives preference to include links
(and their associated end nodes) that could exist for a longer
time in the CDS rather than nodes that have high
neighborhood density. To the best of our knowledge, ours is
the first such approach to construct a CDS based on the link
weights rather than node weights (e.g. the MaxD-CDS
algorithm). The proposed LET-CDS algorithm starts with the
inclusion of an edge having the largest predicted expiration
time, into the CDS Edge List. Once an edge is added to the
CDS, the two constituent end nodes of the edges are part of
the CDS Node List and all their neighbors and the incident
edges are said to be covered. The covered edges are
considered in the increasing order of their predicted LET, for
inclusion in the CDS. If an edge has a larger predicted LET
and is the next candidate edge to be considered for inclusion in
the CDS, it is added to the CDS Edge List if either of its end
nodes can cover at least one of their neighbor nodes that is yet
to be covered. This procedure is repeated until all the nodes in
the network are covered. The overall time complexity of the
LET-CDS algorithm is O(|E log E|) where |E| are the number
of nodes and edges in the underlying network graph, which
could be a snapshot of the network at a particular time instant.
A CDS is used as long as it exists.

We compare the performance of LET-CDS with a
maximum-density (MaxD-CDS) based algorithm that gives
preference to nodes that have a larger number of uncovered
neighbors for inclusion in the CDS. Simulation results
illustrate that LET-CDS has a relatively longer lifetime than
MaxD-CDS with increase in network density and/or node
mobility. The tradeoff is an increase in the number of nodes
and number of edges that are part of the LET-CDS vis-à-vis
MaxD-CDS. However, this helps the LET-CDS to support a
relatively lower hop count per source-destination path
compared to MaxD-CDS.

The rest of the paper is organized as follows: Section 2
reviews related work in the literature on stable CDSs. Section
3 describes our LET-CDS algorithm and also the MaxD-CDS
algorithm with which the former is compared to. In addition,
we outline an algorithm to check the existence of a CDS at any
time instant and also show an example to illustrate the
working of the LET-CDS and MaxD-CDS. Section 4 presents
the simulation environment and describes the simulation

results comparing the performance of LET-CDS with that of
MaxD-CDS. Section 5 concludes the paper and discusses
future work.

II. RELATED WORK

Very few algorithms are proposed in the literature to
determine a stable connected dominating set for MANETs. In
[2], the authors propose a localized algorithm, called maximal
independent set with multiple initiators (MCMIS), to construct
stable virtual backbones. MCMIS consists of two phases: In
the first phase, a forest consisting of multiple dominating trees
rooted at multiple initiators is constructed. A dominating tree,
rooted at an initiator node, comprises of a subset of the nodes
in the network topology. Multiple dominating trees, each
started by its initiator, are constructed in parallel. In the second
phase, dominating trees, with overlapping branches are
interconnected to form a complete virtual backbone. Nodes are
ranked according to the tuple (stability, effective degree, ID)
and are considered as candidate nodes to be initiators, in
decreasing order of importance.

A novel mobility handling algorithm proposed in [3]
shortens the recovery time of CDS (i.e., CDS membership
changes) in the presence of node mobility and also maintains a
lower CDS size. In [4], the authors describe an algorithm to
calculate stable CDS based on link-stability for MANETs.
According to this algorithm, a link is said to be non-weak if
the strength of the beacon signals received on that link is
above a threshold. For inclusion in the stable CDS, nodes are
considered in the decreasing order of the number of non-weak
links associated with the node.

In [5], the authors propose a distributed topology
management algorithm that constructs and maintains a
minimal dominating set (MDS) of the network. MDS
members connect to form a CDS, used as the backbone
infrastructure for network communication. Each node self-
decides the membership of itself and its neighbors in the MDS
based on the two-hop neighborhood information disseminated
among neighboring nodes.

In [10], we had proposed a centralized algorithm, referred
to as OptCDSTrans, to determine a sequence of stable static
connected dominating sets for MANETs. Algorithm
OptCDSTrans operates according to a simple greedy principle,
described as follows: whenever a new CDS is required at time
instant t, we choose the longest-living CDS from time t. The
above strategy when repeated over the duration of the
simulation session yields a sequence of long-living stable
static connected dominating sets such that the number of CDS
transitions (change from one CDS to another) is the global
minimum. Some of the distinguishing characteristics of
OptCDSTrans are that the optimal number of CDS transitions
does not depend on the underlying algorithm or heuristic used
to determine the static CDSs and the greedy principle behind
OptCDSTrans is very generic such that it can be applied to
determine the stable sequence of any communication structure
(for example, paths or trees) as long as there is a heuristic or
algorithm to determine that particular communication structure
in a given network graph [11]. In [12], the co-author had
proposed a minimum velocity-based stable CDS (MinV-CDS)

ISSN : 0975-3397 2097

Pervis Fly et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2096-2103

algorithm according to which slow moving nodes are preferred
for inclusion into the CDS. The minimum velocity-based
connected dominating sets existed for a significantly longer
lifetime compared to the maximum density-based connected
dominating sets; the tradeoff being a larger number of nodes
and edges.

III. ALGORITHMS TO DETERMINE LET-CDS AND MAXD-CDS

A. Prediction of the Link Expiration Time (LET)

Given the motion parameters of two neighboring nodes, the
duration of time the two nodes will remain neighbors can be
predicted as follows: Let two nodes i and j be within the
transmission range of each other. Let (xi, yi) and (xj, yj) be the
co-ordinates of the mobile hosts i and j respectively. Let vi, vj

be the velocities and Θi, Θj, where (0 ≤ Θi, Θj < 2π) indicate
the direction of motion of nodes i and j respectively. The
amount of time the two nodes i and j will stay connected, Di-j,
can be predicted using the following equation:

D
ab cd a c r ad bc

a ci j 
     


() () ()2 2 2 2

2 2
 ………….. (1)

where: a = vi cosΘi – vj cosΘj; b = xi – xj; c = vi sinΘi – vj

sinΘj; d = yi – yj

B. Data Structures

We maintain the following four principal data structures:
(i) CDS-Node-List – includes all the nodes that are part of the

CDS.
(ii) Covered-Node-List – includes nodes that are either in the

CDS-Node-List or covered by a node in the CDS-Node-
List.

(iii) CDS-Edge-List – includes all the edges that are part of the
CDS: i.e., the edges that exist between any two nodes in
the CDS-Node-List.

(iv) Covered-Edge-List – includes edges that are not in the
CDS-Edge-List; but, one of its two end vertices is a node
in the CDS-Node-List.

(v) Priority Queue – includes edges that are in the Covered-
Edge-List and are probable candidates for addition to the
CDS-Edge-List. This list is sorted in the decreasing order
of the predicted LET of the edges. A dequeue operation
returns the edge with the largest predicted LET.

C. Algorithm to Determine the Predicted Link Expiration
Time (LET)-based CDS

The LET-CDS (pseudo code in Figure 1) is primarily
constructed as follows: The Start Edge is the first edge to be
added to the CDS-Edge-List. As a result of this, all the edges
that are adjacent to the Start Edge are added to the Covered-
Edge-List and to an appropriate entry in the Priority-Queue;
both the end nodes of the Start Edge are added to the CDS-
Node-List and their neighbors are added to the Covered-Node-
List. If the size of the Covered-Node-List is less than the
number of nodes in the network (i.e., not all nodes in the
network are yet covered) and the Priority-Queue is not empty,
we dequeue the Priority-Queue to extract an edge (uMaxE,
vMaxE) that has the largest predicted LET and is not yet in the
CDS-Edge-List. If there is at least one node that has an edge

with uMaxE or vMaxE and is not yet part of the Covered-
Node-List, then the edge (uMaxE, vMaxE) is removed from
the Covered-Edge-List and added to the CDS-Edge-List; the
nodes that are newly covered with the inclusion of (uMaxE,
vMaxE) to the CDS-Edge-List are added to the Covered-Node-
List and their associated edges that are adjacent to (uMaxE,
vMaxE) are added to the Covered-Edge-List. If there is no
node that could be newly covered through (uMaxE, vMaxE),
then the edge is not added to the CDS-Edge-List. The above
procedure is repeated until the size of the Covered-Node-List
is less than the number of nodes in the network or the Priority-
Queue becomes empty. If the size of the Covered-Node-List is
equal to the number of nodes in the network, then all the nodes
in the network are covered. If the Priority-Queue becomes
empty and the Covered-Node-List does not have at least one
node in the network, then the underlying network is
considered to be disconnected. During a dequeue operation, if
two or more edges have the same maximum predicted LET,
we choose the edge that can bring in more nodes to the
Covered-Node-List. If the tie cannot be still broken, we
randomly choose to dequeue one of these candidate edges.

Input: Snapshot of the Network Graph G = (V, E), where V is
the set of vertices and E is the set of edges
Auxiliary Variables and Functions:
CDS-Node-List, CDS-Edge-List, Covered-Node-List, Covered-
Edge-List, Priority-Queue, maxLETEdge
Neighbors(s) – List of neighbors of node s in graph G
LET(u–v) – the predicted link expiration time (in seconds) of
 an edge u – v
startEdge – the first edge (maximum weight edge) to be added
 to CDS-Edge-List
Sorted-Edge-List = List of edges in E, sorted in the decreasing
 order of LET
Output: CDS-Node-List // contains the list of nodes part of the
 predicted LET-based CDS
Initialization:
CDS-Node-List = Φ; CDS-Edge-List = Φ; Covered-Node-List
= Φ; Covered-Edge-List = Φ; Priority-Queue = Φ

Begin Construction of LET-CDS
 startEdge = Edge with max. weight in Sorted-Edge-List
 Priority-Queue = Priority-Queue U {startEdge}
 Covered-Edge-List = Covered-Edge-List U {startEdge}
 while (|Covered-Node-List|<|V| && Priority-Queue ≠ Φ) do
 Extract the maximum weight edge (uMaxE, vMaxE)
 Priority-Queue
 boolean additionNeeded-uMaxE = false
 boolean additionNeeded-vMaxE = false
 for every edge (a, uMaxE) E or (uMaxE, b) E do
 if (aCovered-Node-List) or (b Covered-Node-
 List) then
 Appropriately add node a or b to Covered-Node-List
 additionNeeded-uMaxE = true
 Appropriately add (a, uMaxE) or (uMaxE, b) to
 Priority-Queue
 Appropriately add (a, uMaxE) or (uMaxE, b) to
 Covered-Edge-List
 end if

ISSN : 0975-3397 2098

Pervis Fly et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2096-2103

 end for
 for every edge (a, vMaxE) E or (vMaxE, b) E do
 if (a Covered-Node-List) or (b Covered-Node-
 List) then
 Appropriately add node a or b to Covered-Node-List
 additionNeeded-vMaxE = true
 Appropriately add (a, vMaxE) or (vMaxE, b) to
 Priority-Queue
 Appropriately add (a, uMaxE) or (uMaxE, b) to
 Covered-Edge-List
 end if
 end for
 if (additionNeeded-uMaxE || additionNeeded-vMaxE) then
 CDS-Edge-List = CDS-Edge-List U {(uMaxE, vMaxE)}
 Covered-Edge-List=Covered-Edge-List–{(uMaxE, vMaxE)}
 if (uMaxE CDS-Node-List) then
 CDS-Node-List = CDS-Node-List U {uMaxE}
 Covered-Node-List = Covered-Node-List U {uMaxE}
 end if
 if (vMaxE  CDS-Node-List) then
 CDS-Node-List = CDS-Node-List U {vMaxE}
 Covered-Node-List = Covered-Node-List U {vMaxE}
 end if
 end if
 end While

return CDS-Node-List

Figure 1. Pseudo Code for the Algorithm to Construct the LET-based CDS

D. Time Complexity of the LET-CDS Algorithm

If we use a binary heap for maintaining the Priority-Queue
of |E| edges, each dequeue and enqueue operation can be
completed in O(|logE|) time. There could be O(|E|) of such
operations/iterations of the outer while loop in Figure 1.
Cumulative of all the |E| iterations, there would be O(|E|)
edges explored for addition to the Covered-Edge-List. Hence,
the overall time complexity of the LET-CDS algorithm is
O(|E| + |E logE|) = O(|E logE|).

E. Algorithm to Determine the Maximum Density-based
Connected Dominating Set (MaxD-CDS)

The MaxD-CDS algorithm is based on node weights –
prefers to choose nodes with the maximum number of
uncovered neighbors until all nodes in the network are
covered. The condition to check for network connectivity is
the same as that of the LET-CDS. If the size of the Covered-
Node-List is less than the number of nodes in the network and
the Priority-Queue that has the list of nodes with the maximum
number of uncovered neighbors becomes empty, then the
network is pronounced to be disconnected for that time instant
and we attempt to determine a CDS for the network snapshot
at the subsequent time instant. Ties to choose the next node for
inclusion to the MaxD-CDS are broken arbitrarily.

F. Algorithm to Check the Existence of a CDS at any Time
Instant

The algorithm to check the existence of a CDS at a
particular time instant t works as follows: Given the CDS-
Node-List and CDS-Edge-List at time t, we run the well-
known Breadth First Search (BFS) algorithm [12] on the CDS-
Node-List and CDS-Edge-List and examine whether the
underlying CDS is connected or not. If the CDS is not
connected, the algorithm returns false and a new run of the
CDS construction algorithm is initiated. If the CDS is
connected, we then test whether every non-CDS node in the
network is a neighbor of at least one CDS node. If there exists
at least one non-CDS node that is not a neighbor of any CDS
node at time t, the algorithm return false – necessitating the
instantiation of the appropriate CDS construction algorithm. If
every non-CDS node has at least one CDS node as neighbor,
the algorithms return true – the current CDS covers the entire
network and there is no need to determine a new CDS.

 Figure 2.1. Initial Network Figure 2.2. Iteration # 1

 Figure 2.3. Iteration # 2 Figure 2.4. Iteration # 3

 Figure 2.5. Final Iteration (# 6) Figure 2.6. Final LET-CDS
 [8 CDS Nodes; 7 CDS Edges]

Figure 2. Example to Illustrate the Construction of LET-CDS

G. Example to Illustrate the Construction of LET-CDS and
MaxD-CDS

Figures 2 and 3 illustrate examples to demonstrate the
working of the LET-CDS and MaxD-CDS algorithms
respectively. In these figures, each circle represents a node. In
Figure 2, the integer inside the circle represents the node ID
and the real number besides an edge represents the predicted

ISSN : 0975-3397 2099

Pervis Fly et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2096-2103

LET, the weight of the edge. In Figure 3, the integer outside
the circle represents the number of uncovered neighbors of a
node. In both these figures, the CDS nodes are represented
with a thick black-colored circle with no shade inside the
circle; the covered nodes are represented with double-bordered
circles and gray-shaded inside; the uncovered nodes are
represented with plain white circles. The CDS edges (edges
between any two CDS nodes) are dark and bold; the covered
edges (edges between a CDS node and a covered node) are
double-lined; and the rest of the edges are plain. As illustrated
in the examples, the LET-CDS incurs more nodes and edges
that are part of the connected dominating set compared to the
MaxD-CDS.

 Figure 3.1. Initial Network Figure 3.2. Iteration # 1

 Figure 3.3. Iteration # 2 Figure 3.4. Iteration # 3

 Figure 3.5. Final Iteration (# 5) Figure 3.6. Final MaxD-CDS
 [5 CDS Nodes; 5 CDS Edges]

Figure 3. Example to Illustrate the Construction of MaxD-CDS

IV. SIMULATIONS

The simulations have been conducted in a discrete-event
simulator developed by the authors in Java. The network
topology is of dimensions 1000m x 1000m. The network
density is represented as a measure of the average
neighborhood size, which is calculated as follows: N*πR2/A,
where N is the number of nodes in the network, R is the
transmission range of a node and A is the network area. The
transmission range per node used in all of our simulations is
250 m. With a fixed transmission range and network area, the
network density is varied from low to moderate and high by
altering the number of nodes. We employ 50, 100 and 150

nodes to represent networks of low (average of 9.8 neighbors
per node), moderate (average of 19.6 neighbors per node) and
high (average of 29.4 neighbors per node) respectively. The
network connectivity observed for these three networks at
different conditions of node mobility is illustrated in Figure 4.

We use the Random Waypoint mobility model [13],
according to which each node starts moving from an arbitrary
location to a randomly selected destination with a randomly
chosen speed in the range [vmin .. vmax]. Once the destination is
reached, the node stays there for a pause time and then
continues to move to another randomly selected destination
with a different speed. We use vmin = 0 and pause time of a
node is also set to 0. The values of vmax used are 5, 25 and 50
m/s representing low mobility, moderate mobility and high
mobility levels respectively.

Figure 4. Average Percentage Network Connectivity

We obtain a centralized view of the network topology by
generating mobility trace files for the simulation time (1000
seconds) under each of the above conditions. We sample the
network topology for every 0.25 seconds. Two nodes a and b
are assumed to have a bi-directional link at time t, if the
Euclidean distance between them at time t (derived using the
locations of the nodes from the mobility trace file) is within
the wireless transmission range of the nodes. If a CDS does
not exist for a particular time instant, we take a snapshot of the
network topology at that time instant and run the appropriate
CDS algorithm.

A. Performance Metrics

We measure the following performance metrics. Each data
point in Figures 4 – 8 is an average computed over 10 mobility
trace files and 15 s-d pairs from each of the mobility trace
files. The starting time for each s-d session is uniformly
distributed between 1 to 20 seconds.
 CDS Node Size: This is a time-averaged value of the

number of nodes that are part of the CDS, determined by
the MaxD-CDS and LET-CDS algorithms. For example,
if there exists a CDS of size 20 nodes, 23 nodes and 18
nodes in the network for 5, 10 and 5 seconds respectively,
then the average CDS Node Size is (20*5 + 23*10 +
18*5)/(5 + 10 + 5) = 21.0 and not (20 + 23 + 18)/3 = 20.3.

 CDS Edge Size: This is a time-averaged value of the
number of edges connecting the nodes that are part of the
CDS, determined by the MaxD-CDS and LET-CDS
algorithms.

 CDS Lifetime: This is the time elapsed between the
discovery of a CDS and its disconnection, averaged over
the entire duration of the simulation.

ISSN : 0975-3397 2100

Pervis Fly et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2096-2103

 Hop Count per Path: This is the time-averaged hop count
of individual source-destination (s-d) paths involving the
CDS nodes as source, intermediate and destination nodes,
averaged across all s-d paths over the entire simulation
time.

B. CDS Node Size

The LET-CDS, based on the predicted link lifetime,
includes more nodes (refer Figure 5) compared to the MaxD-
CDS, based on node density. The maximum density-based
CDS attempts to minimize the number of nodes that are part of
the CDS as it gives preference to nodes that have a larger
number of uncovered neighbors over nodes that have a smaller
number of uncovered neighbors. But, the LET-based CDS
does not give much importance to the number of uncovered
neighbors of a node before including the node in the CDS-
Node-List.

If an edge has a larger predicted LET and is the next
candidate node to be considered for inclusion (when the
already covered edges are considered in the decreasing order
of their predicted lifetime) in the CDS-Edge-List, the larger
LET edge is added to the CDS-Edge-List if it lead to at least
one uncovered node in the network to be covered. As a result,
the number of nodes in the CDS-Node-List is relatively high
for the CDS based on the predicted LET.

With respect to the magnitude of the difference in the
number of nodes in the CDS-Node-List, we observe that the
Node Size for a LET-CDS is 1.4 (low network density) to 2.0
(high network density) times larger than that of the Node Size
for a MaxD-CDS. In the case of a MaxD-CDS, for fixed node
mobility, as we increase node density from low to high, there
is only at most a 10% increase in the Node Size. On the other
hand, for the LET-CDS, for fixed node mobility, as we
increase the node density from low to high, the Node Size can
increase as large as by 43%. This can be attributed to the
relative insensitivity of the LET-CDS based algorithm to
consider the number of uncovered neighbors of a node before
including the node in the CDS. A long-living stable CDS is
eventually formed by including more nodes to be part of the
CDS. While, even if the network density is tripled, the MaxD-
CDS algorithm manages to cover all the nodes in the high-
density network by incurring only at most a 10% increase in
the CDS Node Size, compared to that for a low-density
network.

C. CDS Edge Size

The MaxD-CDS algorithm, in its attempt to minimize the
CDS Node Size, chooses CDS nodes that are far away from
each other such that each node covers as many uncovered
neighbors as possible. As the CDS nodes are more likely to be
away from each other, spanning the entire network, the
number of edges (Edge Size) between the MaxD-CDS nodes
is very low. On the other hand, since the LET-CDS algorithm
incurs a larger Node Size because of its relative insensitivity to
the number of uncovered neighbors of a node, there is a
corresponding increase in the number of edges (refer Figure 6)
between these CDS nodes.

With respect to the magnitude of the difference in the
number of edges among the CDS nodes, we observe that the
Edge Size for a LET-CDS is 2.5 (low network density) to 4.0
(high network density) times larger than that of the Edge Size
for a MaxD-CDS. In the case of a MaxD-CDS, for fixed node
mobility, as we increase the node density from low to high,
there is only at most a 7% increase in the Edge Size. On the
other hand, for the LET-CDS, at fixed node mobility, as we
increase the node density from low to high, the Edge Size
increases as large as by 70%. This can be attributed to the
increase in the LET-CDS Node Size, with increase in network
density. The increase in the number of edges and nodes
significantly contribute to the increase in the LET-CDS
lifetime (refer Section 4.4) as the network density is increased.

D. CDS Lifetime

In the case of LET-CDS, the relatively larger CDS Node
Size and Edge Size significantly contribute to a larger lifetime
of the CDS (refer Figure 7). As the constituent nodes of the
LET-CDS are chosen based on the larger predicted link
lifetime metric, the edges between the CDS nodes are bound
to exist for a relatively longer time and the connectivity of the
nodes that are part of the LET-CDS is likely to be maintained
for a longer time. On the other hand, the MaxD-CDS
algorithm chooses nodes that are far away from each other
(but still maintain an edge between them) as part of the CDS.
The edges between such nodes are likely to fail sooner,
leading to loss of connectivity between the nodes that are part
of the MaxD-CDS. We thus observe a tradeoff between the
CDS Node Size and the CDS Lifetime. If we meticulously
choose stable edges to be part of the CDS, the lifetime of the
CDS could be significantly improved, at the expense of the
Node Size. On the other hand, if we aim to select a CDS with
the minimum number of nodes required to cover all the nodes
in the network, the lifetime of the CDS would be significantly
lower.

With respect to the magnitude, the lifetime per LET-CDS is
5% (low network density) to 86% (high network density)
times more than that of the MaxD-CDS. The relatively high
stability of LET-CDS at high network density can be
attributed to the inclusion of a significantly larger number of
stable CDS edges. The relatively poor stability of MaxD-CDS
at high network density can be attributed to the need to cover a
larger number of nodes in the network without any significant
increase in the number of nodes that are part of the CDS.

E. Hop Count per Source-Destination Path

The average hop count per path (refer Figure 8) between a
source-destination (s-d) pair through the nodes that are part of
the MaxD-CDS is almost the same as that of LET-CDS (even
sometimes lower) at low network density; but, could be at
most 16% more than that incurred at high network density.
The relatively lower hop count per s-d path, in the case of a
LET-CDS at moderate and high network density, can be
attributed to the larger CDS Node Size and the presence of a
larger number of edges connecting the CDS nodes. Hence, the
LET-CDS can have several s-d paths between any two nodes s
and d in the network and we choose the minimum hop s-d path
among them while computing the average hop count per path.

ISSN : 0975-3397 2101

Pervis Fly et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2096-2103

 Figure 5.1. vmax = 5 m/s Figure 5.2. vmax = 25 m/s Figure 5.3. vmax = 50 m/s

Figure 5. CDS Node Size – Average Number of Nodes per MaxD-CDS and LET-CDS

 Figure 6.1. vmax = 5 m/s Figure 6.2. vmax = 25 m/s Figure 6.3. vmax = 50 m/s

Figure 6. CDS Edge Size – Average Number of Edges per MaxD-CDS and LET-CDS

 Figure 7.1. vmax = 5 m/s Figure 7.2. vmax = 25 m/s Figure 7.3. vmax = 50 m/s

Figure 7. Average Lifetime per MaxD-CDS and LET-CDS

 Figure 8.1. vmax = 5 m/s Figure 8.2. vmax = 25 m/s Figure 8.3. vmax = 50 m/s

Figure 8. Average Hop Count per Path in a MaxD-CDS and LET-CDS

On the other hand, with fewer edges in the MaxD-CDS, the
paths between any two nodes through the nodes of the MaxD-
CDS will have a relatively larger hop count.

The consequences of having larger hop count per path with
a fewer number of nodes per MaxD-CDS are a larger end-to-
end delay per data packet and unfairness of node usage. Nodes
that are path of the MaxD-CDS could be relatively heavily
used compared to the nodes that are not part of the MaxD-
CDS. This could lead to premature failure of critical nodes,
mainly nodes lying in the center of the network, resulting in
reduction in network connectivity, especially in low-density
networks. With LET-CDS, as multiple nodes are part of the
CDS, the packet forwarding load can be distributed across
several nodes and this could enhance the fairness of node

usage and help to incur a relatively lower end-to-end delay per
data packet.

V. CONCLUSIONS AND FUTURE WORK

Ours is the first work to formulate an algorithm to
determine stable connected dominating sets for mobile ad hoc
networks, exclusively based on predicted link expiration time
represented as edge weights. Through extensive simulations,
we demonstrate that the proposed algorithm, LET-CDS, can
determine connected dominating sets that could have a longer
lifetime compared to that of the maximum density-based
MaxD-CDS algorithm, especially with increase in network
density and/or node mobility. The LET-CDS also has a
relatively larger number of constituent nodes and edges and
this helps to reduce the hop count per path as well as the end-

ISSN : 0975-3397 2102

Pervis Fly et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2096-2103

to-end delay and improves the fairness of node usage. We thus
observe a tradeoff between the CDS Node Size and the CDS
Lifetime. If we meticulously choose stable edges to be part of
the CDS, the lifetime of the CDS could be significantly
improved, at the expense of the Node Size. On the other hand,
if we aim to choose a CDS with the minimum number of
nodes required to cover all the nodes in the network, the
lifetime of the CDS would be significantly lower.

As future work, we will study the performance of LET-
CDS along with that of the theoretically optimal
OptCDSTrans algorithm and compare the lifetimes of the
LET-based connected dominating sets and the stable mobile
connected dominating sets. We will compare the lifetime of
LET-CDS with that of a minimum velocity-based CDS
(MinV-CDS). Future work would also involve developing a
distributed implementation of the LET-CDS algorithm and
explore its use as a virtual backbone for unicast, multicast and
broadcast communication in MANETs.

ACKNOWLEDGMENT

This research is funded by the U.S. National Science
Foundation through grant (CNS-0851646) entitled: “REU
Site: Undergraduate Research Program in Wireless Ad hoc
Networks and Sensor Networks,” hosted by the Department of
Computer Science at Jackson State University (JSU), MS,
USA. The authors also acknowledge Dr. Loretta Moore, Dr.
Xuejun Liang, Ms. Ilin Dasari and Mrs. Brenda Johnson (all at
JSU) for their services to this program conducted during
Summer 2010.

REFERENCES
[1] P. Sinha, R. Sivakumar and V. Bhargavan, “Enhancing Ad hoc Routing

with Dynamic Virtual Infrastructures,” Proceedings of the 20th Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), vol. 3, pp. 1763 – 1772, 2001.

[2] F. Wang, M. Min, Y. Li and D. Du, “On the Construction of Stable
Virtual Backbones in Mobile Ad hoc Networks,” Proceedings of the
IEEE International Performance Computing and Communciations
Conference (IPCCC), 2005.

[3] K. Sakai, M.-T. Sun and W.-S. Ku, “Maintaining CDS in Mobile Ad hoc
Networks,” Wireless Algorithms Systems and Applications, Lecture
Notes in Computer Science, vol. 5258, pp. 141 – 153, October 2008.

[4] P.-R. Sheu, H.-Y. Tsai, Y.-P. Lee and J. Y. Cheng, “On Calculating
Stable Connected Dominating Sets Based on Link Stability for Mobile
Ad hoc Networks,” Tamkang Journal of Science and Engineering, vol.
12, no. 4, pp. 417 – 428, 2009.

[5] L. Bao and J. J. Garcia-Luna-Aceves, “Stable Energy-aware Topology
Management in Ad hoc Networks,” Ad hoc Networks, vol. 8, no. 3, pp.
313 – 327, May 2010.

[6] F. Kuhn, T. Moscibroda and R. Wattenhofer, “Unit Disk Graph
Approximation,” Proceedings of the ACM DIALM-POMC Joint
Workshop on the Foundations of Mobile Computing, pp. 17 – 23,
Philadelphia, October 2004.

[7] K. M. Alzoubi, P.-J Wan and O. Frieder, “Distributed Heuristics for
Connected Dominating Set in Wireless Ad Hoc Networks,” IEEE / KICS
Journal on Communication Networks, Vol. 4, No. 1, pp. 22 – 29, 2002.

[8] S. Butenko, X. Cheng, D.-Z. Du and P. M. Paradlos, “On the
Construction of Virtual Backbone for Ad Hoc Wireless Networks,”
Cooperative Control: Models, Applications and Algorithms, pp. 43 – 54,
Kluwer Academic Publishers, 2002.

[9] S. Butenko, X. Cheng, C. Oliviera and P. M. Paradlos, “A New Heuristic
for the Minimum Connected Dominating Set Problem on Ad Hoc
Wireless Networks,” Recent Developments in Co-operative Control and
Optimization, pp. 61 – 73, Kluwer Academic Publishers, 2004.

[10] N. Meghanathan, “An Algorithm to Determine the Sequence of Stable
Connected Dominating Sets in Mobile Ad hoc Networks,” Proceedings
of the 2nd Advanced International Conference on Telecommunications,
Guadeloupe, French Caribbean, February 2006.

[11] N. Meghanathan and A. Farago, “On the Stability of Paths, Steiner
Trees and Connected Dominating Sets in Mobile Ad hoc Networks,” Ad
hoc Networks, vol. 6, no. 5, pp. 744 – 769, July 2008.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction
to Algorithms,” 2nd Edition, MIT Press, 2001.

[13] C. Bettstetter, H. Hartenstein and X. Perez-Costa, “Stochastic Properties
of the Random-Way Point Mobility Model,” Wireless Networks, pp. 555
– 567, Vol. 10, No. 5, September 2004.

AUTHORS PROFILE

Pervis Fly is an undergraduate student (Senior) majoring in Computer Science
at Jackson State University. The paper is based on the research work he
conducted for the Research Experiences for Undergraduates (REU)
program, sponsored by the U. S. National Science Founation at Jackson
State University. During 2008-09, Pervis Fly also pariticipated in the
NSF LSMAMP program for undergraduate research and has worked on
an algorithm to determine ancestor-descendant relationships using
binary coding. His research interests are in the areas of Algorithms,
Wireless Networks and Bioinformatics.

Natarajan Meghanathan is an Assistant Professor of Computer Science at
Jackson State University. He received his Ph.D. in Computer Science
from The University of Texas at Dallas in May 2005 and has been
working at Jackson State University since Fall 2005. He has published
more than 70 papers in the areas of wireless ad hoc networks and sensor
networks and has recently received grants from the National Science
Foundation and Army Research Lab in these two areas. Besides these
two areas, he conducts research in Network and Software Security,
Computational Biology, Graph Theory and Algorithms. He also serves
in the editorial board for several international journals and also in the
program committee for several international conferences.

ISSN : 0975-3397 2103

